--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/epoc32/include/stdapis/boost/math/complex/details.hpp Tue Mar 16 16:12:26 2010 +0000
@@ -0,0 +1,104 @@
+// (C) Copyright John Maddock 2005.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
+#define BOOST_MATH_COMPLEX_DETAILS_INCLUDED
+//
+// This header contains all the support code that is common to the
+// inverse trig complex functions, it also contains all the includes
+// that we need to implement all these functions.
+//
+#include <boost/detail/workaround.hpp>
+#include <boost/config.hpp>
+#include <boost/config/no_tr1/complex.hpp>
+#include <boost/limits.hpp>
+#include <math.h> // isnan where available
+#include <cmath>
+
+#ifdef BOOST_NO_STDC_NAMESPACE
+namespace std{ using ::sqrt; }
+#endif
+
+namespace boost{ namespace math{ namespace detail{
+
+template <class T>
+inline bool test_is_nan(T t)
+{
+ // Comparisons with Nan's always fail:
+ return std::numeric_limits<T>::has_infinity && (!(t <= std::numeric_limits<T>::infinity()) || !(t >= -std::numeric_limits<T>::infinity()));
+}
+#ifdef isnan
+template<> inline bool test_is_nan<float>(float t) { return isnan(t); }
+template<> inline bool test_is_nan<double>(double t) { return isnan(t); }
+template<> inline bool test_is_nan<long double>(long double t) { return isnan(t); }
+#endif
+
+template <class T>
+inline T mult_minus_one(const T& t)
+{
+ return test_is_nan(t) ? t : -t;
+}
+
+template <class T>
+inline std::complex<T> mult_i(const std::complex<T>& t)
+{
+ return std::complex<T>(mult_minus_one(t.imag()), t.real());
+}
+
+template <class T>
+inline std::complex<T> mult_minus_i(const std::complex<T>& t)
+{
+ return std::complex<T>(t.imag(), mult_minus_one(t.real()));
+}
+
+template <class T>
+inline T safe_max(T t)
+{
+ return std::sqrt((std::numeric_limits<T>::max)()) / t;
+}
+inline long double safe_max(long double t)
+{
+ // long double sqrt often returns infinity due to
+ // insufficient internal precision:
+ return std::sqrt((std::numeric_limits<double>::max)()) / t;
+}
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
+// workaround for type deduction bug:
+inline float safe_max(float t)
+{
+ return std::sqrt((std::numeric_limits<float>::max)()) / t;
+}
+inline double safe_max(double t)
+{
+ return std::sqrt((std::numeric_limits<double>::max)()) / t;
+}
+#endif
+template <class T>
+inline T safe_min(T t)
+{
+ return std::sqrt((std::numeric_limits<T>::min)()) * t;
+}
+inline long double safe_min(long double t)
+{
+ // long double sqrt often returns zero due to
+ // insufficient internal precision:
+ return std::sqrt((std::numeric_limits<double>::min)()) * t;
+}
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
+// type deduction workaround:
+inline double safe_min(double t)
+{
+ return std::sqrt((std::numeric_limits<double>::min)()) * t;
+}
+inline float safe_min(float t)
+{
+ return std::sqrt((std::numeric_limits<float>::min)()) * t;
+}
+#endif
+
+} } } // namespaces
+
+#endif // BOOST_MATH_COMPLEX_DETAILS_INCLUDED
+