|
1 // (C) Copyright John Maddock 2005. |
|
2 // Distributed under the Boost Software License, Version 1.0. (See accompanying |
|
3 // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
4 |
|
5 #ifndef BOOST_MATH_COMPLEX_ACOS_INCLUDED |
|
6 #define BOOST_MATH_COMPLEX_ACOS_INCLUDED |
|
7 |
|
8 #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED |
|
9 # include <boost/math/complex/details.hpp> |
|
10 #endif |
|
11 #ifndef BOOST_MATH_LOG1P_INCLUDED |
|
12 # include <boost/math/special_functions/log1p.hpp> |
|
13 #endif |
|
14 #include <boost/assert.hpp> |
|
15 |
|
16 #ifdef BOOST_NO_STDC_NAMESPACE |
|
17 namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; } |
|
18 #endif |
|
19 |
|
20 namespace boost{ namespace math{ |
|
21 |
|
22 template<class T> |
|
23 std::complex<T> acos(const std::complex<T>& z) |
|
24 { |
|
25 // |
|
26 // This implementation is a transcription of the pseudo-code in: |
|
27 // |
|
28 // "Implementing the Complex Arcsine and Arccosine Functions using Exception Handling." |
|
29 // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang. |
|
30 // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997. |
|
31 // |
|
32 |
|
33 // |
|
34 // These static constants should really be in a maths constants library: |
|
35 // |
|
36 static const T one = static_cast<T>(1); |
|
37 //static const T two = static_cast<T>(2); |
|
38 static const T half = static_cast<T>(0.5L); |
|
39 static const T a_crossover = static_cast<T>(1.5L); |
|
40 static const T b_crossover = static_cast<T>(0.6417L); |
|
41 static const T s_pi = static_cast<T>(3.141592653589793238462643383279502884197L); |
|
42 static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L); |
|
43 static const T log_two = static_cast<T>(0.69314718055994530941723212145817657L); |
|
44 static const T quarter_pi = static_cast<T>(0.78539816339744830961566084581987572L); |
|
45 |
|
46 // |
|
47 // Get real and imaginary parts, discard the signs as we can |
|
48 // figure out the sign of the result later: |
|
49 // |
|
50 T x = std::fabs(z.real()); |
|
51 T y = std::fabs(z.imag()); |
|
52 |
|
53 T real, imag; // these hold our result |
|
54 |
|
55 // |
|
56 // Handle special cases specified by the C99 standard, |
|
57 // many of these special cases aren't really needed here, |
|
58 // but doing it this way prevents overflow/underflow arithmetic |
|
59 // in the main body of the logic, which may trip up some machines: |
|
60 // |
|
61 if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity())) |
|
62 { |
|
63 if(y == std::numeric_limits<T>::infinity()) |
|
64 { |
|
65 real = quarter_pi; |
|
66 imag = std::numeric_limits<T>::infinity(); |
|
67 } |
|
68 else if(detail::test_is_nan(y)) |
|
69 { |
|
70 return std::complex<T>(y, -std::numeric_limits<T>::infinity()); |
|
71 } |
|
72 else |
|
73 { |
|
74 // y is not infinity or nan: |
|
75 real = 0; |
|
76 imag = std::numeric_limits<T>::infinity(); |
|
77 } |
|
78 } |
|
79 else if(detail::test_is_nan(x)) |
|
80 { |
|
81 if(y == std::numeric_limits<T>::infinity()) |
|
82 return std::complex<T>(x, (z.imag() < 0) ? std::numeric_limits<T>::infinity() : -std::numeric_limits<T>::infinity()); |
|
83 return std::complex<T>(x, x); |
|
84 } |
|
85 else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity())) |
|
86 { |
|
87 real = half_pi; |
|
88 imag = std::numeric_limits<T>::infinity(); |
|
89 } |
|
90 else if(detail::test_is_nan(y)) |
|
91 { |
|
92 return std::complex<T>((x == 0) ? half_pi : y, y); |
|
93 } |
|
94 else |
|
95 { |
|
96 // |
|
97 // What follows is the regular Hull et al code, |
|
98 // begin with the special case for real numbers: |
|
99 // |
|
100 if((y == 0) && (x <= one)) |
|
101 return std::complex<T>((x == 0) ? half_pi : std::acos(z.real())); |
|
102 // |
|
103 // Figure out if our input is within the "safe area" identified by Hull et al. |
|
104 // This would be more efficient with portable floating point exception handling; |
|
105 // fortunately the quantities M and u identified by Hull et al (figure 3), |
|
106 // match with the max and min methods of numeric_limits<T>. |
|
107 // |
|
108 T safe_max = detail::safe_max(static_cast<T>(8)); |
|
109 T safe_min = detail::safe_min(static_cast<T>(4)); |
|
110 |
|
111 T xp1 = one + x; |
|
112 T xm1 = x - one; |
|
113 |
|
114 if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min)) |
|
115 { |
|
116 T yy = y * y; |
|
117 T r = std::sqrt(xp1*xp1 + yy); |
|
118 T s = std::sqrt(xm1*xm1 + yy); |
|
119 T a = half * (r + s); |
|
120 T b = x / a; |
|
121 |
|
122 if(b <= b_crossover) |
|
123 { |
|
124 real = std::acos(b); |
|
125 } |
|
126 else |
|
127 { |
|
128 T apx = a + x; |
|
129 if(x <= one) |
|
130 { |
|
131 real = std::atan(std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1)))/x); |
|
132 } |
|
133 else |
|
134 { |
|
135 real = std::atan((y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1))))/x); |
|
136 } |
|
137 } |
|
138 |
|
139 if(a <= a_crossover) |
|
140 { |
|
141 T am1; |
|
142 if(x < one) |
|
143 { |
|
144 am1 = half * (yy/(r + xp1) + yy/(s - xm1)); |
|
145 } |
|
146 else |
|
147 { |
|
148 am1 = half * (yy/(r + xp1) + (s + xm1)); |
|
149 } |
|
150 imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one))); |
|
151 } |
|
152 else |
|
153 { |
|
154 imag = std::log(a + std::sqrt(a*a - one)); |
|
155 } |
|
156 } |
|
157 else |
|
158 { |
|
159 // |
|
160 // This is the Hull et al exception handling code from Fig 6 of their paper: |
|
161 // |
|
162 if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1))) |
|
163 { |
|
164 if(x < one) |
|
165 { |
|
166 real = std::acos(x); |
|
167 imag = y / std::sqrt(xp1*(one-x)); |
|
168 } |
|
169 else |
|
170 { |
|
171 real = 0; |
|
172 if(((std::numeric_limits<T>::max)() / xp1) > xm1) |
|
173 { |
|
174 // xp1 * xm1 won't overflow: |
|
175 imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1)); |
|
176 } |
|
177 else |
|
178 { |
|
179 imag = log_two + std::log(x); |
|
180 } |
|
181 } |
|
182 } |
|
183 else if(y <= safe_min) |
|
184 { |
|
185 // There is an assumption in Hull et al's analysis that |
|
186 // if we get here then x == 1. This is true for all "good" |
|
187 // machines where : |
|
188 // |
|
189 // E^2 > 8*sqrt(u); with: |
|
190 // |
|
191 // E = std::numeric_limits<T>::epsilon() |
|
192 // u = (std::numeric_limits<T>::min)() |
|
193 // |
|
194 // Hull et al provide alternative code for "bad" machines |
|
195 // but we have no way to test that here, so for now just assert |
|
196 // on the assumption: |
|
197 // |
|
198 BOOST_ASSERT(x == 1); |
|
199 real = std::sqrt(y); |
|
200 imag = std::sqrt(y); |
|
201 } |
|
202 else if(std::numeric_limits<T>::epsilon() * y - one >= x) |
|
203 { |
|
204 real = half_pi; |
|
205 imag = log_two + std::log(y); |
|
206 } |
|
207 else if(x > one) |
|
208 { |
|
209 real = std::atan(y/x); |
|
210 T xoy = x/y; |
|
211 imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy); |
|
212 } |
|
213 else |
|
214 { |
|
215 real = half_pi; |
|
216 T a = std::sqrt(one + y*y); |
|
217 imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a)); |
|
218 } |
|
219 } |
|
220 } |
|
221 |
|
222 // |
|
223 // Finish off by working out the sign of the result: |
|
224 // |
|
225 if(z.real() < 0) |
|
226 real = s_pi - real; |
|
227 if(z.imag() > 0) |
|
228 imag = -imag; |
|
229 |
|
230 return std::complex<T>(real, imag); |
|
231 } |
|
232 |
|
233 } } // namespaces |
|
234 |
|
235 #endif // BOOST_MATH_COMPLEX_ACOS_INCLUDED |