|
1 /* Math module -- standard C math library functions, pi and e */ |
|
2 |
|
3 /* Here are some comments from Tim Peters, extracted from the |
|
4 discussion attached to http://bugs.python.org/issue1640. They |
|
5 describe the general aims of the math module with respect to |
|
6 special values, IEEE-754 floating-point exceptions, and Python |
|
7 exceptions. |
|
8 |
|
9 These are the "spirit of 754" rules: |
|
10 |
|
11 1. If the mathematical result is a real number, but of magnitude too |
|
12 large to approximate by a machine float, overflow is signaled and the |
|
13 result is an infinity (with the appropriate sign). |
|
14 |
|
15 2. If the mathematical result is a real number, but of magnitude too |
|
16 small to approximate by a machine float, underflow is signaled and the |
|
17 result is a zero (with the appropriate sign). |
|
18 |
|
19 3. At a singularity (a value x such that the limit of f(y) as y |
|
20 approaches x exists and is an infinity), "divide by zero" is signaled |
|
21 and the result is an infinity (with the appropriate sign). This is |
|
22 complicated a little by that the left-side and right-side limits may |
|
23 not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 |
|
24 from the positive or negative directions. In that specific case, the |
|
25 sign of the zero determines the result of 1/0. |
|
26 |
|
27 4. At a point where a function has no defined result in the extended |
|
28 reals (i.e., the reals plus an infinity or two), invalid operation is |
|
29 signaled and a NaN is returned. |
|
30 |
|
31 And these are what Python has historically /tried/ to do (but not |
|
32 always successfully, as platform libm behavior varies a lot): |
|
33 |
|
34 For #1, raise OverflowError. |
|
35 |
|
36 For #2, return a zero (with the appropriate sign if that happens by |
|
37 accident ;-)). |
|
38 |
|
39 For #3 and #4, raise ValueError. It may have made sense to raise |
|
40 Python's ZeroDivisionError in #3, but historically that's only been |
|
41 raised for division by zero and mod by zero. |
|
42 |
|
43 */ |
|
44 |
|
45 /* |
|
46 In general, on an IEEE-754 platform the aim is to follow the C99 |
|
47 standard, including Annex 'F', whenever possible. Where the |
|
48 standard recommends raising the 'divide-by-zero' or 'invalid' |
|
49 floating-point exceptions, Python should raise a ValueError. Where |
|
50 the standard recommends raising 'overflow', Python should raise an |
|
51 OverflowError. In all other circumstances a value should be |
|
52 returned. |
|
53 */ |
|
54 |
|
55 #include "Python.h" |
|
56 #include "longintrepr.h" /* just for SHIFT */ |
|
57 |
|
58 #ifdef _OSF_SOURCE |
|
59 /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */ |
|
60 extern double copysign(double, double); |
|
61 #endif |
|
62 |
|
63 /* Call is_error when errno != 0, and where x is the result libm |
|
64 * returned. is_error will usually set up an exception and return |
|
65 * true (1), but may return false (0) without setting up an exception. |
|
66 */ |
|
67 static int |
|
68 is_error(double x) |
|
69 { |
|
70 int result = 1; /* presumption of guilt */ |
|
71 assert(errno); /* non-zero errno is a precondition for calling */ |
|
72 if (errno == EDOM) |
|
73 PyErr_SetString(PyExc_ValueError, "math domain error"); |
|
74 |
|
75 else if (errno == ERANGE) { |
|
76 /* ANSI C generally requires libm functions to set ERANGE |
|
77 * on overflow, but also generally *allows* them to set |
|
78 * ERANGE on underflow too. There's no consistency about |
|
79 * the latter across platforms. |
|
80 * Alas, C99 never requires that errno be set. |
|
81 * Here we suppress the underflow errors (libm functions |
|
82 * should return a zero on underflow, and +- HUGE_VAL on |
|
83 * overflow, so testing the result for zero suffices to |
|
84 * distinguish the cases). |
|
85 * |
|
86 * On some platforms (Ubuntu/ia64) it seems that errno can be |
|
87 * set to ERANGE for subnormal results that do *not* underflow |
|
88 * to zero. So to be safe, we'll ignore ERANGE whenever the |
|
89 * function result is less than one in absolute value. |
|
90 */ |
|
91 if (fabs(x) < 1.0) |
|
92 result = 0; |
|
93 else |
|
94 PyErr_SetString(PyExc_OverflowError, |
|
95 "math range error"); |
|
96 } |
|
97 else |
|
98 /* Unexpected math error */ |
|
99 PyErr_SetFromErrno(PyExc_ValueError); |
|
100 return result; |
|
101 } |
|
102 |
|
103 /* |
|
104 wrapper for atan2 that deals directly with special cases before |
|
105 delegating to the platform libm for the remaining cases. This |
|
106 is necessary to get consistent behaviour across platforms. |
|
107 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't |
|
108 always follow C99. |
|
109 */ |
|
110 |
|
111 static double |
|
112 m_atan2(double y, double x) |
|
113 { |
|
114 if (Py_IS_NAN(x) || Py_IS_NAN(y)) |
|
115 return Py_NAN; |
|
116 if (Py_IS_INFINITY(y)) { |
|
117 if (Py_IS_INFINITY(x)) { |
|
118 if (copysign(1., x) == 1.) |
|
119 /* atan2(+-inf, +inf) == +-pi/4 */ |
|
120 return copysign(0.25*Py_MATH_PI, y); |
|
121 else |
|
122 /* atan2(+-inf, -inf) == +-pi*3/4 */ |
|
123 return copysign(0.75*Py_MATH_PI, y); |
|
124 } |
|
125 /* atan2(+-inf, x) == +-pi/2 for finite x */ |
|
126 return copysign(0.5*Py_MATH_PI, y); |
|
127 } |
|
128 if (Py_IS_INFINITY(x) || y == 0.) { |
|
129 if (copysign(1., x) == 1.) |
|
130 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ |
|
131 return copysign(0., y); |
|
132 else |
|
133 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ |
|
134 return copysign(Py_MATH_PI, y); |
|
135 } |
|
136 return atan2(y, x); |
|
137 } |
|
138 |
|
139 /* |
|
140 math_1 is used to wrap a libm function f that takes a double |
|
141 arguments and returns a double. |
|
142 |
|
143 The error reporting follows these rules, which are designed to do |
|
144 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 |
|
145 platforms. |
|
146 |
|
147 - a NaN result from non-NaN inputs causes ValueError to be raised |
|
148 - an infinite result from finite inputs causes OverflowError to be |
|
149 raised if can_overflow is 1, or raises ValueError if can_overflow |
|
150 is 0. |
|
151 - if the result is finite and errno == EDOM then ValueError is |
|
152 raised |
|
153 - if the result is finite and nonzero and errno == ERANGE then |
|
154 OverflowError is raised |
|
155 |
|
156 The last rule is used to catch overflow on platforms which follow |
|
157 C89 but for which HUGE_VAL is not an infinity. |
|
158 |
|
159 For the majority of one-argument functions these rules are enough |
|
160 to ensure that Python's functions behave as specified in 'Annex F' |
|
161 of the C99 standard, with the 'invalid' and 'divide-by-zero' |
|
162 floating-point exceptions mapping to Python's ValueError and the |
|
163 'overflow' floating-point exception mapping to OverflowError. |
|
164 math_1 only works for functions that don't have singularities *and* |
|
165 the possibility of overflow; fortunately, that covers everything we |
|
166 care about right now. |
|
167 */ |
|
168 |
|
169 static PyObject * |
|
170 math_1(PyObject *arg, double (*func) (double), int can_overflow) |
|
171 { |
|
172 double x, r; |
|
173 x = PyFloat_AsDouble(arg); |
|
174 if (x == -1.0 && PyErr_Occurred()) |
|
175 return NULL; |
|
176 errno = 0; |
|
177 PyFPE_START_PROTECT("in math_1", return 0); |
|
178 r = (*func)(x); |
|
179 PyFPE_END_PROTECT(r); |
|
180 if (Py_IS_NAN(r)) { |
|
181 if (!Py_IS_NAN(x)) |
|
182 errno = EDOM; |
|
183 else |
|
184 errno = 0; |
|
185 } |
|
186 else if (Py_IS_INFINITY(r)) { |
|
187 if (Py_IS_FINITE(x)) |
|
188 errno = can_overflow ? ERANGE : EDOM; |
|
189 else |
|
190 errno = 0; |
|
191 } |
|
192 if (errno && is_error(r)) |
|
193 return NULL; |
|
194 else |
|
195 return PyFloat_FromDouble(r); |
|
196 } |
|
197 |
|
198 /* |
|
199 math_2 is used to wrap a libm function f that takes two double |
|
200 arguments and returns a double. |
|
201 |
|
202 The error reporting follows these rules, which are designed to do |
|
203 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 |
|
204 platforms. |
|
205 |
|
206 - a NaN result from non-NaN inputs causes ValueError to be raised |
|
207 - an infinite result from finite inputs causes OverflowError to be |
|
208 raised. |
|
209 - if the result is finite and errno == EDOM then ValueError is |
|
210 raised |
|
211 - if the result is finite and nonzero and errno == ERANGE then |
|
212 OverflowError is raised |
|
213 |
|
214 The last rule is used to catch overflow on platforms which follow |
|
215 C89 but for which HUGE_VAL is not an infinity. |
|
216 |
|
217 For most two-argument functions (copysign, fmod, hypot, atan2) |
|
218 these rules are enough to ensure that Python's functions behave as |
|
219 specified in 'Annex F' of the C99 standard, with the 'invalid' and |
|
220 'divide-by-zero' floating-point exceptions mapping to Python's |
|
221 ValueError and the 'overflow' floating-point exception mapping to |
|
222 OverflowError. |
|
223 */ |
|
224 |
|
225 static PyObject * |
|
226 math_2(PyObject *args, double (*func) (double, double), char *funcname) |
|
227 { |
|
228 PyObject *ox, *oy; |
|
229 double x, y, r; |
|
230 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) |
|
231 return NULL; |
|
232 x = PyFloat_AsDouble(ox); |
|
233 y = PyFloat_AsDouble(oy); |
|
234 if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) |
|
235 return NULL; |
|
236 errno = 0; |
|
237 PyFPE_START_PROTECT("in math_2", return 0); |
|
238 r = (*func)(x, y); |
|
239 PyFPE_END_PROTECT(r); |
|
240 if (Py_IS_NAN(r)) { |
|
241 if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
|
242 errno = EDOM; |
|
243 else |
|
244 errno = 0; |
|
245 } |
|
246 else if (Py_IS_INFINITY(r)) { |
|
247 if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) |
|
248 errno = ERANGE; |
|
249 else |
|
250 errno = 0; |
|
251 } |
|
252 if (errno && is_error(r)) |
|
253 return NULL; |
|
254 else |
|
255 return PyFloat_FromDouble(r); |
|
256 } |
|
257 |
|
258 #define FUNC1(funcname, func, can_overflow, docstring) \ |
|
259 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
|
260 return math_1(args, func, can_overflow); \ |
|
261 }\ |
|
262 PyDoc_STRVAR(math_##funcname##_doc, docstring); |
|
263 |
|
264 #define FUNC2(funcname, func, docstring) \ |
|
265 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
|
266 return math_2(args, func, #funcname); \ |
|
267 }\ |
|
268 PyDoc_STRVAR(math_##funcname##_doc, docstring); |
|
269 |
|
270 FUNC1(acos, acos, 0, |
|
271 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.") |
|
272 FUNC1(acosh, acosh, 0, |
|
273 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.") |
|
274 FUNC1(asin, asin, 0, |
|
275 "asin(x)\n\nReturn the arc sine (measured in radians) of x.") |
|
276 FUNC1(asinh, asinh, 0, |
|
277 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.") |
|
278 FUNC1(atan, atan, 0, |
|
279 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.") |
|
280 FUNC2(atan2, m_atan2, |
|
281 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n" |
|
282 "Unlike atan(y/x), the signs of both x and y are considered.") |
|
283 FUNC1(atanh, atanh, 0, |
|
284 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.") |
|
285 FUNC1(ceil, ceil, 0, |
|
286 "ceil(x)\n\nReturn the ceiling of x as a float.\n" |
|
287 "This is the smallest integral value >= x.") |
|
288 FUNC2(copysign, copysign, |
|
289 "copysign(x,y)\n\nReturn x with the sign of y.") |
|
290 FUNC1(cos, cos, 0, |
|
291 "cos(x)\n\nReturn the cosine of x (measured in radians).") |
|
292 FUNC1(cosh, cosh, 1, |
|
293 "cosh(x)\n\nReturn the hyperbolic cosine of x.") |
|
294 FUNC1(exp, exp, 1, |
|
295 "exp(x)\n\nReturn e raised to the power of x.") |
|
296 FUNC1(fabs, fabs, 0, |
|
297 "fabs(x)\n\nReturn the absolute value of the float x.") |
|
298 FUNC1(floor, floor, 0, |
|
299 "floor(x)\n\nReturn the floor of x as a float.\n" |
|
300 "This is the largest integral value <= x.") |
|
301 FUNC1(log1p, log1p, 1, |
|
302 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\ |
|
303 The result is computed in a way which is accurate for x near zero.") |
|
304 FUNC1(sin, sin, 0, |
|
305 "sin(x)\n\nReturn the sine of x (measured in radians).") |
|
306 FUNC1(sinh, sinh, 1, |
|
307 "sinh(x)\n\nReturn the hyperbolic sine of x.") |
|
308 FUNC1(sqrt, sqrt, 0, |
|
309 "sqrt(x)\n\nReturn the square root of x.") |
|
310 FUNC1(tan, tan, 0, |
|
311 "tan(x)\n\nReturn the tangent of x (measured in radians).") |
|
312 FUNC1(tanh, tanh, 0, |
|
313 "tanh(x)\n\nReturn the hyperbolic tangent of x.") |
|
314 |
|
315 /* Precision summation function as msum() by Raymond Hettinger in |
|
316 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, |
|
317 enhanced with the exact partials sum and roundoff from Mark |
|
318 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. |
|
319 See those links for more details, proofs and other references. |
|
320 |
|
321 Note 1: IEEE 754R floating point semantics are assumed, |
|
322 but the current implementation does not re-establish special |
|
323 value semantics across iterations (i.e. handling -Inf + Inf). |
|
324 |
|
325 Note 2: No provision is made for intermediate overflow handling; |
|
326 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while |
|
327 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the |
|
328 overflow of the first partial sum. |
|
329 |
|
330 Note 3: The intermediate values lo, yr, and hi are declared volatile so |
|
331 aggressive compilers won't algebraically reduce lo to always be exactly 0.0. |
|
332 Also, the volatile declaration forces the values to be stored in memory as |
|
333 regular doubles instead of extended long precision (80-bit) values. This |
|
334 prevents double rounding because any addition or subtraction of two doubles |
|
335 can be resolved exactly into double-sized hi and lo values. As long as the |
|
336 hi value gets forced into a double before yr and lo are computed, the extra |
|
337 bits in downstream extended precision operations (x87 for example) will be |
|
338 exactly zero and therefore can be losslessly stored back into a double, |
|
339 thereby preventing double rounding. |
|
340 |
|
341 Note 4: A similar implementation is in Modules/cmathmodule.c. |
|
342 Be sure to update both when making changes. |
|
343 |
|
344 Note 5: The signature of math.fsum() differs from __builtin__.sum() |
|
345 because the start argument doesn't make sense in the context of |
|
346 accurate summation. Since the partials table is collapsed before |
|
347 returning a result, sum(seq2, start=sum(seq1)) may not equal the |
|
348 accurate result returned by sum(itertools.chain(seq1, seq2)). |
|
349 */ |
|
350 |
|
351 #define NUM_PARTIALS 32 /* initial partials array size, on stack */ |
|
352 |
|
353 /* Extend the partials array p[] by doubling its size. */ |
|
354 static int /* non-zero on error */ |
|
355 _fsum_realloc(double **p_ptr, Py_ssize_t n, |
|
356 double *ps, Py_ssize_t *m_ptr) |
|
357 { |
|
358 void *v = NULL; |
|
359 Py_ssize_t m = *m_ptr; |
|
360 |
|
361 m += m; /* double */ |
|
362 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) { |
|
363 double *p = *p_ptr; |
|
364 if (p == ps) { |
|
365 v = PyMem_Malloc(sizeof(double) * m); |
|
366 if (v != NULL) |
|
367 memcpy(v, ps, sizeof(double) * n); |
|
368 } |
|
369 else |
|
370 v = PyMem_Realloc(p, sizeof(double) * m); |
|
371 } |
|
372 if (v == NULL) { /* size overflow or no memory */ |
|
373 PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); |
|
374 return 1; |
|
375 } |
|
376 *p_ptr = (double*) v; |
|
377 *m_ptr = m; |
|
378 return 0; |
|
379 } |
|
380 |
|
381 /* Full precision summation of a sequence of floats. |
|
382 |
|
383 def msum(iterable): |
|
384 partials = [] # sorted, non-overlapping partial sums |
|
385 for x in iterable: |
|
386 i = 0 |
|
387 for y in partials: |
|
388 if abs(x) < abs(y): |
|
389 x, y = y, x |
|
390 hi = x + y |
|
391 lo = y - (hi - x) |
|
392 if lo: |
|
393 partials[i] = lo |
|
394 i += 1 |
|
395 x = hi |
|
396 partials[i:] = [x] |
|
397 return sum_exact(partials) |
|
398 |
|
399 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo |
|
400 are exactly equal to x+y. The inner loop applies hi/lo summation to each |
|
401 partial so that the list of partial sums remains exact. |
|
402 |
|
403 Sum_exact() adds the partial sums exactly and correctly rounds the final |
|
404 result (using the round-half-to-even rule). The items in partials remain |
|
405 non-zero, non-special, non-overlapping and strictly increasing in |
|
406 magnitude, but possibly not all having the same sign. |
|
407 |
|
408 Depends on IEEE 754 arithmetic guarantees and half-even rounding. |
|
409 */ |
|
410 |
|
411 static PyObject* |
|
412 math_fsum(PyObject *self, PyObject *seq) |
|
413 { |
|
414 PyObject *item, *iter, *sum = NULL; |
|
415 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; |
|
416 double x, y, t, ps[NUM_PARTIALS], *p = ps; |
|
417 double xsave, special_sum = 0.0, inf_sum = 0.0; |
|
418 volatile double hi, yr, lo; |
|
419 |
|
420 iter = PyObject_GetIter(seq); |
|
421 if (iter == NULL) |
|
422 return NULL; |
|
423 |
|
424 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL) |
|
425 |
|
426 for(;;) { /* for x in iterable */ |
|
427 assert(0 <= n && n <= m); |
|
428 assert((m == NUM_PARTIALS && p == ps) || |
|
429 (m > NUM_PARTIALS && p != NULL)); |
|
430 |
|
431 item = PyIter_Next(iter); |
|
432 if (item == NULL) { |
|
433 if (PyErr_Occurred()) |
|
434 goto _fsum_error; |
|
435 break; |
|
436 } |
|
437 x = PyFloat_AsDouble(item); |
|
438 Py_DECREF(item); |
|
439 if (PyErr_Occurred()) |
|
440 goto _fsum_error; |
|
441 |
|
442 xsave = x; |
|
443 for (i = j = 0; j < n; j++) { /* for y in partials */ |
|
444 y = p[j]; |
|
445 if (fabs(x) < fabs(y)) { |
|
446 t = x; x = y; y = t; |
|
447 } |
|
448 hi = x + y; |
|
449 yr = hi - x; |
|
450 lo = y - yr; |
|
451 if (lo != 0.0) |
|
452 p[i++] = lo; |
|
453 x = hi; |
|
454 } |
|
455 |
|
456 n = i; /* ps[i:] = [x] */ |
|
457 if (x != 0.0) { |
|
458 if (! Py_IS_FINITE(x)) { |
|
459 /* a nonfinite x could arise either as |
|
460 a result of intermediate overflow, or |
|
461 as a result of a nan or inf in the |
|
462 summands */ |
|
463 if (Py_IS_FINITE(xsave)) { |
|
464 PyErr_SetString(PyExc_OverflowError, |
|
465 "intermediate overflow in fsum"); |
|
466 goto _fsum_error; |
|
467 } |
|
468 if (Py_IS_INFINITY(xsave)) |
|
469 inf_sum += xsave; |
|
470 special_sum += xsave; |
|
471 /* reset partials */ |
|
472 n = 0; |
|
473 } |
|
474 else if (n >= m && _fsum_realloc(&p, n, ps, &m)) |
|
475 goto _fsum_error; |
|
476 else |
|
477 p[n++] = x; |
|
478 } |
|
479 } |
|
480 |
|
481 if (special_sum != 0.0) { |
|
482 if (Py_IS_NAN(inf_sum)) |
|
483 PyErr_SetString(PyExc_ValueError, |
|
484 "-inf + inf in fsum"); |
|
485 else |
|
486 sum = PyFloat_FromDouble(special_sum); |
|
487 goto _fsum_error; |
|
488 } |
|
489 |
|
490 hi = 0.0; |
|
491 if (n > 0) { |
|
492 hi = p[--n]; |
|
493 /* sum_exact(ps, hi) from the top, stop when the sum becomes |
|
494 inexact. */ |
|
495 while (n > 0) { |
|
496 x = hi; |
|
497 y = p[--n]; |
|
498 assert(fabs(y) < fabs(x)); |
|
499 hi = x + y; |
|
500 yr = hi - x; |
|
501 lo = y - yr; |
|
502 if (lo != 0.0) |
|
503 break; |
|
504 } |
|
505 /* Make half-even rounding work across multiple partials. |
|
506 Needed so that sum([1e-16, 1, 1e16]) will round-up the last |
|
507 digit to two instead of down to zero (the 1e-16 makes the 1 |
|
508 slightly closer to two). With a potential 1 ULP rounding |
|
509 error fixed-up, math.fsum() can guarantee commutativity. */ |
|
510 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || |
|
511 (lo > 0.0 && p[n-1] > 0.0))) { |
|
512 y = lo * 2.0; |
|
513 x = hi + y; |
|
514 yr = x - hi; |
|
515 if (y == yr) |
|
516 hi = x; |
|
517 } |
|
518 } |
|
519 sum = PyFloat_FromDouble(hi); |
|
520 |
|
521 _fsum_error: |
|
522 PyFPE_END_PROTECT(hi) |
|
523 Py_DECREF(iter); |
|
524 if (p != ps) |
|
525 PyMem_Free(p); |
|
526 return sum; |
|
527 } |
|
528 |
|
529 #undef NUM_PARTIALS |
|
530 |
|
531 PyDoc_STRVAR(math_fsum_doc, |
|
532 "sum(iterable)\n\n\ |
|
533 Return an accurate floating point sum of values in the iterable.\n\ |
|
534 Assumes IEEE-754 floating point arithmetic."); |
|
535 |
|
536 static PyObject * |
|
537 math_factorial(PyObject *self, PyObject *arg) |
|
538 { |
|
539 long i, x; |
|
540 PyObject *result, *iobj, *newresult; |
|
541 |
|
542 if (PyFloat_Check(arg)) { |
|
543 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg); |
|
544 if (dx != floor(dx)) { |
|
545 PyErr_SetString(PyExc_ValueError, |
|
546 "factorial() only accepts integral values"); |
|
547 return NULL; |
|
548 } |
|
549 } |
|
550 |
|
551 x = PyInt_AsLong(arg); |
|
552 if (x == -1 && PyErr_Occurred()) |
|
553 return NULL; |
|
554 if (x < 0) { |
|
555 PyErr_SetString(PyExc_ValueError, |
|
556 "factorial() not defined for negative values"); |
|
557 return NULL; |
|
558 } |
|
559 |
|
560 result = (PyObject *)PyInt_FromLong(1); |
|
561 if (result == NULL) |
|
562 return NULL; |
|
563 for (i=1 ; i<=x ; i++) { |
|
564 iobj = (PyObject *)PyInt_FromLong(i); |
|
565 if (iobj == NULL) |
|
566 goto error; |
|
567 newresult = PyNumber_Multiply(result, iobj); |
|
568 Py_DECREF(iobj); |
|
569 if (newresult == NULL) |
|
570 goto error; |
|
571 Py_DECREF(result); |
|
572 result = newresult; |
|
573 } |
|
574 return result; |
|
575 |
|
576 error: |
|
577 Py_DECREF(result); |
|
578 return NULL; |
|
579 } |
|
580 |
|
581 PyDoc_STRVAR(math_factorial_doc, "Return n!"); |
|
582 |
|
583 static PyObject * |
|
584 math_trunc(PyObject *self, PyObject *number) |
|
585 { |
|
586 return PyObject_CallMethod(number, "__trunc__", NULL); |
|
587 } |
|
588 |
|
589 PyDoc_STRVAR(math_trunc_doc, |
|
590 "trunc(x:Real) -> Integral\n" |
|
591 "\n" |
|
592 "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method."); |
|
593 |
|
594 static PyObject * |
|
595 math_frexp(PyObject *self, PyObject *arg) |
|
596 { |
|
597 int i; |
|
598 double x = PyFloat_AsDouble(arg); |
|
599 if (x == -1.0 && PyErr_Occurred()) |
|
600 return NULL; |
|
601 /* deal with special cases directly, to sidestep platform |
|
602 differences */ |
|
603 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { |
|
604 i = 0; |
|
605 } |
|
606 else { |
|
607 PyFPE_START_PROTECT("in math_frexp", return 0); |
|
608 x = frexp(x, &i); |
|
609 PyFPE_END_PROTECT(x); |
|
610 } |
|
611 return Py_BuildValue("(di)", x, i); |
|
612 } |
|
613 |
|
614 PyDoc_STRVAR(math_frexp_doc, |
|
615 "frexp(x)\n" |
|
616 "\n" |
|
617 "Return the mantissa and exponent of x, as pair (m, e).\n" |
|
618 "m is a float and e is an int, such that x = m * 2.**e.\n" |
|
619 "If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0."); |
|
620 |
|
621 static PyObject * |
|
622 math_ldexp(PyObject *self, PyObject *args) |
|
623 { |
|
624 double x, r; |
|
625 PyObject *oexp; |
|
626 long exp; |
|
627 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp)) |
|
628 return NULL; |
|
629 |
|
630 if (PyLong_Check(oexp)) { |
|
631 /* on overflow, replace exponent with either LONG_MAX |
|
632 or LONG_MIN, depending on the sign. */ |
|
633 exp = PyLong_AsLong(oexp); |
|
634 if (exp == -1 && PyErr_Occurred()) { |
|
635 if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
|
636 if (Py_SIZE(oexp) < 0) { |
|
637 exp = LONG_MIN; |
|
638 } |
|
639 else { |
|
640 exp = LONG_MAX; |
|
641 } |
|
642 PyErr_Clear(); |
|
643 } |
|
644 else { |
|
645 /* propagate any unexpected exception */ |
|
646 return NULL; |
|
647 } |
|
648 } |
|
649 } |
|
650 else if (PyInt_Check(oexp)) { |
|
651 exp = PyInt_AS_LONG(oexp); |
|
652 } |
|
653 else { |
|
654 PyErr_SetString(PyExc_TypeError, |
|
655 "Expected an int or long as second argument " |
|
656 "to ldexp."); |
|
657 return NULL; |
|
658 } |
|
659 |
|
660 if (x == 0. || !Py_IS_FINITE(x)) { |
|
661 /* NaNs, zeros and infinities are returned unchanged */ |
|
662 r = x; |
|
663 errno = 0; |
|
664 } else if (exp > INT_MAX) { |
|
665 /* overflow */ |
|
666 r = copysign(Py_HUGE_VAL, x); |
|
667 errno = ERANGE; |
|
668 } else if (exp < INT_MIN) { |
|
669 /* underflow to +-0 */ |
|
670 r = copysign(0., x); |
|
671 errno = 0; |
|
672 } else { |
|
673 errno = 0; |
|
674 PyFPE_START_PROTECT("in math_ldexp", return 0); |
|
675 r = ldexp(x, (int)exp); |
|
676 PyFPE_END_PROTECT(r); |
|
677 if (Py_IS_INFINITY(r)) |
|
678 errno = ERANGE; |
|
679 } |
|
680 |
|
681 if (errno && is_error(r)) |
|
682 return NULL; |
|
683 return PyFloat_FromDouble(r); |
|
684 } |
|
685 |
|
686 PyDoc_STRVAR(math_ldexp_doc, |
|
687 "ldexp(x, i) -> x * (2**i)"); |
|
688 |
|
689 static PyObject * |
|
690 math_modf(PyObject *self, PyObject *arg) |
|
691 { |
|
692 double y, x = PyFloat_AsDouble(arg); |
|
693 if (x == -1.0 && PyErr_Occurred()) |
|
694 return NULL; |
|
695 /* some platforms don't do the right thing for NaNs and |
|
696 infinities, so we take care of special cases directly. */ |
|
697 if (!Py_IS_FINITE(x)) { |
|
698 if (Py_IS_INFINITY(x)) |
|
699 return Py_BuildValue("(dd)", copysign(0., x), x); |
|
700 else if (Py_IS_NAN(x)) |
|
701 return Py_BuildValue("(dd)", x, x); |
|
702 } |
|
703 |
|
704 errno = 0; |
|
705 PyFPE_START_PROTECT("in math_modf", return 0); |
|
706 x = modf(x, &y); |
|
707 PyFPE_END_PROTECT(x); |
|
708 return Py_BuildValue("(dd)", x, y); |
|
709 } |
|
710 |
|
711 PyDoc_STRVAR(math_modf_doc, |
|
712 "modf(x)\n" |
|
713 "\n" |
|
714 "Return the fractional and integer parts of x. Both results carry the sign\n" |
|
715 "of x. The integer part is returned as a real."); |
|
716 |
|
717 /* A decent logarithm is easy to compute even for huge longs, but libm can't |
|
718 do that by itself -- loghelper can. func is log or log10, and name is |
|
719 "log" or "log10". Note that overflow isn't possible: a long can contain |
|
720 no more than INT_MAX * SHIFT bits, so has value certainly less than |
|
721 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is |
|
722 small enough to fit in an IEEE single. log and log10 are even smaller. |
|
723 */ |
|
724 |
|
725 static PyObject* |
|
726 loghelper(PyObject* arg, double (*func)(double), char *funcname) |
|
727 { |
|
728 /* If it is long, do it ourselves. */ |
|
729 if (PyLong_Check(arg)) { |
|
730 double x; |
|
731 int e; |
|
732 x = _PyLong_AsScaledDouble(arg, &e); |
|
733 if (x <= 0.0) { |
|
734 PyErr_SetString(PyExc_ValueError, |
|
735 "math domain error"); |
|
736 return NULL; |
|
737 } |
|
738 /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~= |
|
739 log(x) + log(2) * e * PyLong_SHIFT. |
|
740 CAUTION: e*PyLong_SHIFT may overflow using int arithmetic, |
|
741 so force use of double. */ |
|
742 x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0); |
|
743 return PyFloat_FromDouble(x); |
|
744 } |
|
745 |
|
746 /* Else let libm handle it by itself. */ |
|
747 return math_1(arg, func, 0); |
|
748 } |
|
749 |
|
750 static PyObject * |
|
751 math_log(PyObject *self, PyObject *args) |
|
752 { |
|
753 PyObject *arg; |
|
754 PyObject *base = NULL; |
|
755 PyObject *num, *den; |
|
756 PyObject *ans; |
|
757 |
|
758 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base)) |
|
759 return NULL; |
|
760 |
|
761 num = loghelper(arg, log, "log"); |
|
762 if (num == NULL || base == NULL) |
|
763 return num; |
|
764 |
|
765 den = loghelper(base, log, "log"); |
|
766 if (den == NULL) { |
|
767 Py_DECREF(num); |
|
768 return NULL; |
|
769 } |
|
770 |
|
771 ans = PyNumber_Divide(num, den); |
|
772 Py_DECREF(num); |
|
773 Py_DECREF(den); |
|
774 return ans; |
|
775 } |
|
776 |
|
777 PyDoc_STRVAR(math_log_doc, |
|
778 "log(x[, base]) -> the logarithm of x to the given base.\n\ |
|
779 If the base not specified, returns the natural logarithm (base e) of x."); |
|
780 |
|
781 static PyObject * |
|
782 math_log10(PyObject *self, PyObject *arg) |
|
783 { |
|
784 return loghelper(arg, log10, "log10"); |
|
785 } |
|
786 |
|
787 PyDoc_STRVAR(math_log10_doc, |
|
788 "log10(x) -> the base 10 logarithm of x."); |
|
789 |
|
790 static PyObject * |
|
791 math_fmod(PyObject *self, PyObject *args) |
|
792 { |
|
793 PyObject *ox, *oy; |
|
794 double r, x, y; |
|
795 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy)) |
|
796 return NULL; |
|
797 x = PyFloat_AsDouble(ox); |
|
798 y = PyFloat_AsDouble(oy); |
|
799 if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) |
|
800 return NULL; |
|
801 /* fmod(x, +/-Inf) returns x for finite x. */ |
|
802 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) |
|
803 return PyFloat_FromDouble(x); |
|
804 errno = 0; |
|
805 PyFPE_START_PROTECT("in math_fmod", return 0); |
|
806 r = fmod(x, y); |
|
807 PyFPE_END_PROTECT(r); |
|
808 if (Py_IS_NAN(r)) { |
|
809 if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
|
810 errno = EDOM; |
|
811 else |
|
812 errno = 0; |
|
813 } |
|
814 if (errno && is_error(r)) |
|
815 return NULL; |
|
816 else |
|
817 return PyFloat_FromDouble(r); |
|
818 } |
|
819 |
|
820 PyDoc_STRVAR(math_fmod_doc, |
|
821 "fmod(x,y)\n\nReturn fmod(x, y), according to platform C." |
|
822 " x % y may differ."); |
|
823 |
|
824 static PyObject * |
|
825 math_hypot(PyObject *self, PyObject *args) |
|
826 { |
|
827 PyObject *ox, *oy; |
|
828 double r, x, y; |
|
829 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy)) |
|
830 return NULL; |
|
831 x = PyFloat_AsDouble(ox); |
|
832 y = PyFloat_AsDouble(oy); |
|
833 if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) |
|
834 return NULL; |
|
835 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ |
|
836 if (Py_IS_INFINITY(x)) |
|
837 return PyFloat_FromDouble(fabs(x)); |
|
838 if (Py_IS_INFINITY(y)) |
|
839 return PyFloat_FromDouble(fabs(y)); |
|
840 errno = 0; |
|
841 PyFPE_START_PROTECT("in math_hypot", return 0); |
|
842 r = hypot(x, y); |
|
843 PyFPE_END_PROTECT(r); |
|
844 if (Py_IS_NAN(r)) { |
|
845 if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
|
846 errno = EDOM; |
|
847 else |
|
848 errno = 0; |
|
849 } |
|
850 else if (Py_IS_INFINITY(r)) { |
|
851 if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) |
|
852 errno = ERANGE; |
|
853 else |
|
854 errno = 0; |
|
855 } |
|
856 if (errno && is_error(r)) |
|
857 return NULL; |
|
858 else |
|
859 return PyFloat_FromDouble(r); |
|
860 } |
|
861 |
|
862 PyDoc_STRVAR(math_hypot_doc, |
|
863 "hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y)."); |
|
864 |
|
865 /* pow can't use math_2, but needs its own wrapper: the problem is |
|
866 that an infinite result can arise either as a result of overflow |
|
867 (in which case OverflowError should be raised) or as a result of |
|
868 e.g. 0.**-5. (for which ValueError needs to be raised.) |
|
869 */ |
|
870 |
|
871 static PyObject * |
|
872 math_pow(PyObject *self, PyObject *args) |
|
873 { |
|
874 PyObject *ox, *oy; |
|
875 double r, x, y; |
|
876 int odd_y; |
|
877 |
|
878 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy)) |
|
879 return NULL; |
|
880 x = PyFloat_AsDouble(ox); |
|
881 y = PyFloat_AsDouble(oy); |
|
882 if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) |
|
883 return NULL; |
|
884 |
|
885 /* deal directly with IEEE specials, to cope with problems on various |
|
886 platforms whose semantics don't exactly match C99 */ |
|
887 r = 0.; /* silence compiler warning */ |
|
888 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { |
|
889 errno = 0; |
|
890 if (Py_IS_NAN(x)) |
|
891 r = y == 0. ? 1. : x; /* NaN**0 = 1 */ |
|
892 else if (Py_IS_NAN(y)) |
|
893 r = x == 1. ? 1. : y; /* 1**NaN = 1 */ |
|
894 else if (Py_IS_INFINITY(x)) { |
|
895 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; |
|
896 if (y > 0.) |
|
897 r = odd_y ? x : fabs(x); |
|
898 else if (y == 0.) |
|
899 r = 1.; |
|
900 else /* y < 0. */ |
|
901 r = odd_y ? copysign(0., x) : 0.; |
|
902 } |
|
903 else if (Py_IS_INFINITY(y)) { |
|
904 if (fabs(x) == 1.0) |
|
905 r = 1.; |
|
906 else if (y > 0. && fabs(x) > 1.0) |
|
907 r = y; |
|
908 else if (y < 0. && fabs(x) < 1.0) { |
|
909 r = -y; /* result is +inf */ |
|
910 if (x == 0.) /* 0**-inf: divide-by-zero */ |
|
911 errno = EDOM; |
|
912 } |
|
913 else |
|
914 r = 0.; |
|
915 } |
|
916 } |
|
917 else { |
|
918 /* let libm handle finite**finite */ |
|
919 errno = 0; |
|
920 PyFPE_START_PROTECT("in math_pow", return 0); |
|
921 r = pow(x, y); |
|
922 PyFPE_END_PROTECT(r); |
|
923 /* a NaN result should arise only from (-ve)**(finite |
|
924 non-integer); in this case we want to raise ValueError. */ |
|
925 if (!Py_IS_FINITE(r)) { |
|
926 if (Py_IS_NAN(r)) { |
|
927 errno = EDOM; |
|
928 } |
|
929 /* |
|
930 an infinite result here arises either from: |
|
931 (A) (+/-0.)**negative (-> divide-by-zero) |
|
932 (B) overflow of x**y with x and y finite |
|
933 */ |
|
934 else if (Py_IS_INFINITY(r)) { |
|
935 if (x == 0.) |
|
936 errno = EDOM; |
|
937 else |
|
938 errno = ERANGE; |
|
939 } |
|
940 } |
|
941 } |
|
942 |
|
943 if (errno && is_error(r)) |
|
944 return NULL; |
|
945 else |
|
946 return PyFloat_FromDouble(r); |
|
947 } |
|
948 |
|
949 PyDoc_STRVAR(math_pow_doc, |
|
950 "pow(x,y)\n\nReturn x**y (x to the power of y)."); |
|
951 |
|
952 static const double degToRad = Py_MATH_PI / 180.0; |
|
953 static const double radToDeg = 180.0 / Py_MATH_PI; |
|
954 |
|
955 static PyObject * |
|
956 math_degrees(PyObject *self, PyObject *arg) |
|
957 { |
|
958 double x = PyFloat_AsDouble(arg); |
|
959 if (x == -1.0 && PyErr_Occurred()) |
|
960 return NULL; |
|
961 return PyFloat_FromDouble(x * radToDeg); |
|
962 } |
|
963 |
|
964 PyDoc_STRVAR(math_degrees_doc, |
|
965 "degrees(x) -> converts angle x from radians to degrees"); |
|
966 |
|
967 static PyObject * |
|
968 math_radians(PyObject *self, PyObject *arg) |
|
969 { |
|
970 double x = PyFloat_AsDouble(arg); |
|
971 if (x == -1.0 && PyErr_Occurred()) |
|
972 return NULL; |
|
973 return PyFloat_FromDouble(x * degToRad); |
|
974 } |
|
975 |
|
976 PyDoc_STRVAR(math_radians_doc, |
|
977 "radians(x) -> converts angle x from degrees to radians"); |
|
978 |
|
979 static PyObject * |
|
980 math_isnan(PyObject *self, PyObject *arg) |
|
981 { |
|
982 double x = PyFloat_AsDouble(arg); |
|
983 if (x == -1.0 && PyErr_Occurred()) |
|
984 return NULL; |
|
985 return PyBool_FromLong((long)Py_IS_NAN(x)); |
|
986 } |
|
987 |
|
988 PyDoc_STRVAR(math_isnan_doc, |
|
989 "isnan(x) -> bool\n\ |
|
990 Checks if float x is not a number (NaN)"); |
|
991 |
|
992 static PyObject * |
|
993 math_isinf(PyObject *self, PyObject *arg) |
|
994 { |
|
995 double x = PyFloat_AsDouble(arg); |
|
996 if (x == -1.0 && PyErr_Occurred()) |
|
997 return NULL; |
|
998 return PyBool_FromLong((long)Py_IS_INFINITY(x)); |
|
999 } |
|
1000 |
|
1001 PyDoc_STRVAR(math_isinf_doc, |
|
1002 "isinf(x) -> bool\n\ |
|
1003 Checks if float x is infinite (positive or negative)"); |
|
1004 |
|
1005 static PyMethodDef math_methods[] = { |
|
1006 {"acos", math_acos, METH_O, math_acos_doc}, |
|
1007 {"acosh", math_acosh, METH_O, math_acosh_doc}, |
|
1008 {"asin", math_asin, METH_O, math_asin_doc}, |
|
1009 {"asinh", math_asinh, METH_O, math_asinh_doc}, |
|
1010 {"atan", math_atan, METH_O, math_atan_doc}, |
|
1011 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc}, |
|
1012 {"atanh", math_atanh, METH_O, math_atanh_doc}, |
|
1013 {"ceil", math_ceil, METH_O, math_ceil_doc}, |
|
1014 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc}, |
|
1015 {"cos", math_cos, METH_O, math_cos_doc}, |
|
1016 {"cosh", math_cosh, METH_O, math_cosh_doc}, |
|
1017 {"degrees", math_degrees, METH_O, math_degrees_doc}, |
|
1018 {"exp", math_exp, METH_O, math_exp_doc}, |
|
1019 {"fabs", math_fabs, METH_O, math_fabs_doc}, |
|
1020 {"factorial", math_factorial, METH_O, math_factorial_doc}, |
|
1021 {"floor", math_floor, METH_O, math_floor_doc}, |
|
1022 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc}, |
|
1023 {"frexp", math_frexp, METH_O, math_frexp_doc}, |
|
1024 {"fsum", math_fsum, METH_O, math_fsum_doc}, |
|
1025 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc}, |
|
1026 {"isinf", math_isinf, METH_O, math_isinf_doc}, |
|
1027 {"isnan", math_isnan, METH_O, math_isnan_doc}, |
|
1028 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc}, |
|
1029 {"log", math_log, METH_VARARGS, math_log_doc}, |
|
1030 {"log1p", math_log1p, METH_O, math_log1p_doc}, |
|
1031 {"log10", math_log10, METH_O, math_log10_doc}, |
|
1032 {"modf", math_modf, METH_O, math_modf_doc}, |
|
1033 {"pow", math_pow, METH_VARARGS, math_pow_doc}, |
|
1034 {"radians", math_radians, METH_O, math_radians_doc}, |
|
1035 {"sin", math_sin, METH_O, math_sin_doc}, |
|
1036 {"sinh", math_sinh, METH_O, math_sinh_doc}, |
|
1037 {"sqrt", math_sqrt, METH_O, math_sqrt_doc}, |
|
1038 {"tan", math_tan, METH_O, math_tan_doc}, |
|
1039 {"tanh", math_tanh, METH_O, math_tanh_doc}, |
|
1040 {"trunc", math_trunc, METH_O, math_trunc_doc}, |
|
1041 {NULL, NULL} /* sentinel */ |
|
1042 }; |
|
1043 |
|
1044 |
|
1045 PyDoc_STRVAR(module_doc, |
|
1046 "This module is always available. It provides access to the\n" |
|
1047 "mathematical functions defined by the C standard."); |
|
1048 |
|
1049 PyMODINIT_FUNC |
|
1050 initmath(void) |
|
1051 { |
|
1052 PyObject *m; |
|
1053 |
|
1054 m = Py_InitModule3("math", math_methods, module_doc); |
|
1055 if (m == NULL) |
|
1056 goto finally; |
|
1057 |
|
1058 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); |
|
1059 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); |
|
1060 |
|
1061 finally: |
|
1062 return; |
|
1063 } |