diff -r 2fe1408b6811 -r e1b950c65cb4 epoc32/include/stdapis/boost/math/complex/atanh.hpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/epoc32/include/stdapis/boost/math/complex/atanh.hpp Wed Mar 31 12:27:01 2010 +0100 @@ -0,0 +1,267 @@ +// boost atanh.hpp header file + +// (C) Copyright Hubert Holin 2001. +// Distributed under the Boost Software License, Version 1.0. (See +// accompanying file LICENSE_1_0.txt or copy at +// http://www.boost.org/LICENSE_1_0.txt) + +// See http://www.boost.org for updates, documentation, and revision history. + +#ifndef BOOST_ATANH_HPP +#define BOOST_ATANH_HPP + + +#include +#include +#include +#include + + +#include + + +// This is the inverse of the hyperbolic tangent function. + +namespace boost +{ + namespace math + { +#if defined(__GNUC__) && (__GNUC__ < 3) + // gcc 2.x ignores function scope using declarations, + // put them in the scope of the enclosing namespace instead: + + using ::std::abs; + using ::std::sqrt; + using ::std::log; + + using ::std::numeric_limits; +#endif + +#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) + // This is the main fare + + template + inline T atanh(const T x) + { + using ::std::abs; + using ::std::sqrt; + using ::std::log; + + using ::std::numeric_limits; + + T const one = static_cast(1); + T const two = static_cast(2); + + static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); + static T const taylor_n_bound = sqrt(taylor_2_bound); + + if (x < -one) + { + if (numeric_limits::has_quiet_NaN) + { + return(numeric_limits::quiet_NaN()); + } + else + { + ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); + ::std::domain_error bad_argument(error_reporting); + + throw(bad_argument); + } + } + else if (x < -one+numeric_limits::epsilon()) + { + if (numeric_limits::has_infinity) + { + return(-numeric_limits::infinity()); + } + else + { + ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!"); + ::std::out_of_range bad_argument(error_reporting); + + throw(bad_argument); + } + } + else if (x > +one-numeric_limits::epsilon()) + { + if (numeric_limits::has_infinity) + { + return(+numeric_limits::infinity()); + } + else + { + ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!"); + ::std::out_of_range bad_argument(error_reporting); + + throw(bad_argument); + } + } + else if (x > +one) + { + if (numeric_limits::has_quiet_NaN) + { + return(numeric_limits::quiet_NaN()); + } + else + { + ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); + ::std::domain_error bad_argument(error_reporting); + + throw(bad_argument); + } + } + else if (abs(x) >= taylor_n_bound) + { + return(log( (one + x) / (one - x) ) / two); + } + else + { + // approximation by taylor series in x at 0 up to order 2 + T result = x; + + if (abs(x) >= taylor_2_bound) + { + T x3 = x*x*x; + + // approximation by taylor series in x at 0 up to order 4 + result += x3/static_cast(3); + } + + return(result); + } + } +#else + // These are implementation details (for main fare see below) + + namespace detail + { + template < + typename T, + bool InfinitySupported + > + struct atanh_helper1_t + { + static T get_pos_infinity() + { + return(+::std::numeric_limits::infinity()); + } + + static T get_neg_infinity() + { + return(-::std::numeric_limits::infinity()); + } + }; // boost::math::detail::atanh_helper1_t + + + template + struct atanh_helper1_t + { + static T get_pos_infinity() + { + ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!"); + ::std::out_of_range bad_argument(error_reporting); + + throw(bad_argument); + } + + static T get_neg_infinity() + { + ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!"); + ::std::out_of_range bad_argument(error_reporting); + + throw(bad_argument); + } + }; // boost::math::detail::atanh_helper1_t + + + template < + typename T, + bool QuietNanSupported + > + struct atanh_helper2_t + { + static T get_NaN() + { + return(::std::numeric_limits::quiet_NaN()); + } + }; // boost::detail::atanh_helper2_t + + + template + struct atanh_helper2_t + { + static T get_NaN() + { + ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); + ::std::domain_error bad_argument(error_reporting); + + throw(bad_argument); + } + }; // boost::detail::atanh_helper2_t + } // boost::detail + + + // This is the main fare + + template + inline T atanh(const T x) + { + using ::std::abs; + using ::std::sqrt; + using ::std::log; + + using ::std::numeric_limits; + + typedef detail::atanh_helper1_t::has_infinity> helper1_type; + typedef detail::atanh_helper2_t::has_quiet_NaN> helper2_type; + + + T const one = static_cast(1); + T const two = static_cast(2); + + static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); + static T const taylor_n_bound = sqrt(taylor_2_bound); + + if (x < -one) + { + return(helper2_type::get_NaN()); + } + else if (x < -one+numeric_limits::epsilon()) + { + return(helper1_type::get_neg_infinity()); + } + else if (x > +one-numeric_limits::epsilon()) + { + return(helper1_type::get_pos_infinity()); + } + else if (x > +one) + { + return(helper2_type::get_NaN()); + } + else if (abs(x) >= taylor_n_bound) + { + return(log( (one + x) / (one - x) ) / two); + } + else + { + // approximation by taylor series in x at 0 up to order 2 + T result = x; + + if (abs(x) >= taylor_2_bound) + { + T x3 = x*x*x; + + // approximation by taylor series in x at 0 up to order 4 + result += x3/static_cast(3); + } + + return(result); + } + } +#endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */ + } +} + +#endif /* BOOST_ATANH_HPP */ +