	[image: image4.png]NOKIA

	
	
	2 (45)

	Graphics Resource API Specification
	
	
	Version 1.1

	Jaime Casas
	April 28, 2010
	
	Revision 15

	Symbian System Software
	Public
	
	Issued

Graphics Resource API Specification
Version 1.1
This component and the accompanying materials are made available under the terms of "Eclipse Public License v1.0" which accompanies this distribution, and is available at the URL http://www.eclipse.org/legal/epl-v10.html.

Contents:
41.
Scope

42.
Concepts

53.
Packaging

64.
Error Handling

64.1
Error Codes

74.2
Panic Codes

75.
Constants

85.1
Usage Bits

105.2
Pixel Formats

106.
General Functionality

126.1
Extension Interfaces

126.2
Panic(TSgResourcePanicReason)

136.3
RSgDriver

146.3.1
Open()

146.3.2
Close()

156.3.3
GetInterface(TUid, TAny*&) const

166.3.4
GetInterface(M*&) const

176.3.5
Version()

176.4
TSgAttribute

176.5
TSgAttributeArray and TSgAttributeArrayBase

176.5.1
Count() const

186.5.2
operator [](TInt)

186.5.3
operator [](TInt) const

186.6
TSgDrawableId

196.7
RSgDrawable

206.7.1
Open(…)

216.7.2
Close()

226.7.3
Id() const

226.7.4
IsNull() const

226.7.5
DrawableType() const

236.7.6
GetInterface(TUid, TAny*&) const

246.7.7
GetInterface(M*&) const

257.
Images

267.1
TSgImageInfo

277.2
RSgImage

277.2.1
Create(const TSgImageInfo&, const TAny*, TInt, const TSgAttributeArrayBase*)

297.2.2
Create(const TSgImageInfo&, const RSgImage&, const TSgAttributeArrayBase*)

307.2.3
GetInfo(…) const

317.2.4
GetAttribute(…) const

327.2.5
GetPixelFormats(…)

338.
Pixel Format and Usage Support

339.
Extending the Graphics Resource API

3410.
Thread Safety

3511.
References

3512.
People

3613.
Revision History

3714.
Appendix: Use Cases and Example Code

3714.1
Using an RSgImage as a rendering target of Khronos APIs

4014.2
Using an RSgImage as a 2D image resource for OpenVG (VGImage)

4314.3
Sharing image data between processes with RSgImage, and memory upload

1. Scope
This document specifies the Graphics Resource API, which provides functionality to create resources for use with OpenVG or OpenGL ES (via EGL) and to share them between operating system processes. The Graphics Resource API is intended to be used together with EGL, since its main purpose is to add inter-process resource sharing to the functionality provided by EGL, and requires an extension of EGL, described in reference [R8].

The Graphics Resource API, however, does not provide all the functionality needed by the implementations of EGL, OpenVG and OpenGL ES to make use of the resources created with it.

Therefore, this document also specifies the ways in which the Graphics Resource API can be extended. See section 9, “Extending the Graphics Resource API,” for more information.
2. Concepts
Universally unique ID:

A 32-bit number recorded in a registry of the Symbian Foundation to guarantee that it is different from every other universally unique ID. Often referred to simply as “UID.” To request a UID contact the Symbian Foundation at http://developer.symbian.org.
System memory:

Memory that can be efficiently accessed by the CPU(s) and possibly also by other system hardware. Sometimes referred to as “main memory.”

Specialised graphics memory:

Memory that can be efficiently accessed by graphics acceleration hardware, that is, by the GPU(s). It can be physically separated from system memory or it can be a portion of system memory accessible by graphics acceleration hardware.

Drawable resource:
A self-contained data buffer allocated in specialized graphics memory that can be shared between operating system processes and used directly by graphics acceleration hardware when executing drawing commands on behalf of any operating system process. It is an abstract concept in the sense that the format of the data is not specified.
Drawable resource type:
A concrete data format for drawable resources. Each drawable resource type must be identified by a universally unique ID obtained from the Symbian Foundation.

Drawable resource handle:

A variable holding a reference to a drawable resource or a null value that explicitly indicates that no drawable resource is referred to.

Image:
A drawable resource containing a two-dimensional pixel array. It is the only type of drawable resource defined in version 1.1 of the Graphics Resource API.
Image handle:
A drawable resource handle that can only hold references to images or the null value.

Extension attribute:

An attribute defined in an extension of the Graphics Resource API that can be attached to certain drawable resources or passed as a parameter to certain functions, according to the extension of the Graphics Resource API. Each type of extension attribute must be identified by a universally unique ID obtained from the Symbian Foundation.

Extension interface:

A set of functions defined in an extension of the Graphics Resource API. Each extension interface must be identified by a universally unique ID obtained from the Symbian Foundation.
3. Packaging
The implementation of the Graphics Resource API must be packaged as a DLL named sgresource.dll. The specification of the Graphics Resource API is distributed together with a component, graphicsresourceinterface, which defines the interface between this DLL and the rest of the system. This component provides the import library and the following source files: C++ header files, export definition files and project definition header files. As of version 1.1 of the Graphics Resource API, the source files provided by graphicsresourceinterface are the following:

· C++ header files containing the declaration of the constants, types, classes and functions described in the specification, as well as the definition of all the inline functions.

· /epoc32/include/platform/sgresource/sgerror.h
· /epoc32/include/platform/sgresource/sgconst.h
· /epoc32/include/platform/sgresource/sgresource.h
· /epoc32/include/platform/sgresource/sgresource.inl
· /epoc32/include/platform/sgresource/sgimage.h
· /epoc32/include/platform/sgresource/sgimage.inl
· Export definition files specifying the ordinal positions of the exported functions.
· /epoc32/include/platform/def/eabi/sgresourceu.def

· Project definition header files specifying the mandatory properties of the DLL.
· /epoc32/include/platform/sgresource/sgresource.mmh
None of the files in graphicsresourceinterface can be amended.

The implementors of the Graphics Resource API must deliver a component, graphicsresourceimplementation, which builds sgresource_variant.dll with all the exported functions declared in the export definition files and the properties specified in the project definition header files. The implementors must also deliver a ROM image include file in /epoc32/rom/include/ with the following structure:
// sgresource_variant.iby

#ifndef SGRESOURCE_VARIANT_IBY
#define SGRESOURCE_VARIANT_IBY
REM Graphics Resource Variant Version

file=ABI_DIR\BUILD_DIR\sgresource_variant.dll \sys\bin\sgresource.dll

#endif
Where variant is the name of the implementor or some identifying feature of the implementation. To build a ROM with the implementation of the Graphics Resource API the macro SGRESOURCE_DRV must be set to <sgresource_variant.iby> in the ROM build command. See reference [R7] for more information.
4. Error Handling
The implementation of the Graphics Resource API must not use the exception handling mechanism of C++ or the leave mechanism of Symbian OS to report failures. All exceptional conditions must be dealt with by returning an error code or using the panic mechanism of Symbian OS.
4.1 Error Codes

Error codes are defined in the header file <sgerror.h>.
// sgerror.h

#ifndef SGERROR_H

#define SGERROR_H

#include <e32def.h>

const TInt KErrNoGraphicsMemory = -481;

#endif // SGERROR_H

These error codes are specific to the Graphics Resource API and must be returned by functions in the Graphics Resource API when the generic Symbian OS error codes are not suitable. Otherwise, functions in the Graphics Resource API must return generic Symbian OS error codes.
· The error code KErrNoGraphicsMemory means “out of specialised graphics memory,” as opposed to the generic error code KErrNoMemory, which means “out of system memory.” Functions that allocate specialised graphics memory should return KErrNoGraphicsMemory if an allocation fails and the specialised graphics memory is either physically separated from system memory or a portion of system memory reserved for exclusive use by graphics acceleration hardware. Otherwise these functions should return KErrNoMemory to tell the caller that, after releasing system memory, re-trying the call might succeed.
In case of error, a call to any function in the Graphics Resource API must not have any effect, that is, the postconditions must be the same as the preconditions.

4.2 Panic Codes

The following panic codes are defined in version 1.1 of the Graphics Resource API:

· SGRES 1
In debug and release builds, the implementation of the Graphics Resource API is not initialised in the context of the process.

· SGRES 2
In debug builds only, there are still open handles to drawable resources in the process during termination.

· SGRES 3
In debug and release builds, a drawable resource handle is invalid.

· SGRES 4
In debug and release builds, an index into an array of extension attributes is out of bounds.

Additionally, implementations of the Graphics Resource API can define new panic codes for debugging purposes with category “SGRES-IMPL,” as long as they are never raised in release builds.

In case of panic, a call to any function in the Graphics Resource API must only have the effect of panicking the current thread, whenever possible.

5. Constants

Constants are defined in the header file <sgconst.h>.
// sgconst.h

#ifndef SGCONST_H

#define SGCONST_H

#include <pixelformats.h>

#include <sgresource/sgerror.h>

enum TSgUsageBits

 {

 ESgUsageBitOpenVgImage = 0x0001,

 ESgUsageBitOpenGlesTexture2D = 0x0002,

 ESgUsageBitOpenGles2Texture2D = 0x0004,

 ESgUsageBitOpenVgSurface = 0x0010,

 ESgUsageBitOpenGlesSurface = 0x0020,

 ESgUsageBitOpenGles2Surface = 0x0040,

 ESgUsageBitOpenGlSurface = 0x0080

 };

enum TSgPixelFormat

 {

 ESgPixelFormatARGB_8888_PRE = EUidPixelFormatARGB_8888_PRE,

 ESgPixelFormatARGB_8888 = EUidPixelFormatARGB_8888,

 ESgPixelFormatXRGB_8888 = EUidPixelFormatXRGB_8888,

 ESgPixelFormatRGB_565 = EUidPixelFormatRGB_565,

 ESgPixelFormatA_8 = EUidPixelFormatA_8

 };

#endif // SGCONST_H

5.1 Usage Bits

The constants defined in TSgUsageBits correspond to the different usages for which an image can be created. They can be combined using the bitwise OR operator to specify more than one usage. Refer to section 8, “Pixel Format and Usage Support,” for the combinations that must be supported by every implementation of the Graphics Resource API.
· ESgUsageBitOpenVgImage means usage as a VGImage with OpenVG via EGLImage. It must be possible to call eglCreateImageKHR() with the target parameter being EGL_NATIVE_PIXMAP_KHR and the EGL_IMAGE_PRESERVED_KHR attribute set to EGL_TRUE to create an EGLImage from an image with this usage, and then it must be possible to call vgCreateEGLImageTargetKHR() to create a VGImage from the EGLImage.
· ESgUsageBitOpenGlesTexture2D means usage as a two-dimensional texture with OpenGL ES 1.x via EGLImage. If OpenGL ES 1.x is supported by the implementation, it must be possible to call eglCreateImageKHR() with the target parameter being EGL_NATIVE_PIXMAP_KHR and the EGL_IMAGE_PRESERVED_KHR attribute set to EGL_TRUE to create an EGLImage from an image with this usage, and then it must be possible to call, while an OpenGL ES 1.x context is current to the thread, glEGLImageTargetTexture2DOES() with the target parameter being GL_TEXTURE_2D to create a texture from the EGLImage.
· ESgUsageBitOpenGles2Texture2D means usage as a two-dimensional texture with OpenGL ES 2.x via EGLImage. If OpenGL ES 2.x is supported by the implementation, it must be possible to call eglCreateImageKHR() with the target parameter being EGL_NATIVE_PIXMAP_KHR and the EGL_IMAGE_PRESERVED_KHR attribute set to EGL_TRUE to create an EGLImage from an image with this usage, and then it must be possible to call, while an OpenGL ES 2.x context is current to the thread, glEGLImageTargetTexture2DOES() with the target parameter being GL_TEXTURE_2D to create a texture from the EGLImage.
· ESgUsageBitOpenVgSurface means usage as a target of an OpenVG rendering context. It must be possible to call eglChooseConfig() with the EGL_MATCH_NATIVE_PIXMAP attribute referring to an image with this usage to retrieve an EGLConfig with EGL_OPENVG_BIT set in the EGL_RENDERABLE_TYPE attribute and EGL_PIXMAP_BIT set in the EGL_SURFACE_TYPE attribute, and then it must be possible to call eglCreatePixmapSurface() to create an EGLSurface compatible with the EGLConfig from the image.
· ESgUsageBitOpenGlesSurface means usage as a target of an OpenGL ES 1.x rendering context. If OpenGL ES 1.x is supported by the implementation, it must be possible to call eglChooseConfig() with the EGL_MATCH_NATIVE_PIXMAP attribute referring to an image with this usage to retrieve an EGLConfig with EGL_OPENGL_ES_BIT set in the EGL_RENDERABLE_TYPE attribute and EGL_PIXMAP_BIT set in the EGL_SURFACE_TYPE attribute, and then it must be possible to call eglCreatePixmapSurface() to create an EGLSurface compatible with the EGLConfig from the image.
· ESgUsageBitOpenGles2Surface means usage as a target of an OpenGL ES 2.x rendering context. If OpenGL ES 2.x is supported by the implementation, it must be possible to call eglChooseConfig() with the EGL_MATCH_NATIVE_PIXMAP attribute referring to an image with this usage to retrieve an EGLConfig with EGL_OPENGL_ES2_BIT set in the EGL_RENDERABLE_TYPE attribute and EGL_PIXMAP_BIT set in the EGL_SURFACE_TYPE attribute, and then it must be possible to call eglCreatePixmapSurface() to create an EGLSurface compatible with the EGLConfig from the image.
· ESgUsageBitOpenGlSurface means usage as a target of an OpenGL rendering context. If OpenGL is supported by the implementation, it must be possible to call eglChooseConfig() with the EGL_MATCH_NATIVE_PIXMAP attribute referring to an image with this usage to retrieve an EGLConfig with EGL_OPENGL_BIT set in the EGL_RENDERABLE_TYPE attribute and EGL_PIXMAP_BIT set in the EGL_SURFACE_TYPE attribute, and then it must be possible to call eglCreatePixmapSurface() to create an EGLSurface compatible with the EGLConfig from the image.
The implementation of the Graphics Resource API is free to create images with more usages than explicitly requested. When querying the attributes of an image, the returned usage of the image and the EGL_RENDERABLE_TYPE attribute of every EGLConfig returned by a call to eglChooseConfig() with the EGL_MATCH_NATIVE_PIXMAP attribute referring to the image must match as explained in reference [R8].
Note that use of an image as a target of eglCopyBuffers() is not supported by version 1.1 of the Graphics Resource API.

5.2 Pixel Formats

The constants defined in TSgPixelFormat are a subset of the pixel formats defined in <pixelformats.h> that must be supported by every implementation of the Graphics Resource API. Additional pixel formats may be supported by an implementation and the function RSgImage::GetPixelFormats() can be used to query at run-time which pixel formats are supported. See reference [R5] for a description of all the possible pixel formats. Note that the implementation of the Graphics Resource API is free to use different pixel formats internally as long as there is no loss of information. In particular, the channel ordering could be different and the number of bits per channel could be greater.
· ESgPixelFormatARGB_8888_PRE must be reported by OpenGL ES as RGBA8_OES and by OpenVG as VG_sARGB_8888_PRE.
· ESgPixelFormatARGB_8888 must be reported by OpenGL ES as RGBA8_OES and by OpenVG as VG_sARGB_8888.
· ESgPixelFormatXRGB_8888 must be reported by OpenGL ES as RGB8_OES and by OpenVG as VG_sXRGB_8888.
· ESgPixelFormatRGB_565 must be reported by OpenGL ES as RGB565_OES and by OpenVG as VG_sRGB_565.
· ESgPixelFormatA_8 must be reported by OpenGL ES as ALPHA8_OES and by OpenVG as VG_A_8.

6. General Functionality

Functionality not specific to images is declared in the header file <sgresource.h>.
// sgresource.h

#ifndef SGRESOURCE_H

#define SGRESOURCE_H

#include <e32std.h>

#include <sgresource/sgconst.h>
enum TSgResourcePanicReason

 {

 ESgPanicNoDriver = 1,

 ESgPanicUnclosedResources = 2,

 ESgPanicBadDrawableHandle = 3,

 ESgPanicBadAttributeArrayIndex = 4

 };

inline void Panic(TSgResourcePanicReason aReason);
NONSHARABLE_CLASS(RSgDriver)
 {

public:
 inline RSgDriver();
 IMPORT_C TInt Open();

 IMPORT_C void Close();

 template<class M> inline TInt GetInterface(M*& aInterfacePtr) const;

 IMPORT_C static TVersion Version();

private:

 RSgDriver(const RSgDriver&);

 const RSgDriver& operator =(const RSgDriver&);

 IMPORT_C TInt GetInterface(TUid aInterfaceUid, TAny*& aInterfacePtr) const;
private:

 TAny* iImpl;
 };

NONSHARABLE_CLASS(TSgAttribute)
 {
public:

 inline TSgAttribute();

 inline TSgAttribute(TUid aUid, TInt aValue);

public:
 TUid iUid;

 TInt iValue;

 };

NONSHARABLE_CLASS(TSgAttributeArrayBase)

 {

public:

 inline TInt Count() const;

 inline TSgAttribute& operator [](TInt aIndex);

 inline const TSgAttribute& operator [](TInt aIndex) const;

protected:

 inline TSgAttributeArrayBase(TInt aCount);

 inline void operator =(const TSgAttributeArrayBase&);

private:

 const TInt iCount;

 };

template<TInt S>

NONSHARABLE_CLASS(TSgAttributeArray): public TSgAttributeArrayBase

 {

public:

 inline TSgAttributeArray();

private:

 TSgAttribute iAttributes[S];

 };
NONSHARABLE_CLASS(TSgDrawableId)

 {

public:

 inline TBool operator ==(TSgDrawableId aId) const;

 inline TBool operator !=(TSgDrawableId aId) const;

public:

 TUint64 iId;

 };

const TSgDrawableId KSgNullDrawableId = {0};

const TUid KSgDrawableTypeUid = {0x102858EB};

NONSHARABLE_CLASS(RSgDrawable)

 {

public:

 inline RSgDrawable();

 IMPORT_C TInt Open(TSgDrawableId aId,
 const TSgAttributeArrayBase* aAttributes = NULL);

 IMPORT_C void Close();

 IMPORT_C TSgDrawableId Id() const;

 inline TBool IsNull() const;

 IMPORT_C TUid DrawableType() const;

 template<class M> inline TInt GetInterface(M*& aInterfacePtr) const;

protected:

 inline RSgDrawable(TUid aHandleType);

private:

 RSgDrawable(const RSgDrawable&);

 const RSgDrawable& operator =(const RSgDrawable&);

 IMPORT_C TInt GetInterface(TUid aInterfaceUid, TAny*& aInterfacePtr) const;

protected:

 const TUid iHandleType;

 TAny* iImpl;

 };

#include <sgresource/sgresource.inl>

#endif // SGRESOURCE_H
6.1 Extension Interfaces

Extension interfaces should be declared as classes consisting exclusively of pure virtual functions and the universally unique ID defined as a public enumerator with the name EInterfaceUid. Here is an example:

class MExampleInterface

 {

public:

 enum { EInterfaceUid = 0x12345678 };

public:

 virtual void ExampleFunction1(TInt aParam) = 0;

 virtual TInt ExampleFunction2() const = 0;

 };

6.2 Panic(TSgResourcePanicReason)
inline void Panic(TSgResourcePanicReason aReason);

Panic(TSgResourcePanicReason) panics the calling thread with category “SGRES” and a given code. It is an inline function defined in the header file <sgresource.inl> as a convenience for implementors of the Graphics Resource API. The constants in TSgResourcePanicReason are the panic codes defined by the Graphics Resource API.
Parameters:
aReason is the panic code.
6.3 RSgDriver

RSgDriver represents a handle to the implementation of the Graphics Resource API initialised in the context of a process. It groups miscellaneous functions that do not apply to individual drawable resources.
At least one thread in every process must call RSgDriver::Open() before the Graphics Resource API can be used in the context of the process. When the Graphics Resource API is no longer needed RSgDriver::Close() should be called to release unused resources, but it must be possible to call RSgDriver::Open() and RSgDriver::Close() from different threads. Every implementation of the Graphics Resource API must track how many successful calls to RSgDriver::Open() in a process have not been balanced by subsequent calls to RSgDriver::Close() by means of an implementation opening count per process.
Several use cases are possible:
· A library that uses the Graphics Resource API and does not know whether its clients are also using the Graphics Resource API.
The library calls RSgDriver::Open() before using the Graphics Resource API and RSgDriver::Close() when done. If the client of the library is also using the Graphics Resource API then some of the calls to RSgDriver::Open() and RSgDriver::Close() simply increment and decrement the implementation opening count.

· A process that uses the Graphics Resource API during its whole lifetime.
The main thread calls RSgDriver::Open() at process start-up and RSgDriver::Close() at process termination. If the process is multi-threaded then all threads safely assume that they can use the Graphics Resource API without further calls to RSgDriver::Open() or RSgDriver::Close().
· A process that uses the Graphics Resource API for a limited period.
The first thread to start using the Graphics Resource API calls RSgDriver::Open() and the last thread to finish using it calls RSgDriver::Close(), which could be a different thread in a multi-threaded process.
RSgDriver has one data member:
· iImpl is a pointer to an implementation-defined object initially set to NULL by the constructor.

Implementation Note: To avoid security vulnerabilities, it is recommended that the implementation uses global variables for process-local storage instead of named chunks. The project definition header file sgresource.mmh includes the EPOCALLOWDLLDATA keyword for this purpose. See reference [R6] for more information.
6.3.1 Open()

IMPORT_C TInt Open();

RSgDriver::Open() initialises the implementation of the Graphics Resource API in the context of a process if it is not initialised already, updates the implementation opening count in the process and returns KErrNone if successful. Each successful call to RSgDriver::Open() in a process should be balanced by a corresponding call to RSgDriver::Close() in the same process, but not necessarily from the same thread.

Note that an RSgDriver handle should never be bitwise-copied into another but this function should be used instead in all cases, since it is the only way to ensure that the implementation opening count is kept up to date. Failure to keep the implementation opening count up to date may result in the implementation of the Graphics Resource API becoming unexpectedly unavailable and, as a consequence, in an abnormal termination of the process.

Preconditions:
The instance of RSgDriver is a null handle.
Postconditions:
The implementation of the Graphics Resource API is initialised in the context of the process.
The instance of RSgDriver references the implementation of the Graphics Resource API initialised in the context of the process.
Error conditions:
This function fails and returns KErrInUse if the instance of RSgDriver is not a null handle.

This function fails and returns KErrNoMemory if there is not enough system memory to initialise the implementation of the Graphics Resource API.

This function fails and returns KErrNoGraphicsMemory if there is not enough specialised graphics memory to initialise the implementation of the Graphics Resource API.

If initialising the implementation of the Graphics Resource API requires allocation or creation of a resource different from memory and the allocation or creation fails, then the corresponding error code is returned by this function.
6.3.2 Close()

IMPORT_C void Close();

RSgDriver::Close() decrements the implementation opening count in the process and, when it reaches zero, checks whether there are still open handles to drawable resources in the process and carries out termination tasks to release the internal resources used by the implementation of the Graphics Resource API. An attempt to carry out these termination tasks will panic with category “SGRES” and code 2 in debug builds if there still are any open handles to drawable resources in the process. In release builds all the open handles to drawable resources in the process are silently closed at this point. Calling this function on a null handle has no effect.
Postconditions:
The instance of RSgDriver is a null handle.

Panic conditions:

This function panics with category “SGRES” and code 2 in debug builds if there still are open handles to drawable resources in the process during termination.
6.3.3 GetInterface(TUid, TAny*&) const
IMPORT_C TInt GetInterface(TUid aInterfaceUid, TAny*& aInterfacePtr) const;

RSgDriver::GetInterface(TUid, TAny*&) const makes the extension interface specified by the parameter aInterfaceUid available in the context of the process, stores a pointer to it in the variable referenced by the parameter aInterfacePtr and returns KErrNone if successful.

Parameters:
aInterfaceUid is the universally unique ID of the extension interface.
aInterfacePtr is a reference to an untyped pointer that on return points to the extension interface or, in case of error, is set to NULL.
Preconditions:
The instance of RSgDriver references the implementation of the Graphics Resource API initialised in the context of the process.
Postconditions:
The requested extension interface is available in the context of the process until the implementation of the Graphics Resource API is terminated.

Error conditions:

This function fails and returns KErrBadHandle if the instance of RSgDriver is a null handle.
This function fails and returns KErrArgument if the parameter aInterfaceUid is the null universally unique ID.
This function fails and returns KErrExtensionNotSupported if the requested extension interface is not supported by the implementation of the Graphics Resource API.

If making available the extension interface requires allocation or creation of resources and the allocation or creation fails, then the corresponding error code is returned by this function.
6.3.4 GetInterface(M*&) const
template<class M> inline TInt GetInterface(M*& aInterfacePtr) const;

RSgDriver::GetInterface(M*&) const is a thin template function defined in the header file <sgresource.inl> as a type-safe wrapper for RSgDriver::GetInterface(TUid, TAny*&) const. It makes the extension interface specified by the type of the parameter aInterfacePtr available in the context of the process, stores a pointer to it in the variable referenced by that parameter and returns KErrNone if successful.
The following example demonstrates how to use this function to get an extension interface.
 MExampleInterface* interface;

 if (driver.GetInterface(interface) == KErrNone)

 {

 interface->ExampleFunction1(0);

 }

Parameters:
aInterfacePtr is a reference to a pointer to the interface class, from which the universally unique ID of the extension interface is deduced. On return it points to the extension interface or, in case of error, is set to NULL.
Preconditions:
The instance of RSgDriver references the implementation of the Graphics Resource API initialised in the context of the process.
Postconditions:
The requested extension interface is available in the context of the process until the implementation of the Graphics Resource API is terminated.

Error conditions:

This function fails and returns KErrBadHandle if the instance of RSgDriver is a null handle.
This function fails and returns KErrExtensionNotSupported if the requested extension interface is not supported by the implementation of the Graphics Resource API.

If making available the extension interface requires allocation or creation of resources and the allocation or creation fails, then the corresponding error code is returned by this function.
6.3.5 Version()
IMPORT_C static TVersion Version();

RSgDriver::Version() returns the version of the implementation of the Graphics Resource API. This must be 1 as major version number, 1 as minor version number and a build number.
Major revisions mean incompatible changes in the API. Minor revisions mean forward-compatible changes in the API. Build numbers are unrelated to API changes.
6.4 TSgAttribute

TSgAttribute represents an extension attribute. TSgAttribute has two data members:
· iUid is a universally unique ID that identifies the type of the extension attribute.
· iValue is an integer that represents the value of the extension attribute.

A trivial default constructor that leaves the data members uninitialised and a constructor that sets the data members to the given initial values are defined in the header file <sgresource.inl>.
6.5 TSgAttributeArray and TSgAttributeArrayBase
TSgAttributeArray represents a fixed-size array of extension attributes. It is a thin wrapper with bounds checking for C++ arrays of TSgAttribute. Its implementation is provided in the header file <sgresource.inl> and split into a base class and a templated class:
· TSgAttributeArrayBase is the base class and defines functions for retrieving the number of extension attributes and for bounds-checked access to the extension attributes.
· TSgAttributeArray is the templated class, with the number of extension attributes as the template parameter, and defines a default constructor that leaves the extension attributes uninitialised.
6.5.1 Count() const

inline TInt Count() const;

TSgAttributeArrayBase::Count() const returns the number of extension attributes in the array.
6.5.2 operator [](TInt)

inline TSgAttribute& operator [](TInt aIndex);

TSgAttributeArrayBase::operator [](TInt) returns a reference to the extension attribute located in the array at the given position.

Parameters:

aIndex is the position of the extension attribute within the array.
Preconditions:

The parameter aIndex is equal to or greater than zero and less than the number of extension attributes in the array.
Panic conditions:

This function panics with category “SGRES” and code 4 in both debug and release builds if the parameter aIndex is negative or is equal to or greater than the number of extension attributes in the array.

6.5.3 operator [](TInt) const

inline const TSgAttribute& operator [](TInt aIndex) const;
TSgAttributeArrayBase::operator [](TInt) const returns a const-qualified reference to the extension attribute located in the array at the given position.

Parameters:

aIndex is the position of the extension attribute within the array.
Preconditions:

The parameter aIndex is equal to or greater than zero and less than the number of extension attributes in the array.
Panic conditions:

This function panics with category “SGRES” and code 4 in both debug and release builds if the parameter aIndex is negative or is equal to or greater than the number of extension attributes in the array.
6.6 TSgDrawableId

TSgDrawableId represents a 64-bit identifier that can be used to share a drawable resource between processes. The implementation of the Graphics Resource API must assign an identifier to each drawable resource on creation in a way that makes it unique across all processes in the system since the last time it was started up, that is, drawable resource identifiers must not be re-used.

Implementation Note: A simple way to generate drawable resource identifiers that satisfies these requirements is to assign sequential numbers as identifiers. A global 64-bit counter can be kept in the system and used as the next identifier and incremented each time a new drawable resource is created.
The actual value of a drawable resource identifier has no meaning to the user of the Graphics Resource API, except that 64 zero bits represent the null drawable resource identifier, which explicitly identifies no drawable resource. As a convenience, the constant KSgNullDrawableId is defined as the null drawable resource identifier. In-line definitions of the equality and inequality operators are provided in the header file <sgresource.inl>.
6.7 RSgDrawable

RSgDrawable represents a drawable resource handle. A null handle is a handle that explicitly does not reference any drawable resource. An open handle is a handle that references an existing drawable resource. An invalid handle is a handle that is not null but does not reference any existing drawable resource. Drawable resources are reference-counted so that a drawable resource is not destroyed while there still are open handles to it in any process in the system.
RSgDrawable is not an abstract class, that is, it can be instantiated, but it can also be derived from to define subclasses representing types of handles that refer only to concrete types of drawable resources, for example, image handles. RSgImage is the only subclass of RSgDrawable defined in version 1.1 of the Graphics Resource API. Instances of RSgDrawable are useful when drawable resources created in a component have to be passed to another component through a third component that cannot depend on the concrete type of the drawable resources being passed. Subclasses of RSgDrawable must only add non-virtual functions to it, but no new data members. Extensions of the Graphics Resource API must not derive from RSgDrawable. The possibility to define new subclasses of RSgDrawable is intended only for future versions of the Graphics Resource API.
RSgDrawable has two data members:
· iHandleType is a universally unique ID permanently set by the constructor to the constant KSgDrawableTypeUid, except for subclasses of RSgDrawable, in which case it is permanently set by the constructor to the universally unique ID corresponding to the concrete type of drawable resource referenced by instances of the subclass. These universally unique IDs must be odd numbers so that EGL implementations can tell instances of RSgDrawable from instances of CFbsBitmap when passed to functions expecting a native pixmap. Instances of CFbsBitmap can be recognised because the first 4-byte word of every instance of CFbsBitmap is a pointer to the virtual function table and therefore an even number, while the first 4-byte word of every instance of RSgDrawable is iHandleType.
· iImpl is a pointer to an implementation-defined object initially set to NULL by the constructor. Null handles must have iImpl set to NULL.
A public default constructor and a protected constructor that sets iHandleType to the value specified by a subclass are defined in the header file <sgresource.inl>. Both constructors create null handles. Instances of RSgDrawable can be constructed before RSgDriver::Open() is called and the implementation of the Graphics Resource API is initialised in the context of the process, but most attempts to call a function of RSgDrawable will panic with category “SGRES” and code 1 both in debug and release builds if the implementation of the Graphics Resource API is not initialised in the context of the process, with the important exception of calls to Close() on a null handle, which is a no-operation. Any attempt to call a function of RSgDrawable on an invalid handle will panic with category “SGRES” and code 3 both in debug and release builds.

6.7.1 Open(…)
IMPORT_C TInt Open(TSgDrawableId aId,
 const TSgAttributeArrayBase* aAttributes = NULL);

RSgDrawable::Open(TSgDrawableId, const TSgAttributeArrayBase*) opens a new handle to the drawable resource specified by the parameter aId and returns KErrNone if successful. The drawable resource may have been created in the same process or in a different one. This function must not allocate any specialised graphics memory.

Note that an RSgDrawable handle should never be bitwise-copied into another but this function should be used instead in all cases, since it is the only way to ensure that the reference count of the drawable resource is kept up to date. Failure to keep the reference count of the resource up to date may result in invalid handles.
Extensions of the Graphics Resource API may use the parameter aAttributes to add extension parameters to this function.
Implementation Note: This function is expected to be called very frequently so its implementation should be optimised for performance as much as possible.

Parameters:

aId is the identifier of the drawable resource.
aAttributes is a pointer to an array of extension attributes, if allowed by any extension of the Graphics Resource API, or NULL otherwise.
Preconditions:
The implementation of the Graphics Resource API is initialised in the context of the process.
The instance of RSgDrawable is a null handle.
Postconditions:
The instance of RSgDrawable references the specified drawable resource.

The specified drawable resource has its reference count incremented by one.
Error conditions:
This function fails and returns KErrInUse if the instance of RSgDrawable is an open handle.
This function fails and returns KErrArgument if the parameter aId is the null drawable resource identifier.

This function fails and returns KErrNotSupported if the parameter aAttributes is not NULL and one or more of the extension attributes in the array is not defined by any extension of the Graphics Resource API.
This function fails and returns KErrNotFound if the parameter aId cannot be found to refer to an existing drawable resource.
This function returns KErrNoMemory if it fails due to lack of system memory.
Panic conditions:

This function panics with category “SGRES” and code 1 both in debug and release builds if the implementation of the Graphics Resource API is not initialised in the context of the process.
6.7.2 Close()

IMPORT_C void Close();

RSgDrawable::Close() closes a handle to a drawable resource. It decrements the reference count of the drawable resource and, if it reaches zero, destroys the drawable resource. Calling this function on a null handle has no effect.
Implementation Note: This function is expected to be called very frequently so its implementation should be optimised for performance as much as possible.

Preconditions:

If the instance of RSgDrawable is not a null handle then the implementation of the Graphics Resource API is initialised in the context of the process.

Postconditions:

If the instance of RSgDrawable was an open handle then the drawable resource is destroyed or has its reference count decremented by one.

The instance of RSgDrawable is a null handle.
Panic conditions:
This function panics with category “SGRES” and code 1 both in debug and release builds if the instance of RSgDrawable is not a null handle and the implementation of the Graphics Resource API is not initialised in the context of the process.
This function panics with category “SGRES” and code 3 both in debug and release builds if the instance of RSgDrawable is an invalid handle.

6.7.3 Id() const
IMPORT_C TSgDrawableId Id() const;

RSgDrawable::Id() const returns the identifier of the drawable resource, which can be used to open another handle to the drawable resource in the same process or in a different process. Calling this function on a null handle returns the null drawable resource identifier.
Preconditions:

If the instance of RSgDrawable is not a null handle then the implementation of the Graphics Resource API is initialised in the context of the process.

Panic conditions:
This function panics with category “SGRES” and code 1 both in debug and release builds if the instance of RSgDrawable is not a null handle and the implementation of the Graphics Resource API is not initialised in the context of the process.
This function panics with category “SGRES” and code 3 both in debug and release builds if the instance of RSgDrawable is an invalid handle.

6.7.4 IsNull() const
inline TBool IsNull() const;

RSgDrawable::IsNull() const tests whether a handle is null. It returns ETrue if the instance of RSgDrawable is a null handle or EFalse otherwise. Its implementation is provided in the header file <sgresource.inl>.
6.7.5 DrawableType() const
IMPORT_C TUid DrawableType() const;

RSgDrawable::DrawableType() const returns the universally unique ID corresponding to the concrete type of the drawable resource referenced by a handle at run-time. Calling this function on a null handle returns the null universally unique ID. In version 1.1 of the Graphics Resource API every drawable resource is an image, so this function must always return KSgImageTypeUid when called on an open handle.

Preconditions:

If the instance of RSgDrawable is not a null handle then the implementation of the Graphics Resource API is initialised in the context of the process.

Panic conditions:
This function panics with category “SGRES” and code 1 both in debug and release builds if the instance of RSgDrawable is not a null handle and the implementation of the Graphics Resource API is not initialised in the context of the process.
This function panics with category “SGRES” and code 3 both in debug and release builds if the instance of RSgDrawable is an invalid handle.

6.7.6 GetInterface(TUid, TAny*&) const
IMPORT_C TInt GetInterface(TUid aInterfaceUid, TAny*& aInterfacePtr) const;

RSgDrawable::GetInterface(TUid, TAny*&) const makes the extension interface specified by the parameter aInterfaceUid available on a drawable resource, stores a pointer to it in the variable referenced by the parameter aInterfacePtr and returns KErrNone if successful. The returned extension interface is tied to the drawable resource, that is, calls to functions in the returned extension interface operate on the drawable resource.

Parameters:
aInterfaceUid is the universally unique ID of the extension interface.
aInterfacePtr is a reference to an untyped pointer that on return points to the extension interface or, in case of error, is set to NULL.
Preconditions:
The implementation of the Graphics Resource API is initialised in the context of the process.
The instance of RSgDrawable is an open handle.
Postconditions:
The requested extension interface is available on the drawable resource until the handle is closed.

Error conditions:

This function fails and returns KErrBadHandle if the instance of RSgDrawable is a null handle.

This function fails and returns KErrArgument if the parameter aInterfaceUid is the null universally unique ID.
This function fails and returns KErrExtensionNotSupported if the requested extension interface is not supported by the implementation of the Graphics Resource API.

If making available the extension interface requires allocation or creation of resources and the allocation or creation fails, then the corresponding error code is returned by this function.
Panic conditions:

This function panics with category “SGRES” and code 1 both in debug and release builds if the implementation of the Graphics Resource API is not initialised in the context of the process.

This function panics with category “SGRES” and code 3 both in debug and release builds if the instance of RSgDrawable is an invalid handle.

6.7.7 GetInterface(M*&) const
template<class M> inline TInt GetInterface(M*& aInterfacePtr) const;

RSgDrawable::GetInterface(M*&) const is a thin template function defined in the header file <sgresource.inl> as a type-safe wrapper for RSgDrawable::GetInterface(TUid, TAny*&) const. It makes the extension interface specified by the type of the parameter aInterfacePtr available on a drawable resource, stores a pointer to it in the variable referenced by that parameter and returns KErrNone if successful. The returned extension interface is tied to the drawable resource, that is, calls to functions in the returned extension interface operate on the drawable resource.
The following example demonstrates how to use this function to get an extension interface.
 MExampleInterface* interface;

 if (drawable.GetInterface(interface) == KErrNone)

 {

 interface->ExampleFunction1(0);

 }

Parameters:
aInterfacePtr is a reference to a pointer to the interface class, from which the universally unique ID of the extension interface is deduced. On return it points to the extension interface or, in case of error, is set to NULL.

Preconditions:
The implementation of the Graphics Resource API is initialised in the context of the process.
The instance of RSgDrawable is an open handle.
Postconditions:
The requested extension interface is available on the drawable resource until the handle is closed.

Error conditions:

This function fails and returns KErrBadHandle if the instance of RSgDrawable is a null handle.

This function fails and returns KErrExtensionNotSupported if the requested extension interface is not supported by the implementation of the Graphics Resource API.

If making available the extension interface requires allocation or creation of resources and the allocation or creation fails, then the corresponding error code is returned by this function.
Panic conditions:

This function panics with category “SGRES” and code 1 both in debug and release builds if the implementation of the Graphics Resource API is not initialised in the context of the process.

This function panics with category “SGRES” and code 3 both in debug and release builds if the instance of RSgDrawable is an invalid handle.
7. Images

Functionality related to images is declared in the header file <sgimage.h>.
// sgimage.h

#ifndef SGIMAGE_H

#define SGIMAGE_H

#include <sgresource/sgresource.h>

NONSHARABLE_CLASS(TSgImageInfo)

 {

public:

 inline TSgImageInfo();

 inline TSgImageInfo(const TSize& aSizeInPixels,

 TInt aPixelFormat,

 TUint32 aUsage);

public:

 TSize iSizeInPixels;

 TInt iPixelFormat;

 TUint32 iUsage;

 };

const TUid KSgImageTypeUid = {0x10285A73};

NONSHARABLE_CLASS(RSgImage): public RSgDrawable

 {

public:

 inline RSgImage();

 IMPORT_C TInt Create(const TSgImageInfo& aInfo,
 const TAny* aDataAddress = NULL,

 TInt aDataStride = 0,
 const TSgAttributeArrayBase* aAttributes = NULL);

 IMPORT_C TInt Create(const TSgImageInfo& aInfo,
 const RSgImage& aImage,

 const TSgAttributeArrayBase* aAttributes = NULL);

 IMPORT_C TInt GetInfo(TSgImageInfo& aInfo) const;
 IMPORT_C TInt GetAttribute(TUid aUid, TInt& aValue) const;

 IMPORT_C static TInt GetPixelFormats(TUint32 aUsage,
 RArray<TInt>& aPixelFormats,
 const TSgAttributeArrayBase* aAttributes
 = NULL);

 };

#include <sgresource/sgimage.inl>
#endif // SGIMAGE_H
An image is a drawable resource containing a two-dimensional pixel array. Its basic attributes are the size in pixels, the pixel format and the usage. The usage for which an image is created must be declared so that it can be properly allocated. The attributes of an image cannot be changed after creation. KSgImageTypeUid identifies the drawable resource type associated to images.

7.1 TSgImageInfo

TSgImageInfo encapsulates the basic attributes of an image. It is used both to create images and to obtain information about them. A trivial default constructor that leaves the data members uninitialised and a constructor that sets the data members to the given initial values are defined in the header file <sgimage.inl>. TSgImageInfo has the following data members:
· iSizeInPixels is the size of the image in pixels.
· iPixelFormat is a universally unique ID representing the pixel format of the image. The values enumerated in TSgPixelFormat are guaranteed to be supported by every implementation of the Graphics Resource API but additional pixel formats from TUidPixelFormat may be supported by an implementation.
· iUsage is the possible usage of the image as a combination of usages from TSgUsageBits.
For an instance of TSgImageInfo to be valid the following conditions must be satisfied:
· The width and height in iSizeInPixels must both be greater than zero.
· iPixelFormat must not be EUidPixelFormatUnknown.
· iUsage must have at least one usage bit set.
7.2 RSgImage

RSgImage represents an image handle. It inherits all the general handle functionality from RSgDrawable. A default constructor that sets iHandleType to KSgImageTypeUid is defined in the header file <sgimage.inl>. The constructor creates null image handles. Instances of RSgImage can be constructed before RSgDriver::Open() is called and the implementation of the Graphics Resource API is initialised in the context of the process, but most attempts to call a function of RSgImage will panic with category “SGRES” and code 1 both in debug and release builds if the implementation of the Graphics Resource API is not initialised in the context of the process. Any attempt to call a function of RSgImage on an invalid handle will panic with category “SGRES” and code 3 both in debug and release builds.
Implementation Note: There should be no artificial limit (e.g. by way of a hard-coded constant) to the number of images that an implementation can create.
7.2.1 Create(const TSgImageInfo&, const TAny*, TInt, const TSgAttributeArrayBase*)
IMPORT_C TInt Create(const TSgImageInfo& aInfo,
 const TAny* aDataAddress = NULL,
 TInt aDataStride = 0,
 const TSgAttributeArrayBase* aAttributes = NULL);

RSgImage::Create(const TSgImageInfo&, const TAny*, TInt, const TSgAttributeArrayBase*) creates an image with the basic attributes specified by the parameter aInfo and the initial contents specified by the parameters aDataAddress and aDataStride, and returns KErrNone if successful.

Extensions of the Graphics Resource API may use the parameter aAttributes to add extension parameters to this function.

Parameters:

aInfo is an instance of TSgImageInfo with the basic attributes of the image to be created.
aDataAddress is the base address of the pixel data used to populate the image to be created. The pixel format of the data must be the exact pixel format specified in aInfo but the implementation of Graphics Resource may convert the data to the internal pixel format of the image, which can be any pixel format as long as there is no loss of data. If aDataAddress is NULL the initial contents of the image are undefined.

aDataStride is the number of bytes between the rows of the pixel data pointed to by aDataAddress. It can be a positive value to indicate top-down ordering of the rows of pixel data or a negative value to indicate bottom-up ordering of the rows of pixel data. Inside each row of pixel data, ordering of pixels is always left-to-right.
Implementation Note: The convention for ordering the rows of pixel data used by this function is different from the convention used by certain functions in other APIs, for example, OpenVG.
aAttributes is a pointer to an array of extension attributes, if allowed by any extension of the Graphics Resource API, or NULL otherwise.
Preconditions:

The implementation of the Graphics Resource API is initialised in the context of the process.
The instance of RSgImage is a null handle.

The parameter aInfo is valid.

If the parameter aDataAddress is not NULL then the parameter aDataStride is not zero and its absolute value is equal to or greater than the minimum number of bytes needed for a row of pixel data.
Postconditions:

The instance of RSgImage references the created image.

The created image has an initial reference count of one.

Error conditions:

This function fails and returns KErrInUse if the instance of RSgImage is an open handle.

This function fails and returns KErrArgument:
· if the parameter aInfo is not valid,

· if the parameter aDataAddress is not NULL and the parameter aDataStride is zero or its absolute value is less than the minimum number of bytes needed for a row of pixel data.
This function fails and returns KErrTooBig if the size specified by the parameter aInfo is greater than the maximum image size supported by the implementation of Graphics Resource API. The maximum image size supported by an implementation of the Graphics Resource API must be at least 2048 by 2048 pixels.

This function fails and returns KErrNotSupported:

· if the combination of pixel format and usages specified by the parameter aInfo is not supported by the implementation of the Graphics Resource API. Refer to section 8, “Pixel Format and Usage Support,” for the combinations of pixel format and usages that must be supported by every implementation of the Graphics Resource API,
· if the parameter aAttributes is not NULL and one or more of the extension attributes in the array is not defined by any extension of the Graphics Resource API.
This function fails and returns KErrNoMemory if there is not enough system memory to create the image.

This function fails and returns KErrNoGraphicsMemory if there is not enough specialised graphics memory to create the image.

Panic conditions:

This function panics with category “SGRES” and code 1 both in debug and release builds if the implementation of the Graphics Resource API is not initialised in the context of the process.
7.2.2 Create(const TSgImageInfo&, const RSgImage&, const TSgAttributeArrayBase*)
IMPORT_C TInt Create(const TSgImageInfo& aInfo,
 const RSgImage& aImage,
 const TSgAttributeArrayBase* aAttributes = NULL);

RSgImage::Create(const TSgImageInfo&, const RSgImage&, const TSgAttributeArrayBase*) creates an image with the basic attributes specified by the parameter aInfo and the initial contents copied from an existing image specified by the parameter aImage, and returns KErrNone if successful.
Extensions of the Graphics Resource API may use the parameter aAttributes to add extension parameters to this function.

Parameters:

aInfo is an instance of TSgImageInfo with the basic attributes of the image to be created.
aImage is a handle to the existing image.
aAttributes is a pointer to an array of extension attributes, if allowed by any extension of the Graphics Resource API, or NULL otherwise.
Preconditions:

The implementation of the Graphics Resource API is initialised in the context of the process.
The instance of RSgImage is a null handle.

The parameter aInfo is valid.

The parameter aImage is an open handle.
The size and the pixel format specified by aInfo must be the same as the size and the pixel format of the existing image.

Postconditions:

The instance of RSgImage references the created image.

The created image has an initial reference count of one.

Error conditions:

This function fails and returns KErrInUse if the instance of RSgImage is an open handle.

This function fails and returns KErrArgument:

· if the parameter aInfo is not valid,

· if the parameter aImage is a null handle.
This function fails and returns KErrNotSupported:

· if the combination of pixel format and usages specified by the parameter aInfo is not supported by the implementation of the Graphics Resource API. Refer to section 8, “Pixel Format and Usage Support,” for the combinations of pixel format and usages that must be supported by every implementation of the Graphics Resource API,
· if the size and the pixel format specified by the parameter aInfo are not the same as the size and the pixel format of the existing image,

· if the parameter aAttributes is not NULL and one or more of the extension attributes in the array is not defined by any extension of the Graphics Resource API.
This function fails and returns KErrNoMemory if there is not enough system memory to create the image.

This function fails and returns KErrNoGraphicsMemory if there is not enough specialised graphics memory to create the image.

Panic conditions:

This function panics with category “SGRES” and code 1 both in debug and release builds if the implementation of the Graphics Resource API is not initialised in the context of the process.

This function panics with category “SGRES” and code 3 both in debug and release builds if the parameter aImage is an invalid handle.
7.2.3 GetInfo(…) const

IMPORT_C TInt GetInfo(TSgImageInfo& aInfo) const;

RSgImage::GetInfo(TSgImageInfo&) const retrieves the values of the basic attributes of an image and returns KErrNone if successful.
Parameters:

aInfo is a reference to an instance of TSgImageInfo that on return contains the values of the basic attributes of the image.
Preconditions:
The implementation of the Graphics Resource API is initialised in the context of the process.
The instance of RSgImage is an open handle.
Error conditions:

This function fails and returns KErrBadHandle if the instance of RSgImage is a null handle.

Panic conditions:

This function panics with category “SGRES” and code 1 both in debug and release builds if the implementation of the Graphics Resource API is not initialised in the context of the process.

This function panics with category “SGRES” and code 3 both in debug and release builds if the instance of RSgImage is an invalid handle.

7.2.4 GetAttribute(…) const

IMPORT_C TInt GetAttribute(TUid aUid, TInt& aValue) const;

RSgImage::GetAttribute(TUid, TInt&) const retrieves the value of an extension attribute of an image and returns KErrNone if successful.
Parameters:
aUid is the universally unique ID of the extension attribute.
aValue is a reference to a variable that on return holds the value of the extension attribute.
Preconditions:
The implementation of the Graphics Resource API is initialised in the context of the process.
The instance of RSgImage is an open handle.
Error conditions:

This function fails and returns KErrBadHandle if the instance of RSgImage is a null handle.
This function fails and returns KErrNotSupported if no extension of the Graphics Resource API defines an extension attribute that applies to the image with the given universally unique ID.
Panic conditions:

This function panics with category “SGRES” and code 1 both in debug and release builds if the implementation of the Graphics Resource API is not initialised in the context of the process.

This function panics with category “SGRES” and code 3 both in debug and release builds if the instance of RSgImage is an invalid handle.

7.2.5 GetPixelFormats(…)
IMPORT_C static TInt GetPixelFormats(TUint32 aUsage,
 RArray<TInt>& aPixelFormats,
 const TSgAttributeArrayBase* aAttributes
 = NULL);

RSgImage::GetPixelFormats(TUint32, RArray<TInt>&, const TSgAttributeArrayBase*) retrieves the list of pixel formats supported by the implementation of the Graphics Resource API for images with the usage specified by the parameter aUsage and returns KErrNone if successful. This is a utility function typically called before creating images.
Extensions of the Graphics Resource API may use the parameter aAttributes to add extension parameters to this function.
Parameters:

aUsage is a combination of usages from TSgUsageBits.
aPixelFormats is a reference to an array that on input must be empty and on return contains the list of supported pixel formats.

Implementation Note: The implementation of this function must not call Reset() on the array, so that Reserve() can be used to reserve space on the array before calling this function.
aAttributes is a pointer to an array with extension image attributes, if any extension of the Graphics Resource API defines extension image attributes that have an impact on the list of supported pixel formats, or NULL otherwise.
Error conditions:

This function fails and returns KErrArgument:
· if the parameter aUsage does not have at least one usage bit set,

· if the number of elements in the array referenced by the parameter aPixelFormats is not zero.

This function fails and returns KErrNotSupported if the parameter aAttributes is not NULL and one or more of the extension attributes in the array is not defined by any extension of the Graphics Resource API.
This function fails and returns KErrNoMemory if there is not enough system memory to add a pixel format to the array referenced by the parameter aPixelFormats.
8. Pixel Format and Usage Support
Every implementation of the Graphics Resource API must support creation of an image for the combinations of pixel format and usage specified by the following table:
	
	OpenVG

VGImage
	OpenVG

(Pixmap)

EGLSurface
	OpenGL ES 2.x

2D Texture*
	OpenGL ES 2.x

(Pixmap)

EGLSurface*

	ARGB_8888_PRE
	(
	(
	(
	(

	ARGB_8888
	(
	
	(
	

	XRGB_8888
	(
	(
	(
	(

	RGB_565
	(
	(
	(
	(

	A_8
	(
	
	(
	

* Note: Mandatory only if the platform has OpenGL ES 2.x support.
Additionally, for each listed pixel format, creation of an image for all possible combinations of usages from the corresponding row in the table above must be supported by every implementation of the Graphics Resource API, with the exception that it is not mandatory to support creation of an image for usage as a target of more than one rendering API. For example, an RGB_565 image must support usage as both an OpenVG image and an OpenVG pixmap surface, but it may not support usage as both an OpenVG pixmap surface and an OpenGL ES 2.x pixmap surface.
Note that it is not mandatory for an implementation of the Graphics Resource API to support OpenGL or OpenGL ES 1.x. Also note that it is only mandatory for an implementation of the Graphics Resource API to support OpenGL ES 2.x if the platform has OpenGL ES 2.x support.
9. Extending the Graphics Resource API

The Graphics Resource API can only be extended in two ways:

· By defining extension interfaces to add new functionality to existing classes. The classes which can be extended in this way are RSgDriver and RSgDrawable. See section 6.1, “Extension Interfaces,” for more information.

· By defining additional attributes, which can be passed into existing functions that take an attribute array as an optional parameter, to extend the behaviour of these functions. The functions which can be extended in this way are described in sections 6.7.1, 7.2.1, 7.2.2 and 7.2.5.

Extensions of the Graphics Resource API can be public or private:

· A public extension of the Graphics Resource API is disclosed by the authors and provides additional functionality that is likely to benefit a wide range of users of the Graphics Resource API.

· A private extension of the Graphics Resource API is defined by a vendor only for internal use and, therefore, not disclosed. It is expected that the implementors of EGL will also implement the Graphics Resource API and might define one or more private extensions of the Graphics Resource API to be used by the implementation of EGL.

10. Thread Safety

The implementation of the Graphics Resource API must be thread-safe, but the classes in the Graphics Resource API, which are all either self-contained value classes or handle classes, don’t have to be thread-safe.
· It must be possible to call const functions from different threads on the same instance of a class in the Graphics Resource API without explicit synchronisation by the user of the Graphics Resource API.

· The user of the Graphics Resource API is responsible for synchronising function calls from different threads on the same instance of a class in the Graphics Resource API if there is any non-const function involved.

· It must be possible to call any functions from different threads on different instances of a class in the Graphics Resource API without explicit synchronisation by the user of the Graphics Resource API. If two or more instances of a handle class refer to the same object then the implementation of the Graphics Resource API is responsible for the synchronisation, not the user. In other words, the implementation of the Graphics Resource API must have an internal mechanism to synchronise calls from different threads to internal objects created by the implementation and referenced by any handle class. As of version 1.1 of the Graphics Resource API, the handle classes are RSgDriver, RSgDrawable and RSgImage.
· The specification of the Graphics Resource API does not mandate that implementors provide synchronisation for access to the contents of drawable resources, since such access must be carried out using functions from a different API. Whether such synchronisation is provided or not depends on the set of client APIs present in the platform.
· Thread safety must be maintained regardless of whether all the threads have the same priority or not.
Implementation Note: To protect against priority inversion it is recommended to use Symbian OS mutexes, which provide priority inheritance. RCriticalSection and RFastLock do not provide priority inheritance.
Moreover, it must be possible to call functions in the Graphics Resource API that allocate or create resources and functions that release or destroy these resources from different threads.
Implementation Note: Since memory allocated by the implementation of the Graphics Resource API on behalf of one thread may have to be released on behalf of a different thread, it is recommended that the implementation creates at least one local heap per process from which to allocate memory. If a memory cell is allocated from the default heap of one thread, any attempt to release the memory cell into the default heap of a different thread may cause abnormal termination of the latter thread.

Finally, on platforms with symmetric multiprocessing (SMP) the implementation of the Graphics Resource API must be SMP-safe, that is, it must be able to run on more than one processor.

11. References
[R1]
EGL 1.4 Specification, Khronos Group
[R2]
EGL_KHR_image, EGL Extension, Khronos Group
[R3]
VG_KHR_EGL_image, OpenVG Extension, Khronos Group
[R4]
OES_EGL_image, OpenGL ES Extension, Khronos Group

[R5]
SGL.GT0283.345, Pixel Formats, Symbian Developer Library
[R6]
Symbian OS Support for Writeable Static Data in DLLs, Symbian Developer Library
[R7]
Selection of Adaptations, Graphics Guide, Symbian Developer Library

[R8]
NOK_pixmap_type_rsgimage, EGL Extension, Nokia
12. People
Contributors:

Jaime Casas, Nokia

Robert Palmer, Nokia
Alex Smith, Nokia
Sami Kyöstilä, Nokia

Jeremy Hewitson, Nokia
Iain Campbell, Nokia

Pasi Keränen, Nokia

Michael Eustace, Nokia

Reviewers:

Peter Hartman, Nokia

Iwan Junianto, Nokia

Jari Luoma-Aho, Nokia
Sami Raivio, Nokia

Ratnakar Pai, Nokia
Jason Barron, Nokia

Mahesh Chaudhari, Nokia

John Hom, Nokia

13. Revision History

	Revision
	Date
	Description

	15 (API version 1.1)
	28/04/2010
	License text corrected.

	14 (API version 1.1)
	10/11/2009
	Clarification on extending the Graphics Resource API, corrected location of the ROM image include file, comments on example code and other minor changes.

	12 (API version 1.1)
	12/10/2009
	Section 3 updated to reflect new component name, graphicsresourceimplementation.

	11 (API version 1.0)
	17/07/2009
	Initial release of the API specification.

14. Appendix: Use Cases and Example Code

Described in this section are three typical use cases that represent ways in which RSgImage is expected to be used within Symbian OS. These use cases are:

1. Using RSgImage as a rendering target of Khronos APIs.

2. Using RSgImage as a 2D image resource for OpenVG (VGImage).
3. Sharing image data between processes with RSgImage, using memory upload to RSgImage.
Example code is provided with each use case showing how the RSgImage and EGL APIs interact. The example code does not have proper error checking so it is for illustration purposes only.

14.1 Using an RSgImage as a rendering target of Khronos APIs
This use case shows how a server process (in this case Theme Server) could use an RSgImage as an EGLSurface and render content into it using OpenVG, allowing for the content to be shared with other processes.

[image: image1.png]9 R e =5

Theme Saner

Reaimaze

Cresteq)

giChaoseConfg(EGL MATCH NATIVE_Pixiuap, RSgimage) ,Q
egCrstePamapSutace@Sginsge) :

| oo |

[P

Render Svo.
content uing
Gpenvo, eq

"

vgDrawimsges]

| veFmsn!

"
‘egiPestoySurtscs(EGLSurfape) :
"

1. It is assumed EGL has already been initialised, so the initialisation is not shown here. The server opens the RSgDriver and creates an RSgImage which has no content.
2. An EGLConfig is found that supports using the RSgImage as a pixmap surface with OpenVG. This requires a call to eglChooseConfigs(), with the necessary attributes set (see example code).

3. The RSgImage is treated as an EGLSurface in order to be used with Khronos APIs. This is done by calling eglCreatePixmapSurface(), passing the RSgImage as the pixmap to be used. The resulting EGLSurface then behaves like any other EGLSurface, and can be used as a target for OpenVG rendering, to render SVG content for example.

4. Once the EGLSurface is no longer required, eglDestroySurface() is called on it to free the EGL handle to the surface, though the RSgImage pixmap contents will remain. This image is now useable for rendering by other processes, by sharing the TSgDrawableId of the RSgImage.

Example code:
_LIT8(KEGL_NOK_pixmap_type_rsgimage, "EGL_NOK_pixmap_type_rsgimage");

// Open RSgDriver

RSgDriver sgDriver;

sgDriver.Open();

// Create RSgImage, specifying ESgUsageBitOpenVgImage and ESgUsageBitOpenVgSurface
// usage bits so it can be used as a target for OpenVG rendering inside the Theme

// Server and as an OpenVG image inside the client applications.
RSgImage sgImage;

sgImage.Create(TSgImageInfo(TSize(64, 64), EUidPixelFormatRGB_565,

 ESgUsageBitOpenVgImage | ESgUsageBitOpenVgSurface));

// Initialize EGL and ensure it supports

// EGL_NOK_pixmap_type_rsgimage extension.

EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);

eglInitialize(display, NULL, NULL);

const char* extensionsString = eglQueryString(display, EGL_EXTENSIONS);

TPtrC8 ptrExtensions((const TUint8*)extensionsString);

ASSERT(ptrExtensions.Find(KEGL_NOK_pixmap_type_rsgimage()) != KErrNotFound);

// Find the EGLConfig whose attributes match the RSgImage for use as an OpenVG

// pixmap. Specifying the attribute EGL_MATCH_NATIVE_PIXMAP along with the address

// of the RSgImage ensures only configs compatible with this RSgImage are chosen.

const EGLint KPixmapAttribs[] =

 {

 EGL_MATCH_NATIVE_PIXMAP, (EGLint)&sgImage,

 EGL_RENDERABLE_TYPE, EGL_OPENVG_BIT,

 EGL_SURFACE_TYPE, EGL_PIXMAP_BIT,

 EGL_NONE

 };

EGLint numConfigs = 0;

EGLConfig config;

eglChooseConfig(display, KPixmapAttribs, &config, 1, &numConfigs);

// Create an EGLSurface from the RSgImage, and prepare for use with OpenVG.

eglBindAPI(EGL_OPENVG_API);

EGLSurface surface = eglCreatePixmapSurface(display, config, &sgImage, NULL);

EGLContext context = eglCreateContext(display, config, EGL_NO_CONTEXT, NULL);

eglMakeCurrent(display, surface, surface, context);

// Surface data is uninitialised. To initialise, clear to desired colour.
// ...

// Render content to the EGLSurface via OpenVG

// ...

// Once finished, release all handles to the image, and shut down EGL.

// Make a null EGLSurface current to release the current surface before

// destroying. The RSgImage contents will persist until the RSgImage is closed.

eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);

eglDestroySurface(display, surface);

eglDestroyContext(display, context);

eglTerminate(display);

eglReleaseThread();

// ...after final use of the sgImage, close it along with the driver

sgImage.Close();

sgDriver.Close();
N.B. For conciseness, error handling of Graphics Resource and EGL function calls is not included in the above example code.

14.2 Using an RSgImage as a 2D image resource for OpenVG (VGImage)
This use case shows how a process (for example a client of Theme Server, 12.1) could make use of an RSgImage that has been created and provided with content by another process.
[image: image2.png]This example assumes
the TSgDrawableld of
an Rsgimage has
been provided by
another process (2.0
Font and Bitmap
Semveror Theme
Servenforsharing with
the Dpenv app.

Regowar

oL

Openve

Rsgimege

giCrasteimsgeKHRRSgimshe)

E6Limsge |

or

ravslvgDravimsge(VGimage)

vgDestroyimsbeVGimage)

egiDestorymageKHREGLImsge)

o)

1. The RSgDriver is opened. A handle to the image data is opened using RSgImage::Open() (it is assumed here that this process has already been provided with a TSgDrawableId by another process).

2. Using the EGL extension eglCreateImageKHR(), the RSgImage can be treated as an EGL resource in this process, that is, as an EGLImage.

3. In order for OpenVG to use this EGLImage as an image resource, or VGImage, the OpenVG extension vgCreateEGLImageTargetKHR() must be called with the EGLImage as parameter. The resulting VGImage can be used for rendering with vgDrawImage(), in the same way as if it were provided by vgCreateImage().

4. Once the VGImage is finished with, vgDestroyImage() and eglDestroyImageKHR() release the RSgImage from OpenVG and EGL respectively. RSgImage::Close() is then called to release the handle to the image data in this process.
Example code:

// Declare EGL & VG extensions defined in eglext.h and vgext.h respectively

PFNEGLCREATEIMAGEKHRPROC eglCreateImageKHR;

PFNEGLDESTROYIMAGEKHRPROC eglDestroyImageKHR;

PFNVGCREATEEGLIMAGETARGETKHRPROC vgCreateEGLImageTargetKHR;

_LIT8(KEGL_KHR_image_base, "EGL_KHR_image_base");

_LIT8(KEGL_KHR_image_pixmap, "EGL_KHR_image_pixmap");

_LIT8(KVG_KHR_EGL_image, "VG_KHR_EGL_image");

// Open RSgDriver

RSgDriver sgDriver;

sgDriver.Open();

// ...

// Request Id of an RSgImage in a server process via an IPC call,

// store in sharedId.

// ...

// Open the image from the server process passed to us via sharedId.

RSgImage sgImage;

sgImage.Open(sharedId);

// ...

// Initialize EGL with a display (display), and create an EGLSurface

// (surface) and EGLContext (context) for use with OpenVG.

// ...

// The extensions EGL_KHR_image_base, EGL_KHR_image_pixmap, and VG_KHR_EGL_image

// must be supported for the required functionality to be provided by EGL.

const char* eglExtensionsString = eglQueryString(display, EGL_EXTENSIONS);

const VGubyte* vgExtensionString = vgGetString(VG_EXTENSIONS);

TPtrC8 ptrEglExtensions((const TUint8*)eglExtensionsString);

ASSERT(ptrEglExtensions.Find(KEGL_KHR_image_base()) != KErrNotFound);

ASSERT(ptrEglExtensions.Find(KEGL_KHR_image_pixmap()) != KErrNotFound);

TPtrC8 ptrVgExtensions((const TUint8*)vgExtensionString);

ASSERT(ptrVgExtensions.Find(KVG_KHR_EGL_image()) != KErrNotFound);

// Retrieve the extensions

eglCreateImageKHR = (PFNEGLCREATEIMAGEKHRPROC)

 eglGetProcAddress("eglCreateImageKHR");

eglDestroyImageKHR = (PFNEGLDESTROYIMAGEKHRPROC)
 eglGetProcAddress("eglDestroyImageKHR");

vgCreateEGLImageTargetKHR = (PFNVGCREATEEGLIMAGETARGETKHRPROC)

 eglGetProcAddress("vgCreateEGLImageTargetKHR");

// Create an EGLImage based on the RSgImage via extensions, specifying the

// EGL_IMAGE_PRESERVED_KHR attribute as EGL_TRUE to ensure its contents

// are preserved.

const EGLint KEglImageAttribs[] = {EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE};

EGLImageKHR eglImage = eglCreateImageKHR(display, EGL_NO_CONTEXT,

 EGL_NATIVE_PIXMAP_KHR,

 (EGLClientBuffer)&sgImage,

 KEglImageAttribs);

eglMakeCurrent(display, surface, surface, context);

// Allow OpenVG to use the EGLImage as an image resource, a VGImage,

// via extension

VGImage vgImage = vgCreateEGLImageTargetKHR((VGeglImageKHR)eglImage);

// ...

// use vgDrawImage(vgImage, ...)

// ...

// Release all handles to the image data from this process, by destroying the

// VGImage the EGLImage and closing the RSgImage.

vgDestroyImage(vgImage);

eglDestroyImageKHR(display, eglImage);

eglTerminate(display);

eglReleaseThread();

sgImage.Close();

sgDriver.Close();
N.B. For conciseness, error handling of Graphics Resource and EGL function calls is not included in the above example code.

14.3 Sharing image data between processes with RSgImage, and memory upload
The following diagram shows how a server would use an RSgImage to share image data with a client process. In this simplistic example, the Font & Bitmap Server (FbServ) places glyph bitmaps into a VGImage in order to cache them in hardware memory, and the client is an application using Qt to render text, via OpenVG.
[image: image3.png]t Appieston

o

Open(TSgDrausbisis)

cierDsts(sGiypnCods)

Interprocess Communication Call

TgDrawabield

Rsgimage Grert)|

=giCresteinagekHRESglmege)

oL

Openve

Font Rastarzar

Rsgimege
(sanen

[Tt ose ot

\grestek GLmsgeTargetkHRIEGLImage)

O —

0 TSg0mwsbies |

gyprstmsn]

veimageSubDst(VGimsge. giyohBimas)

igcrsisELmgeTogeRECLIbage)

Ectibsge,

Voimsge,

vaDrawimage(VGimsge)

vgDestroyinsgeVGimage)

Cosa

.

%

aofsoymagerinEoLimgy |

1. Upon initialisation, FbServ creates its own RSgImage. EGL initialization, and the opening of RSgDriver is not shown here, but is still done. The RSgImage is passed to the eglCreateImageKHR() extension in order for it to be used as an image resource, EGLImage. vgCreateEGLImageTargetKHR() then provides a VGImage from this EGLImage.

2. Later, an application process uses DrawText() to render some characters. It makes an inter-process communication call to FbServ so that the server can provide handles to the images of the characters back to the application.

3. Whenever a request is received by FbServ for a character, the Font Rasterizer generates a bitmap image of the character in system memory if it has not done so before. This memory is then uploaded to a portion of the RSgImage using vgImageSubData(). FbServ then returns the identifier of the RSgImage to the client.

4. The client opens a new handle to the image data using RSgImage::Open() using the identifier provided by the server. The client then uses its own RSgImage as an image resource, as per 14.2, and closes it after use. The client is free to use the image in other ways; in this example, client-side use with the VGFont API would be reasonable.

Example code:

// Server-side initialization...

// Open RSgDriver

RSgDriver sgDriver;

sgDriver.Open();

// Create the RSgImage whose data is to be shared with clients, setting the usage

// bit which indicates it is to be used as a VGImage.

RSgImage sgImage;

sgImage.Create(TSgImageInfo(KImageSize, EUidPixelFormatA_8,
 ESgUsageBitOpenVgImage));

// ...

// Initialize EGL, check for the presence of the extensions as in code
// example 12.2, and retrieve the necessary function pointers.
// Create an OpenVG EGLContext and a dummy EGLSurface, make it current.

// ...

// Create an EGLImage from the RSgImage handle. Specify the

// EGL_IMAGE_PRESERVED_KHR flag to ensure the contents of the image is preserved.

const EGLint KEglImageAttribs[] = {EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE};

EGLImageKHR eglImage = eglCreateImageKHR(display, EGL_NO_CONTEXT,
 EGL_NATIVE_PIXMAP_KHR,
 (EGLClientBuffer)&sgImage,
 KEglImageAttribs);

// Create a VGImage around the EGLImage.

VGImage vgImageFromEglImage = vgCreateEGLImageTargetKHR(eglImage);

Client-side application makes request to server for image handle for glyph, via IPC call.

// Server-side GetGlyphData() handler.

// IPC call received from client for an RSgImage Id for a glyph.

TUint8* glyphBitmap;

TRect destRect;

TInt glyphDataStride;

// ...

// Rasterize the requested glyph into a memory buffer ‘glyphBitmap’.
// Not shown here.

// ...

// Upload glyphBitmap to a region of the RSgImage.

vgImageSubData(vgImageFromEglImage, glyphBitmap, glyphDataStride, VG_A_8,
 dest.iTl.iX, dest.iTl.iY, dest.Width(), dest.Height());

return sgImage.Id();

Client-side application receives a TSgDrawableId as result of the IPC call. See code example from use case 14.2 for how the client then opens a handle to use the image data.
N.B. For conciseness, error handling of Graphics Resource and EGL function calls is not included in the above example code.

Copyright (2009-2010 Nokia. All rights reserved.

[image: image4.png]