symbian-qemu-0.9.1-12/python-2.6.1/Include/objimpl.h
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 /* The PyObject_ memory family:  high-level object memory interfaces.
       
     2    See pymem.h for the low-level PyMem_ family.
       
     3 */
       
     4 
       
     5 #ifndef Py_OBJIMPL_H
       
     6 #define Py_OBJIMPL_H
       
     7 
       
     8 #include "pymem.h"
       
     9 
       
    10 #ifdef __cplusplus
       
    11 extern "C" {
       
    12 #endif
       
    13 
       
    14 /* BEWARE:
       
    15 
       
    16    Each interface exports both functions and macros.  Extension modules should
       
    17    use the functions, to ensure binary compatibility across Python versions.
       
    18    Because the Python implementation is free to change internal details, and
       
    19    the macros may (or may not) expose details for speed, if you do use the
       
    20    macros you must recompile your extensions with each Python release.
       
    21 
       
    22    Never mix calls to PyObject_ memory functions with calls to the platform
       
    23    malloc/realloc/ calloc/free, or with calls to PyMem_.
       
    24 */
       
    25 
       
    26 /*
       
    27 Functions and macros for modules that implement new object types.
       
    28 
       
    29  - PyObject_New(type, typeobj) allocates memory for a new object of the given
       
    30    type, and initializes part of it.  'type' must be the C structure type used
       
    31    to represent the object, and 'typeobj' the address of the corresponding
       
    32    type object.  Reference count and type pointer are filled in; the rest of
       
    33    the bytes of the object are *undefined*!  The resulting expression type is
       
    34    'type *'.  The size of the object is determined by the tp_basicsize field
       
    35    of the type object.
       
    36 
       
    37  - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
       
    38    object with room for n items.  In addition to the refcount and type pointer
       
    39    fields, this also fills in the ob_size field.
       
    40 
       
    41  - PyObject_Del(op) releases the memory allocated for an object.  It does not
       
    42    run a destructor -- it only frees the memory.  PyObject_Free is identical.
       
    43 
       
    44  - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
       
    45    allocate memory.  Instead of a 'type' parameter, they take a pointer to a
       
    46    new object (allocated by an arbitrary allocator), and initialize its object
       
    47    header fields.
       
    48 
       
    49 Note that objects created with PyObject_{New, NewVar} are allocated using the
       
    50 specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
       
    51 enabled.  In addition, a special debugging allocator is used if PYMALLOC_DEBUG
       
    52 is also #defined.
       
    53 
       
    54 In case a specific form of memory management is needed (for example, if you
       
    55 must use the platform malloc heap(s), or shared memory, or C++ local storage or
       
    56 operator new), you must first allocate the object with your custom allocator,
       
    57 then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
       
    58 specific fields:  reference count, type pointer, possibly others.  You should
       
    59 be aware that Python no control over these objects because they don't
       
    60 cooperate with the Python memory manager.  Such objects may not be eligible
       
    61 for automatic garbage collection and you have to make sure that they are
       
    62 released accordingly whenever their destructor gets called (cf. the specific
       
    63 form of memory management you're using).
       
    64 
       
    65 Unless you have specific memory management requirements, use
       
    66 PyObject_{New, NewVar, Del}.
       
    67 */
       
    68 
       
    69 /*
       
    70  * Raw object memory interface
       
    71  * ===========================
       
    72  */
       
    73 
       
    74 /* Functions to call the same malloc/realloc/free as used by Python's
       
    75    object allocator.  If WITH_PYMALLOC is enabled, these may differ from
       
    76    the platform malloc/realloc/free.  The Python object allocator is
       
    77    designed for fast, cache-conscious allocation of many "small" objects,
       
    78    and with low hidden memory overhead.
       
    79 
       
    80    PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
       
    81 
       
    82    PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
       
    83    PyObject_Realloc(p != NULL, 0) does not return  NULL, or free the memory
       
    84    at p.
       
    85 
       
    86    Returned pointers must be checked for NULL explicitly; no action is
       
    87    performed on failure other than to return NULL (no warning it printed, no
       
    88    exception is set, etc).
       
    89 
       
    90    For allocating objects, use PyObject_{New, NewVar} instead whenever
       
    91    possible.  The PyObject_{Malloc, Realloc, Free} family is exposed
       
    92    so that you can exploit Python's small-block allocator for non-object
       
    93    uses.  If you must use these routines to allocate object memory, make sure
       
    94    the object gets initialized via PyObject_{Init, InitVar} after obtaining
       
    95    the raw memory.
       
    96 */
       
    97 PyAPI_FUNC(void *) PyObject_Malloc(size_t);
       
    98 PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t);
       
    99 PyAPI_FUNC(void) PyObject_Free(void *);
       
   100 
       
   101 
       
   102 /* Macros */
       
   103 #ifdef WITH_PYMALLOC
       
   104 #ifdef PYMALLOC_DEBUG	/* WITH_PYMALLOC && PYMALLOC_DEBUG */
       
   105 PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes);
       
   106 PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes);
       
   107 PyAPI_FUNC(void) _PyObject_DebugFree(void *p);
       
   108 PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p);
       
   109 PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p);
       
   110 PyAPI_FUNC(void) _PyObject_DebugMallocStats(void);
       
   111 #define PyObject_MALLOC		_PyObject_DebugMalloc
       
   112 #define PyObject_Malloc		_PyObject_DebugMalloc
       
   113 #define PyObject_REALLOC	_PyObject_DebugRealloc
       
   114 #define PyObject_Realloc	_PyObject_DebugRealloc
       
   115 #define PyObject_FREE		_PyObject_DebugFree
       
   116 #define PyObject_Free		_PyObject_DebugFree
       
   117 
       
   118 #else	/* WITH_PYMALLOC && ! PYMALLOC_DEBUG */
       
   119 #define PyObject_MALLOC		PyObject_Malloc
       
   120 #define PyObject_REALLOC	PyObject_Realloc
       
   121 #define PyObject_FREE		PyObject_Free
       
   122 #endif
       
   123 
       
   124 #else	/* ! WITH_PYMALLOC */
       
   125 #define PyObject_MALLOC		PyMem_MALLOC
       
   126 #define PyObject_REALLOC	PyMem_REALLOC
       
   127 #define PyObject_FREE		PyMem_FREE
       
   128 
       
   129 #endif	/* WITH_PYMALLOC */
       
   130 
       
   131 #define PyObject_Del		PyObject_Free
       
   132 #define PyObject_DEL		PyObject_FREE
       
   133 
       
   134 /* for source compatibility with 2.2 */
       
   135 #define _PyObject_Del		PyObject_Free
       
   136 
       
   137 /*
       
   138  * Generic object allocator interface
       
   139  * ==================================
       
   140  */
       
   141 
       
   142 /* Functions */
       
   143 PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
       
   144 PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
       
   145                                                  PyTypeObject *, Py_ssize_t);
       
   146 PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
       
   147 PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
       
   148 
       
   149 #define PyObject_New(type, typeobj) \
       
   150 		( (type *) _PyObject_New(typeobj) )
       
   151 #define PyObject_NewVar(type, typeobj, n) \
       
   152 		( (type *) _PyObject_NewVar((typeobj), (n)) )
       
   153 
       
   154 /* Macros trading binary compatibility for speed. See also pymem.h.
       
   155    Note that these macros expect non-NULL object pointers.*/
       
   156 #define PyObject_INIT(op, typeobj) \
       
   157 	( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
       
   158 #define PyObject_INIT_VAR(op, typeobj, size) \
       
   159 	( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
       
   160 
       
   161 #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
       
   162 
       
   163 /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
       
   164    vrbl-size object with nitems items, exclusive of gc overhead (if any).  The
       
   165    value is rounded up to the closest multiple of sizeof(void *), in order to
       
   166    ensure that pointer fields at the end of the object are correctly aligned
       
   167    for the platform (this is of special importance for subclasses of, e.g.,
       
   168    str or long, so that pointers can be stored after the embedded data).
       
   169 
       
   170    Note that there's no memory wastage in doing this, as malloc has to
       
   171    return (at worst) pointer-aligned memory anyway.
       
   172 */
       
   173 #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
       
   174 #   error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
       
   175 #endif
       
   176 
       
   177 #define _PyObject_VAR_SIZE(typeobj, nitems)	\
       
   178 	(size_t)				\
       
   179 	( ( (typeobj)->tp_basicsize +		\
       
   180 	    (nitems)*(typeobj)->tp_itemsize +	\
       
   181 	    (SIZEOF_VOID_P - 1)			\
       
   182 	  ) & ~(SIZEOF_VOID_P - 1)		\
       
   183 	)
       
   184 
       
   185 #define PyObject_NEW(type, typeobj) \
       
   186 ( (type *) PyObject_Init( \
       
   187 	(PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
       
   188 
       
   189 #define PyObject_NEW_VAR(type, typeobj, n) \
       
   190 ( (type *) PyObject_InitVar( \
       
   191       (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
       
   192       (typeobj), (n)) )
       
   193 
       
   194 /* This example code implements an object constructor with a custom
       
   195    allocator, where PyObject_New is inlined, and shows the important
       
   196    distinction between two steps (at least):
       
   197        1) the actual allocation of the object storage;
       
   198        2) the initialization of the Python specific fields
       
   199           in this storage with PyObject_{Init, InitVar}.
       
   200 
       
   201    PyObject *
       
   202    YourObject_New(...)
       
   203    {
       
   204        PyObject *op;
       
   205 
       
   206        op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
       
   207        if (op == NULL)
       
   208            return PyErr_NoMemory();
       
   209 
       
   210        PyObject_Init(op, &YourTypeStruct);
       
   211 
       
   212        op->ob_field = value;
       
   213        ...
       
   214        return op;
       
   215    }
       
   216 
       
   217    Note that in C++, the use of the new operator usually implies that
       
   218    the 1st step is performed automatically for you, so in a C++ class
       
   219    constructor you would start directly with PyObject_Init/InitVar
       
   220 */
       
   221 
       
   222 /*
       
   223  * Garbage Collection Support
       
   224  * ==========================
       
   225  */
       
   226 
       
   227 /* C equivalent of gc.collect(). */
       
   228 PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
       
   229 
       
   230 /* Test if a type has a GC head */
       
   231 #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
       
   232 
       
   233 /* Test if an object has a GC head */
       
   234 #define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
       
   235 	(Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
       
   236 
       
   237 PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
       
   238 #define PyObject_GC_Resize(type, op, n) \
       
   239 		( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
       
   240 
       
   241 /* for source compatibility with 2.2 */
       
   242 #define _PyObject_GC_Del PyObject_GC_Del
       
   243 
       
   244 /* GC information is stored BEFORE the object structure. */
       
   245 typedef union _gc_head {
       
   246 	struct {
       
   247 		union _gc_head *gc_next;
       
   248 		union _gc_head *gc_prev;
       
   249 		Py_ssize_t gc_refs;
       
   250 	} gc;
       
   251 	long double dummy;  /* force worst-case alignment */
       
   252 } PyGC_Head;
       
   253 
       
   254 extern PyGC_Head *_PyGC_generation0;
       
   255 
       
   256 #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)
       
   257 
       
   258 #define _PyGC_REFS_UNTRACKED			(-2)
       
   259 #define _PyGC_REFS_REACHABLE			(-3)
       
   260 #define _PyGC_REFS_TENTATIVELY_UNREACHABLE	(-4)
       
   261 
       
   262 /* Tell the GC to track this object.  NB: While the object is tracked the
       
   263  * collector it must be safe to call the ob_traverse method. */
       
   264 #define _PyObject_GC_TRACK(o) do { \
       
   265 	PyGC_Head *g = _Py_AS_GC(o); \
       
   266 	if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \
       
   267 		Py_FatalError("GC object already tracked"); \
       
   268 	g->gc.gc_refs = _PyGC_REFS_REACHABLE; \
       
   269 	g->gc.gc_next = _PyGC_generation0; \
       
   270 	g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
       
   271 	g->gc.gc_prev->gc.gc_next = g; \
       
   272 	_PyGC_generation0->gc.gc_prev = g; \
       
   273     } while (0);
       
   274 
       
   275 /* Tell the GC to stop tracking this object.
       
   276  * gc_next doesn't need to be set to NULL, but doing so is a good
       
   277  * way to provoke memory errors if calling code is confused.
       
   278  */
       
   279 #define _PyObject_GC_UNTRACK(o) do { \
       
   280 	PyGC_Head *g = _Py_AS_GC(o); \
       
   281 	assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \
       
   282 	g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \
       
   283 	g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
       
   284 	g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
       
   285 	g->gc.gc_next = NULL; \
       
   286     } while (0);
       
   287 
       
   288 PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t);
       
   289 PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
       
   290 PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
       
   291 PyAPI_FUNC(void) PyObject_GC_Track(void *);
       
   292 PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
       
   293 PyAPI_FUNC(void) PyObject_GC_Del(void *);
       
   294 
       
   295 #define PyObject_GC_New(type, typeobj) \
       
   296 		( (type *) _PyObject_GC_New(typeobj) )
       
   297 #define PyObject_GC_NewVar(type, typeobj, n) \
       
   298 		( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
       
   299 
       
   300 
       
   301 /* Utility macro to help write tp_traverse functions.
       
   302  * To use this macro, the tp_traverse function must name its arguments
       
   303  * "visit" and "arg".  This is intended to keep tp_traverse functions
       
   304  * looking as much alike as possible.
       
   305  */
       
   306 #define Py_VISIT(op)							\
       
   307         do { 								\
       
   308                 if (op) {						\
       
   309                         int vret = visit((PyObject *)(op), arg);	\
       
   310                         if (vret)					\
       
   311                                 return vret;				\
       
   312                 }							\
       
   313         } while (0)
       
   314 
       
   315 /* This is here for the sake of backwards compatibility.  Extensions that
       
   316  * use the old GC API will still compile but the objects will not be
       
   317  * tracked by the GC. */
       
   318 #define PyGC_HEAD_SIZE 0
       
   319 #define PyObject_GC_Init(op)
       
   320 #define PyObject_GC_Fini(op)
       
   321 #define PyObject_AS_GC(op) (op)
       
   322 #define PyObject_FROM_GC(op) (op)
       
   323 
       
   324 
       
   325 /* Test if a type supports weak references */
       
   326 #define PyType_SUPPORTS_WEAKREFS(t) \
       
   327         (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \
       
   328          && ((t)->tp_weaklistoffset > 0))
       
   329 
       
   330 #define PyObject_GET_WEAKREFS_LISTPTR(o) \
       
   331 	((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
       
   332 
       
   333 #ifdef __cplusplus
       
   334 }
       
   335 #endif
       
   336 #endif /* !Py_OBJIMPL_H */