|
1 //======================================================================= |
|
2 // Copyright 1997, 1998, 1999, 2000 University of Notre Dame. |
|
3 // Copyright 2004 The Trustees of Indiana University. |
|
4 // Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor |
|
5 // |
|
6 // Distributed under the Boost Software License, Version 1.0. (See |
|
7 // accompanying file LICENSE_1_0.txt or copy at |
|
8 // http://www.boost.org/LICENSE_1_0.txt) |
|
9 //======================================================================= |
|
10 #ifndef BOOST_GRAPH_LEDA_HPP |
|
11 #define BOOST_GRAPH_LEDA_HPP |
|
12 |
|
13 #include <boost/config.hpp> |
|
14 #include <boost/iterator/iterator_facade.hpp> |
|
15 #include <boost/graph/graph_traits.hpp> |
|
16 #include <boost/graph/properties.hpp> |
|
17 |
|
18 #include <LEDA/graph.h> |
|
19 #include <LEDA/node_array.h> |
|
20 #include <LEDA/node_map.h> |
|
21 |
|
22 // The functions and classes in this file allows the user to |
|
23 // treat a LEDA GRAPH object as a boost graph "as is". No |
|
24 // wrapper is needed for the GRAPH object. |
|
25 |
|
26 // Remember to define LEDA_PREFIX so that LEDA types such as |
|
27 // leda_edge show up as "leda_edge" and not just "edge". |
|
28 |
|
29 // Warning: this implementation relies on partial specialization |
|
30 // for the graph_traits class (so it won't compile with Visual C++) |
|
31 |
|
32 // Warning: this implementation is in alpha and has not been tested |
|
33 |
|
34 #if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION |
|
35 namespace boost { |
|
36 |
|
37 struct leda_graph_traversal_category : |
|
38 public virtual bidirectional_graph_tag, |
|
39 public virtual adjacency_graph_tag, |
|
40 public virtual vertex_list_graph_tag { }; |
|
41 |
|
42 template <class vtype, class etype> |
|
43 struct graph_traits< leda::GRAPH<vtype,etype> > { |
|
44 typedef leda_node vertex_descriptor; |
|
45 typedef leda_edge edge_descriptor; |
|
46 |
|
47 class adjacency_iterator |
|
48 : public iterator_facade<adjacency_iterator, |
|
49 leda_node, |
|
50 bidirectional_traversal_tag, |
|
51 leda_node, |
|
52 const leda_node*> |
|
53 { |
|
54 public: |
|
55 explicit adjacency_iterator(leda_edge edge = 0) : base(edge) {} |
|
56 |
|
57 private: |
|
58 leda_node dereference() const { return leda::target(base); } |
|
59 |
|
60 bool equal(const adjacency_iterator& other) const |
|
61 { return base == other.base; } |
|
62 |
|
63 void increment() { base = Succ_Adj_Edge(base, 0); } |
|
64 void decrement() { base = Pred_Adj_Edge(base, 0); } |
|
65 |
|
66 leda_edge base; |
|
67 |
|
68 friend class iterator_core_access; |
|
69 }; |
|
70 |
|
71 class out_edge_iterator |
|
72 : public iterator_facade<out_edge_iterator, |
|
73 leda_edge, |
|
74 bidirectional_traversal_tag, |
|
75 const leda_edge&, |
|
76 const leda_edge*> |
|
77 { |
|
78 public: |
|
79 explicit out_edge_iterator(leda_edge edge = 0) : base(edge) {} |
|
80 |
|
81 private: |
|
82 const leda_edge& dereference() const { return base; } |
|
83 |
|
84 bool equal(const out_edge_iterator& other) const |
|
85 { return base == other.base; } |
|
86 |
|
87 void increment() { base = Succ_Adj_Edge(base, 0); } |
|
88 void decrement() { base = Pred_Adj_Edge(base, 0); } |
|
89 |
|
90 leda_edge base; |
|
91 |
|
92 friend class iterator_core_access; |
|
93 }; |
|
94 |
|
95 class in_edge_iterator |
|
96 : public iterator_facade<in_edge_iterator, |
|
97 leda_edge, |
|
98 bidirectional_traversal_tag, |
|
99 const leda_edge&, |
|
100 const leda_edge*> |
|
101 { |
|
102 public: |
|
103 explicit in_edge_iterator(leda_edge edge = 0) : base(edge) {} |
|
104 |
|
105 private: |
|
106 const leda_edge& dereference() const { return base; } |
|
107 |
|
108 bool equal(const in_edge_iterator& other) const |
|
109 { return base == other.base; } |
|
110 |
|
111 void increment() { base = Succ_Adj_Edge(base, 1); } |
|
112 void decrement() { base = Pred_Adj_Edge(base, 1); } |
|
113 |
|
114 leda_edge base; |
|
115 |
|
116 friend class iterator_core_access; |
|
117 }; |
|
118 |
|
119 class vertex_iterator |
|
120 : public iterator_facade<vertex_iterator, |
|
121 leda_node, |
|
122 bidirectional_traversal_tag, |
|
123 const leda_node&, |
|
124 const leda_node*> |
|
125 { |
|
126 public: |
|
127 vertex_iterator(leda_node node = 0, |
|
128 const leda::GRAPH<vtype, etype>* g = 0) |
|
129 : base(node), g(g) {} |
|
130 |
|
131 private: |
|
132 const leda_node& dereference() const { return base; } |
|
133 |
|
134 bool equal(const vertex_iterator& other) const |
|
135 { return base == other.base; } |
|
136 |
|
137 void increment() { base = g->succ_node(base); } |
|
138 void decrement() { base = g->pred_node(base); } |
|
139 |
|
140 leda_node base; |
|
141 const leda::GRAPH<vtype, etype>* g; |
|
142 |
|
143 friend class iterator_core_access; |
|
144 }; |
|
145 |
|
146 typedef directed_tag directed_category; |
|
147 typedef allow_parallel_edge_tag edge_parallel_category; // not sure here |
|
148 typedef leda_graph_traversal_category traversal_category; |
|
149 typedef int vertices_size_type; |
|
150 typedef int edges_size_type; |
|
151 typedef int degree_size_type; |
|
152 }; |
|
153 |
|
154 template <class vtype, class etype> |
|
155 struct vertex_property< leda::GRAPH<vtype,etype> > { |
|
156 typedef vtype type; |
|
157 }; |
|
158 |
|
159 template <class vtype, class etype> |
|
160 struct edge_property< leda::GRAPH<vtype,etype> > { |
|
161 typedef etype type; |
|
162 }; |
|
163 |
|
164 } // namespace boost |
|
165 #endif |
|
166 |
|
167 namespace boost { |
|
168 |
|
169 template <class vtype, class etype> |
|
170 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor |
|
171 source(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e, |
|
172 const leda::GRAPH<vtype,etype>& g) |
|
173 { |
|
174 return source(e); |
|
175 } |
|
176 |
|
177 template <class vtype, class etype> |
|
178 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor |
|
179 target(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e, |
|
180 const leda::GRAPH<vtype,etype>& g) |
|
181 { |
|
182 return target(e); |
|
183 } |
|
184 |
|
185 template <class vtype, class etype> |
|
186 inline std::pair< |
|
187 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator, |
|
188 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator > |
|
189 vertices(const leda::GRAPH<vtype,etype>& g) |
|
190 { |
|
191 typedef typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator |
|
192 Iter; |
|
193 return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) ); |
|
194 } |
|
195 |
|
196 // no edges(g) function |
|
197 |
|
198 template <class vtype, class etype> |
|
199 inline std::pair< |
|
200 typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator, |
|
201 typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator > |
|
202 out_edges( |
|
203 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
204 const leda::GRAPH<vtype,etype>& g) |
|
205 { |
|
206 typedef typename graph_traits< leda::GRAPH<vtype,etype> > |
|
207 ::out_edge_iterator Iter; |
|
208 return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) ); |
|
209 } |
|
210 |
|
211 template <class vtype, class etype> |
|
212 inline std::pair< |
|
213 typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator, |
|
214 typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator > |
|
215 in_edges( |
|
216 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
217 const leda::GRAPH<vtype,etype>& g) |
|
218 { |
|
219 typedef typename graph_traits< leda::GRAPH<vtype,etype> > |
|
220 ::in_edge_iterator Iter; |
|
221 return std::make_pair( Iter(First_Adj_Edge(u,1)), Iter(0) ); |
|
222 } |
|
223 |
|
224 template <class vtype, class etype> |
|
225 inline std::pair< |
|
226 typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator, |
|
227 typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator > |
|
228 adjacent_vertices( |
|
229 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
230 const leda::GRAPH<vtype,etype>& g) |
|
231 { |
|
232 typedef typename graph_traits< leda::GRAPH<vtype,etype> > |
|
233 ::adjacency_iterator Iter; |
|
234 return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) ); |
|
235 } |
|
236 |
|
237 template <class vtype, class etype> |
|
238 typename graph_traits< leda::GRAPH<vtype,etype> >::vertices_size_type |
|
239 num_vertices(const leda::GRAPH<vtype,etype>& g) |
|
240 { |
|
241 return g.number_of_nodes(); |
|
242 } |
|
243 |
|
244 template <class vtype, class etype> |
|
245 typename graph_traits< leda::GRAPH<vtype,etype> >::edges_size_type |
|
246 num_edges(const leda::GRAPH<vtype,etype>& g) |
|
247 { |
|
248 return g.number_of_edges(); |
|
249 } |
|
250 |
|
251 template <class vtype, class etype> |
|
252 typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type |
|
253 out_degree( |
|
254 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
255 const leda::GRAPH<vtype,etype>&) |
|
256 { |
|
257 return outdeg(u); |
|
258 } |
|
259 |
|
260 template <class vtype, class etype> |
|
261 typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type |
|
262 in_degree( |
|
263 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
264 const leda::GRAPH<vtype,etype>&) |
|
265 { |
|
266 return indeg(u); |
|
267 } |
|
268 |
|
269 template <class vtype, class etype> |
|
270 typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type |
|
271 degree( |
|
272 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
273 const leda::GRAPH<vtype,etype>&) |
|
274 { |
|
275 return outdeg(u) + indeg(u); |
|
276 } |
|
277 |
|
278 template <class vtype, class etype> |
|
279 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor |
|
280 add_vertex(leda::GRAPH<vtype,etype>& g) |
|
281 { |
|
282 return g.new_node(); |
|
283 } |
|
284 |
|
285 template <class vtype, class etype> |
|
286 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor |
|
287 add_vertex(const vtype& vp, leda::GRAPH<vtype,etype>& g) |
|
288 { |
|
289 return g.new_node(vp); |
|
290 } |
|
291 |
|
292 // Hmm, LEDA doesn't have the equivalent of clear_vertex() -JGS |
|
293 // need to write an implementation |
|
294 template <class vtype, class etype> |
|
295 void clear_vertex( |
|
296 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
297 leda::GRAPH<vtype,etype>& g) |
|
298 { |
|
299 g.del_node(u); |
|
300 } |
|
301 |
|
302 template <class vtype, class etype> |
|
303 void remove_vertex( |
|
304 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
305 leda::GRAPH<vtype,etype>& g) |
|
306 { |
|
307 g.del_node(u); |
|
308 } |
|
309 |
|
310 template <class vtype, class etype> |
|
311 std::pair< |
|
312 typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor, |
|
313 bool> |
|
314 add_edge( |
|
315 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
316 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v, |
|
317 leda::GRAPH<vtype,etype>& g) |
|
318 { |
|
319 return std::make_pair(g.new_edge(u, v), true); |
|
320 } |
|
321 |
|
322 template <class vtype, class etype> |
|
323 std::pair< |
|
324 typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor, |
|
325 bool> |
|
326 add_edge( |
|
327 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
328 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v, |
|
329 const etype& et, |
|
330 leda::GRAPH<vtype,etype>& g) |
|
331 { |
|
332 return std::make_pair(g.new_edge(u, v, et), true); |
|
333 } |
|
334 |
|
335 template <class vtype, class etype> |
|
336 void |
|
337 remove_edge( |
|
338 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
339 typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v, |
|
340 leda::GRAPH<vtype,etype>& g) |
|
341 { |
|
342 typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator |
|
343 i,iend; |
|
344 for (boost::tie(i,iend) = out_edges(u,g); i != iend; ++i) |
|
345 if (target(*i,g) == v) |
|
346 g.del_edge(*i); |
|
347 } |
|
348 |
|
349 template <class vtype, class etype> |
|
350 void |
|
351 remove_edge( |
|
352 typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e, |
|
353 leda::GRAPH<vtype,etype>& g) |
|
354 { |
|
355 g.del_edge(e); |
|
356 } |
|
357 |
|
358 //=========================================================================== |
|
359 // property maps |
|
360 |
|
361 class leda_graph_id_map |
|
362 : public put_get_helper<int, leda_graph_id_map> |
|
363 { |
|
364 public: |
|
365 typedef readable_property_map_tag category; |
|
366 typedef int value_type; |
|
367 typedef int reference; |
|
368 typedef leda_node key_type; |
|
369 leda_graph_id_map() { } |
|
370 template <class T> |
|
371 long operator[](T x) const { return x->id(); } |
|
372 }; |
|
373 template <class vtype, class etype> |
|
374 inline leda_graph_id_map |
|
375 get(vertex_index_t, const leda::GRAPH<vtype, etype>& g) { |
|
376 return leda_graph_id_map(); |
|
377 } |
|
378 template <class vtype, class etype> |
|
379 inline leda_graph_id_map |
|
380 get(edge_index_t, const leda::GRAPH<vtype, etype>& g) { |
|
381 return leda_graph_id_map(); |
|
382 } |
|
383 |
|
384 template <class Tag> |
|
385 struct leda_property_map { }; |
|
386 |
|
387 template <> |
|
388 struct leda_property_map<vertex_index_t> { |
|
389 template <class vtype, class etype> |
|
390 struct bind_ { |
|
391 typedef leda_graph_id_map type; |
|
392 typedef leda_graph_id_map const_type; |
|
393 }; |
|
394 }; |
|
395 template <> |
|
396 struct leda_property_map<edge_index_t> { |
|
397 template <class vtype, class etype> |
|
398 struct bind_ { |
|
399 typedef leda_graph_id_map type; |
|
400 typedef leda_graph_id_map const_type; |
|
401 }; |
|
402 }; |
|
403 |
|
404 |
|
405 template <class Data, class DataRef, class GraphPtr> |
|
406 class leda_graph_data_map |
|
407 : public put_get_helper<DataRef, |
|
408 leda_graph_data_map<Data,DataRef,GraphPtr> > |
|
409 { |
|
410 public: |
|
411 typedef Data value_type; |
|
412 typedef DataRef reference; |
|
413 typedef void key_type; |
|
414 typedef lvalue_property_map_tag category; |
|
415 leda_graph_data_map(GraphPtr g) : m_g(g) { } |
|
416 template <class NodeOrEdge> |
|
417 DataRef operator[](NodeOrEdge x) const { return (*m_g)[x]; } |
|
418 protected: |
|
419 GraphPtr m_g; |
|
420 }; |
|
421 |
|
422 template <> |
|
423 struct leda_property_map<vertex_all_t> { |
|
424 template <class vtype, class etype> |
|
425 struct bind_ { |
|
426 typedef leda_graph_data_map<vtype, vtype&, leda::GRAPH<vtype, etype>*> type; |
|
427 typedef leda_graph_data_map<vtype, const vtype&, |
|
428 const leda::GRAPH<vtype, etype>*> const_type; |
|
429 }; |
|
430 }; |
|
431 template <class vtype, class etype > |
|
432 inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type |
|
433 get(vertex_all_t, leda::GRAPH<vtype, etype>& g) { |
|
434 typedef typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type |
|
435 pmap_type; |
|
436 return pmap_type(&g); |
|
437 } |
|
438 template <class vtype, class etype > |
|
439 inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::const_type |
|
440 get(vertex_all_t, const leda::GRAPH<vtype, etype>& g) { |
|
441 typedef typename property_map< leda::GRAPH<vtype, etype>, |
|
442 vertex_all_t>::const_type pmap_type; |
|
443 return pmap_type(&g); |
|
444 } |
|
445 |
|
446 template <> |
|
447 struct leda_property_map<edge_all_t> { |
|
448 template <class vtype, class etype> |
|
449 struct bind_ { |
|
450 typedef leda_graph_data_map<etype, etype&, leda::GRAPH<vtype, etype>*> type; |
|
451 typedef leda_graph_data_map<etype, const etype&, |
|
452 const leda::GRAPH<vtype, etype>*> const_type; |
|
453 }; |
|
454 }; |
|
455 template <class vtype, class etype > |
|
456 inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type |
|
457 get(edge_all_t, leda::GRAPH<vtype, etype>& g) { |
|
458 typedef typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type |
|
459 pmap_type; |
|
460 return pmap_type(&g); |
|
461 } |
|
462 template <class vtype, class etype > |
|
463 inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::const_type |
|
464 get(edge_all_t, const leda::GRAPH<vtype, etype>& g) { |
|
465 typedef typename property_map< leda::GRAPH<vtype, etype>, |
|
466 edge_all_t>::const_type pmap_type; |
|
467 return pmap_type(&g); |
|
468 } |
|
469 |
|
470 // property map interface to the LEDA node_array class |
|
471 |
|
472 template <class E, class ERef, class NodeMapPtr> |
|
473 class leda_node_property_map |
|
474 : public put_get_helper<ERef, leda_node_property_map<E, ERef, NodeMapPtr> > |
|
475 { |
|
476 public: |
|
477 typedef E value_type; |
|
478 typedef ERef reference; |
|
479 typedef leda_node key_type; |
|
480 typedef lvalue_property_map_tag category; |
|
481 leda_node_property_map(NodeMapPtr a) : m_array(a) { } |
|
482 ERef operator[](leda_node n) const { return (*m_array)[n]; } |
|
483 protected: |
|
484 NodeMapPtr m_array; |
|
485 }; |
|
486 template <class E> |
|
487 leda_node_property_map<E, const E&, const leda_node_array<E>*> |
|
488 make_leda_node_property_map(const leda_node_array<E>& a) |
|
489 { |
|
490 typedef leda_node_property_map<E, const E&, const leda_node_array<E>*> |
|
491 pmap_type; |
|
492 return pmap_type(&a); |
|
493 } |
|
494 template <class E> |
|
495 leda_node_property_map<E, E&, leda_node_array<E>*> |
|
496 make_leda_node_property_map(leda_node_array<E>& a) |
|
497 { |
|
498 typedef leda_node_property_map<E, E&, leda_node_array<E>*> pmap_type; |
|
499 return pmap_type(&a); |
|
500 } |
|
501 |
|
502 template <class E> |
|
503 leda_node_property_map<E, const E&, const leda_node_map<E>*> |
|
504 make_leda_node_property_map(const leda_node_map<E>& a) |
|
505 { |
|
506 typedef leda_node_property_map<E,const E&,const leda_node_map<E>*> |
|
507 pmap_type; |
|
508 return pmap_type(&a); |
|
509 } |
|
510 template <class E> |
|
511 leda_node_property_map<E, E&, leda_node_map<E>*> |
|
512 make_leda_node_property_map(leda_node_map<E>& a) |
|
513 { |
|
514 typedef leda_node_property_map<E, E&, leda_node_map<E>*> pmap_type; |
|
515 return pmap_type(&a); |
|
516 } |
|
517 |
|
518 // g++ 'enumeral_type' in template unification not implemented workaround |
|
519 template <class vtype, class etype, class Tag> |
|
520 struct property_map<leda::GRAPH<vtype, etype>, Tag> { |
|
521 typedef typename |
|
522 leda_property_map<Tag>::template bind_<vtype, etype> map_gen; |
|
523 typedef typename map_gen::type type; |
|
524 typedef typename map_gen::const_type const_type; |
|
525 }; |
|
526 |
|
527 template <class vtype, class etype, class PropertyTag, class Key> |
|
528 inline |
|
529 typename boost::property_traits< |
|
530 typename boost::property_map<leda::GRAPH<vtype, etype>,PropertyTag>::const_type |
|
531 >::value_type |
|
532 get(PropertyTag p, const leda::GRAPH<vtype, etype>& g, const Key& key) { |
|
533 return get(get(p, g), key); |
|
534 } |
|
535 |
|
536 template <class vtype, class etype, class PropertyTag, class Key,class Value> |
|
537 inline void |
|
538 put(PropertyTag p, leda::GRAPH<vtype, etype>& g, |
|
539 const Key& key, const Value& value) |
|
540 { |
|
541 typedef typename property_map<leda::GRAPH<vtype, etype>, PropertyTag>::type Map; |
|
542 Map pmap = get(p, g); |
|
543 put(pmap, key, value); |
|
544 } |
|
545 |
|
546 } // namespace boost |
|
547 |
|
548 |
|
549 #endif // BOOST_GRAPH_LEDA_HPP |