|
1 /* trees.c -- output deflated data using Huffman coding |
|
2 * Copyright (C) 1995-2005 Jean-loup Gailly |
|
3 * For conditions of distribution and use, see copyright notice in zlib.h |
|
4 */ |
|
5 |
|
6 /* |
|
7 * ALGORITHM |
|
8 * |
|
9 * The "deflation" process uses several Huffman trees. The more |
|
10 * common source values are represented by shorter bit sequences. |
|
11 * |
|
12 * Each code tree is stored in a compressed form which is itself |
|
13 * a Huffman encoding of the lengths of all the code strings (in |
|
14 * ascending order by source values). The actual code strings are |
|
15 * reconstructed from the lengths in the inflate process, as described |
|
16 * in the deflate specification. |
|
17 * |
|
18 * REFERENCES |
|
19 * |
|
20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
|
21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
|
22 * |
|
23 * Storer, James A. |
|
24 * Data Compression: Methods and Theory, pp. 49-50. |
|
25 * Computer Science Press, 1988. ISBN 0-7167-8156-5. |
|
26 * |
|
27 * Sedgewick, R. |
|
28 * Algorithms, p290. |
|
29 * Addison-Wesley, 1983. ISBN 0-201-06672-6. |
|
30 */ |
|
31 |
|
32 /* @(#) $Id$ */ |
|
33 |
|
34 /* #define GEN_TREES_H */ |
|
35 |
|
36 #include "deflate.h" |
|
37 |
|
38 #ifdef DEBUG |
|
39 # include <ctype.h> |
|
40 #endif |
|
41 |
|
42 /* =========================================================================== |
|
43 * Constants |
|
44 */ |
|
45 |
|
46 #define MAX_BL_BITS 7 |
|
47 /* Bit length codes must not exceed MAX_BL_BITS bits */ |
|
48 |
|
49 #define END_BLOCK 256 |
|
50 /* end of block literal code */ |
|
51 |
|
52 #define REP_3_6 16 |
|
53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
|
54 |
|
55 #define REPZ_3_10 17 |
|
56 /* repeat a zero length 3-10 times (3 bits of repeat count) */ |
|
57 |
|
58 #define REPZ_11_138 18 |
|
59 /* repeat a zero length 11-138 times (7 bits of repeat count) */ |
|
60 |
|
61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ |
|
62 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
|
63 |
|
64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */ |
|
65 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
|
66 |
|
67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ |
|
68 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
|
69 |
|
70 local const uch bl_order[BL_CODES] |
|
71 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
|
72 /* The lengths of the bit length codes are sent in order of decreasing |
|
73 * probability, to avoid transmitting the lengths for unused bit length codes. |
|
74 */ |
|
75 |
|
76 #define Buf_size (8 * 2*sizeof(char)) |
|
77 /* Number of bits used within bi_buf. (bi_buf might be implemented on |
|
78 * more than 16 bits on some systems.) |
|
79 */ |
|
80 |
|
81 /* =========================================================================== |
|
82 * Local data. These are initialized only once. |
|
83 */ |
|
84 |
|
85 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ |
|
86 |
|
87 #if defined(GEN_TREES_H) || !defined(STDC) |
|
88 /* non ANSI compilers may not accept trees.h */ |
|
89 |
|
90 local ct_data static_ltree[L_CODES+2]; |
|
91 /* The static literal tree. Since the bit lengths are imposed, there is no |
|
92 * need for the L_CODES extra codes used during heap construction. However |
|
93 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init |
|
94 * below). |
|
95 */ |
|
96 |
|
97 local ct_data static_dtree[D_CODES]; |
|
98 /* The static distance tree. (Actually a trivial tree since all codes use |
|
99 * 5 bits.) |
|
100 */ |
|
101 |
|
102 uch _dist_code[DIST_CODE_LEN]; |
|
103 /* Distance codes. The first 256 values correspond to the distances |
|
104 * 3 .. 258, the last 256 values correspond to the top 8 bits of |
|
105 * the 15 bit distances. |
|
106 */ |
|
107 |
|
108 uch _length_code[MAX_MATCH-MIN_MATCH+1]; |
|
109 /* length code for each normalized match length (0 == MIN_MATCH) */ |
|
110 |
|
111 local int base_length[LENGTH_CODES]; |
|
112 /* First normalized length for each code (0 = MIN_MATCH) */ |
|
113 |
|
114 local int base_dist[D_CODES]; |
|
115 /* First normalized distance for each code (0 = distance of 1) */ |
|
116 |
|
117 #else |
|
118 # include "trees.h" |
|
119 #endif /* GEN_TREES_H */ |
|
120 |
|
121 struct static_tree_desc_s { |
|
122 const ct_data *static_tree; /* static tree or NULL */ |
|
123 const intf *extra_bits; /* extra bits for each code or NULL */ |
|
124 int extra_base; /* base index for extra_bits */ |
|
125 int elems; /* max number of elements in the tree */ |
|
126 int max_length; /* max bit length for the codes */ |
|
127 }; |
|
128 |
|
129 local static_tree_desc static_l_desc = |
|
130 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
|
131 |
|
132 local static_tree_desc static_d_desc = |
|
133 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
|
134 |
|
135 local static_tree_desc static_bl_desc = |
|
136 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
|
137 |
|
138 /* =========================================================================== |
|
139 * Local (static) routines in this file. |
|
140 */ |
|
141 |
|
142 local void tr_static_init OF((void)); |
|
143 local void init_block OF((deflate_state *s)); |
|
144 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); |
|
145 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); |
|
146 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); |
|
147 local void build_tree OF((deflate_state *s, tree_desc *desc)); |
|
148 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
|
149 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
|
150 local int build_bl_tree OF((deflate_state *s)); |
|
151 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, |
|
152 int blcodes)); |
|
153 local void compress_block OF((deflate_state *s, ct_data *ltree, |
|
154 ct_data *dtree)); |
|
155 local void set_data_type OF((deflate_state *s)); |
|
156 local unsigned bi_reverse OF((unsigned value, int length)); |
|
157 local void bi_windup OF((deflate_state *s)); |
|
158 local void bi_flush OF((deflate_state *s)); |
|
159 local void copy_block OF((deflate_state *s, charf *buf, unsigned len, |
|
160 int header)); |
|
161 |
|
162 #ifdef GEN_TREES_H |
|
163 local void gen_trees_header OF((void)); |
|
164 #endif |
|
165 |
|
166 #ifndef DEBUG |
|
167 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
|
168 /* Send a code of the given tree. c and tree must not have side effects */ |
|
169 |
|
170 #else /* DEBUG */ |
|
171 # define send_code(s, c, tree) \ |
|
172 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ |
|
173 send_bits(s, tree[c].Code, tree[c].Len); } |
|
174 #endif |
|
175 |
|
176 /* =========================================================================== |
|
177 * Output a short LSB first on the stream. |
|
178 * IN assertion: there is enough room in pendingBuf. |
|
179 */ |
|
180 #define put_short(s, w) { \ |
|
181 put_byte(s, (uch)((w) & 0xff)); \ |
|
182 put_byte(s, (uch)((ush)(w) >> 8)); \ |
|
183 } |
|
184 |
|
185 /* =========================================================================== |
|
186 * Send a value on a given number of bits. |
|
187 * IN assertion: length <= 16 and value fits in length bits. |
|
188 */ |
|
189 #ifdef DEBUG |
|
190 local void send_bits OF((deflate_state *s, int value, int length)); |
|
191 |
|
192 local void send_bits(s, value, length) |
|
193 deflate_state *s; |
|
194 int value; /* value to send */ |
|
195 int length; /* number of bits */ |
|
196 { |
|
197 Tracevv((stderr," l %2d v %4x ", length, value)); |
|
198 Assert(length > 0 && length <= 15, "invalid length"); |
|
199 s->bits_sent += (ulg)length; |
|
200 |
|
201 /* If not enough room in bi_buf, use (valid) bits from bi_buf and |
|
202 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) |
|
203 * unused bits in value. |
|
204 */ |
|
205 if (s->bi_valid > (int)Buf_size - length) { |
|
206 s->bi_buf |= (value << s->bi_valid); |
|
207 put_short(s, s->bi_buf); |
|
208 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
|
209 s->bi_valid += length - Buf_size; |
|
210 } else { |
|
211 s->bi_buf |= value << s->bi_valid; |
|
212 s->bi_valid += length; |
|
213 } |
|
214 } |
|
215 #else /* !DEBUG */ |
|
216 |
|
217 #define send_bits(s, value, length) \ |
|
218 { int len = length;\ |
|
219 if (s->bi_valid > (int)Buf_size - len) {\ |
|
220 int val = value;\ |
|
221 s->bi_buf |= (val << s->bi_valid);\ |
|
222 put_short(s, s->bi_buf);\ |
|
223 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
|
224 s->bi_valid += len - Buf_size;\ |
|
225 } else {\ |
|
226 s->bi_buf |= (value) << s->bi_valid;\ |
|
227 s->bi_valid += len;\ |
|
228 }\ |
|
229 } |
|
230 #endif /* DEBUG */ |
|
231 |
|
232 |
|
233 /* the arguments must not have side effects */ |
|
234 |
|
235 /* =========================================================================== |
|
236 * Initialize the various 'constant' tables. |
|
237 */ |
|
238 local void tr_static_init() |
|
239 { |
|
240 #if defined(GEN_TREES_H) || !defined(STDC) |
|
241 static int static_init_done = 0; |
|
242 int n; /* iterates over tree elements */ |
|
243 int bits; /* bit counter */ |
|
244 int length; /* length value */ |
|
245 int code; /* code value */ |
|
246 int dist; /* distance index */ |
|
247 ush bl_count[MAX_BITS+1]; |
|
248 /* number of codes at each bit length for an optimal tree */ |
|
249 |
|
250 if (static_init_done) return; |
|
251 |
|
252 /* For some embedded targets, global variables are not initialized: */ |
|
253 static_l_desc.static_tree = static_ltree; |
|
254 static_l_desc.extra_bits = extra_lbits; |
|
255 static_d_desc.static_tree = static_dtree; |
|
256 static_d_desc.extra_bits = extra_dbits; |
|
257 static_bl_desc.extra_bits = extra_blbits; |
|
258 |
|
259 /* Initialize the mapping length (0..255) -> length code (0..28) */ |
|
260 length = 0; |
|
261 for (code = 0; code < LENGTH_CODES-1; code++) { |
|
262 base_length[code] = length; |
|
263 for (n = 0; n < (1<<extra_lbits[code]); n++) { |
|
264 _length_code[length++] = (uch)code; |
|
265 } |
|
266 } |
|
267 Assert (length == 256, "tr_static_init: length != 256"); |
|
268 /* Note that the length 255 (match length 258) can be represented |
|
269 * in two different ways: code 284 + 5 bits or code 285, so we |
|
270 * overwrite length_code[255] to use the best encoding: |
|
271 */ |
|
272 _length_code[length-1] = (uch)code; |
|
273 |
|
274 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
|
275 dist = 0; |
|
276 for (code = 0 ; code < 16; code++) { |
|
277 base_dist[code] = dist; |
|
278 for (n = 0; n < (1<<extra_dbits[code]); n++) { |
|
279 _dist_code[dist++] = (uch)code; |
|
280 } |
|
281 } |
|
282 Assert (dist == 256, "tr_static_init: dist != 256"); |
|
283 dist >>= 7; /* from now on, all distances are divided by 128 */ |
|
284 for ( ; code < D_CODES; code++) { |
|
285 base_dist[code] = dist << 7; |
|
286 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { |
|
287 _dist_code[256 + dist++] = (uch)code; |
|
288 } |
|
289 } |
|
290 Assert (dist == 256, "tr_static_init: 256+dist != 512"); |
|
291 |
|
292 /* Construct the codes of the static literal tree */ |
|
293 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
|
294 n = 0; |
|
295 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
|
296 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
|
297 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
|
298 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
|
299 /* Codes 286 and 287 do not exist, but we must include them in the |
|
300 * tree construction to get a canonical Huffman tree (longest code |
|
301 * all ones) |
|
302 */ |
|
303 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
|
304 |
|
305 /* The static distance tree is trivial: */ |
|
306 for (n = 0; n < D_CODES; n++) { |
|
307 static_dtree[n].Len = 5; |
|
308 static_dtree[n].Code = bi_reverse((unsigned)n, 5); |
|
309 } |
|
310 static_init_done = 1; |
|
311 |
|
312 # ifdef GEN_TREES_H |
|
313 gen_trees_header(); |
|
314 # endif |
|
315 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ |
|
316 } |
|
317 |
|
318 /* =========================================================================== |
|
319 * Genererate the file trees.h describing the static trees. |
|
320 */ |
|
321 #ifdef GEN_TREES_H |
|
322 # ifndef DEBUG |
|
323 # include <stdio.h> |
|
324 # endif |
|
325 |
|
326 # define SEPARATOR(i, last, width) \ |
|
327 ((i) == (last)? "\n};\n\n" : \ |
|
328 ((i) % (width) == (width)-1 ? ",\n" : ", ")) |
|
329 |
|
330 void gen_trees_header() |
|
331 { |
|
332 FILE *header = fopen("trees.h", "w"); |
|
333 int i; |
|
334 |
|
335 Assert (header != NULL, "Can't open trees.h"); |
|
336 fprintf(header, |
|
337 "/* header created automatically with -DGEN_TREES_H */\n\n"); |
|
338 |
|
339 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); |
|
340 for (i = 0; i < L_CODES+2; i++) { |
|
341 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, |
|
342 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); |
|
343 } |
|
344 |
|
345 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); |
|
346 for (i = 0; i < D_CODES; i++) { |
|
347 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, |
|
348 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); |
|
349 } |
|
350 |
|
351 fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n"); |
|
352 for (i = 0; i < DIST_CODE_LEN; i++) { |
|
353 fprintf(header, "%2u%s", _dist_code[i], |
|
354 SEPARATOR(i, DIST_CODE_LEN-1, 20)); |
|
355 } |
|
356 |
|
357 fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); |
|
358 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { |
|
359 fprintf(header, "%2u%s", _length_code[i], |
|
360 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); |
|
361 } |
|
362 |
|
363 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); |
|
364 for (i = 0; i < LENGTH_CODES; i++) { |
|
365 fprintf(header, "%1u%s", base_length[i], |
|
366 SEPARATOR(i, LENGTH_CODES-1, 20)); |
|
367 } |
|
368 |
|
369 fprintf(header, "local const int base_dist[D_CODES] = {\n"); |
|
370 for (i = 0; i < D_CODES; i++) { |
|
371 fprintf(header, "%5u%s", base_dist[i], |
|
372 SEPARATOR(i, D_CODES-1, 10)); |
|
373 } |
|
374 |
|
375 fclose(header); |
|
376 } |
|
377 #endif /* GEN_TREES_H */ |
|
378 |
|
379 /* =========================================================================== |
|
380 * Initialize the tree data structures for a new zlib stream. |
|
381 */ |
|
382 void _tr_init(s) |
|
383 deflate_state *s; |
|
384 { |
|
385 tr_static_init(); |
|
386 |
|
387 s->l_desc.dyn_tree = s->dyn_ltree; |
|
388 s->l_desc.stat_desc = &static_l_desc; |
|
389 |
|
390 s->d_desc.dyn_tree = s->dyn_dtree; |
|
391 s->d_desc.stat_desc = &static_d_desc; |
|
392 |
|
393 s->bl_desc.dyn_tree = s->bl_tree; |
|
394 s->bl_desc.stat_desc = &static_bl_desc; |
|
395 |
|
396 s->bi_buf = 0; |
|
397 s->bi_valid = 0; |
|
398 s->last_eob_len = 8; /* enough lookahead for inflate */ |
|
399 #ifdef DEBUG |
|
400 s->compressed_len = 0L; |
|
401 s->bits_sent = 0L; |
|
402 #endif |
|
403 |
|
404 /* Initialize the first block of the first file: */ |
|
405 init_block(s); |
|
406 } |
|
407 |
|
408 /* =========================================================================== |
|
409 * Initialize a new block. |
|
410 */ |
|
411 local void init_block(s) |
|
412 deflate_state *s; |
|
413 { |
|
414 int n; /* iterates over tree elements */ |
|
415 |
|
416 /* Initialize the trees. */ |
|
417 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
|
418 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
|
419 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
|
420 |
|
421 s->dyn_ltree[END_BLOCK].Freq = 1; |
|
422 s->opt_len = s->static_len = 0L; |
|
423 s->last_lit = s->matches = 0; |
|
424 } |
|
425 |
|
426 #define SMALLEST 1 |
|
427 /* Index within the heap array of least frequent node in the Huffman tree */ |
|
428 |
|
429 |
|
430 /* =========================================================================== |
|
431 * Remove the smallest element from the heap and recreate the heap with |
|
432 * one less element. Updates heap and heap_len. |
|
433 */ |
|
434 #define pqremove(s, tree, top) \ |
|
435 {\ |
|
436 top = s->heap[SMALLEST]; \ |
|
437 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
|
438 pqdownheap(s, tree, SMALLEST); \ |
|
439 } |
|
440 |
|
441 /* =========================================================================== |
|
442 * Compares to subtrees, using the tree depth as tie breaker when |
|
443 * the subtrees have equal frequency. This minimizes the worst case length. |
|
444 */ |
|
445 #define smaller(tree, n, m, depth) \ |
|
446 (tree[n].Freq < tree[m].Freq || \ |
|
447 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
|
448 |
|
449 /* =========================================================================== |
|
450 * Restore the heap property by moving down the tree starting at node k, |
|
451 * exchanging a node with the smallest of its two sons if necessary, stopping |
|
452 * when the heap property is re-established (each father smaller than its |
|
453 * two sons). |
|
454 */ |
|
455 local void pqdownheap(s, tree, k) |
|
456 deflate_state *s; |
|
457 ct_data *tree; /* the tree to restore */ |
|
458 int k; /* node to move down */ |
|
459 { |
|
460 int v = s->heap[k]; |
|
461 int j = k << 1; /* left son of k */ |
|
462 while (j <= s->heap_len) { |
|
463 /* Set j to the smallest of the two sons: */ |
|
464 if (j < s->heap_len && |
|
465 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
|
466 j++; |
|
467 } |
|
468 /* Exit if v is smaller than both sons */ |
|
469 if (smaller(tree, v, s->heap[j], s->depth)) break; |
|
470 |
|
471 /* Exchange v with the smallest son */ |
|
472 s->heap[k] = s->heap[j]; k = j; |
|
473 |
|
474 /* And continue down the tree, setting j to the left son of k */ |
|
475 j <<= 1; |
|
476 } |
|
477 s->heap[k] = v; |
|
478 } |
|
479 |
|
480 /* =========================================================================== |
|
481 * Compute the optimal bit lengths for a tree and update the total bit length |
|
482 * for the current block. |
|
483 * IN assertion: the fields freq and dad are set, heap[heap_max] and |
|
484 * above are the tree nodes sorted by increasing frequency. |
|
485 * OUT assertions: the field len is set to the optimal bit length, the |
|
486 * array bl_count contains the frequencies for each bit length. |
|
487 * The length opt_len is updated; static_len is also updated if stree is |
|
488 * not null. |
|
489 */ |
|
490 local void gen_bitlen(s, desc) |
|
491 deflate_state *s; |
|
492 tree_desc *desc; /* the tree descriptor */ |
|
493 { |
|
494 ct_data *tree = desc->dyn_tree; |
|
495 int max_code = desc->max_code; |
|
496 const ct_data *stree = desc->stat_desc->static_tree; |
|
497 const intf *extra = desc->stat_desc->extra_bits; |
|
498 int base = desc->stat_desc->extra_base; |
|
499 int max_length = desc->stat_desc->max_length; |
|
500 int h; /* heap index */ |
|
501 int n, m; /* iterate over the tree elements */ |
|
502 int bits; /* bit length */ |
|
503 int xbits; /* extra bits */ |
|
504 ush f; /* frequency */ |
|
505 int overflow = 0; /* number of elements with bit length too large */ |
|
506 |
|
507 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
|
508 |
|
509 /* In a first pass, compute the optimal bit lengths (which may |
|
510 * overflow in the case of the bit length tree). |
|
511 */ |
|
512 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
|
513 |
|
514 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { |
|
515 n = s->heap[h]; |
|
516 bits = tree[tree[n].Dad].Len + 1; |
|
517 if (bits > max_length) bits = max_length, overflow++; |
|
518 tree[n].Len = (ush)bits; |
|
519 /* We overwrite tree[n].Dad which is no longer needed */ |
|
520 |
|
521 if (n > max_code) continue; /* not a leaf node */ |
|
522 |
|
523 s->bl_count[bits]++; |
|
524 xbits = 0; |
|
525 if (n >= base) xbits = extra[n-base]; |
|
526 f = tree[n].Freq; |
|
527 s->opt_len += (ulg)f * (bits + xbits); |
|
528 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); |
|
529 } |
|
530 if (overflow == 0) return; |
|
531 |
|
532 Trace((stderr,"\nbit length overflow\n")); |
|
533 /* This happens for example on obj2 and pic of the Calgary corpus */ |
|
534 |
|
535 /* Find the first bit length which could increase: */ |
|
536 do { |
|
537 bits = max_length-1; |
|
538 while (s->bl_count[bits] == 0) bits--; |
|
539 s->bl_count[bits]--; /* move one leaf down the tree */ |
|
540 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ |
|
541 s->bl_count[max_length]--; |
|
542 /* The brother of the overflow item also moves one step up, |
|
543 * but this does not affect bl_count[max_length] |
|
544 */ |
|
545 overflow -= 2; |
|
546 } while (overflow > 0); |
|
547 |
|
548 /* Now recompute all bit lengths, scanning in increasing frequency. |
|
549 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
|
550 * lengths instead of fixing only the wrong ones. This idea is taken |
|
551 * from 'ar' written by Haruhiko Okumura.) |
|
552 */ |
|
553 for (bits = max_length; bits != 0; bits--) { |
|
554 n = s->bl_count[bits]; |
|
555 while (n != 0) { |
|
556 m = s->heap[--h]; |
|
557 if (m > max_code) continue; |
|
558 if ((unsigned) tree[m].Len != (unsigned) bits) { |
|
559 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); |
|
560 s->opt_len += ((long)bits - (long)tree[m].Len) |
|
561 *(long)tree[m].Freq; |
|
562 tree[m].Len = (ush)bits; |
|
563 } |
|
564 n--; |
|
565 } |
|
566 } |
|
567 } |
|
568 |
|
569 /* =========================================================================== |
|
570 * Generate the codes for a given tree and bit counts (which need not be |
|
571 * optimal). |
|
572 * IN assertion: the array bl_count contains the bit length statistics for |
|
573 * the given tree and the field len is set for all tree elements. |
|
574 * OUT assertion: the field code is set for all tree elements of non |
|
575 * zero code length. |
|
576 */ |
|
577 local void gen_codes (tree, max_code, bl_count) |
|
578 ct_data *tree; /* the tree to decorate */ |
|
579 int max_code; /* largest code with non zero frequency */ |
|
580 ushf *bl_count; /* number of codes at each bit length */ |
|
581 { |
|
582 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
|
583 ush code = 0; /* running code value */ |
|
584 int bits; /* bit index */ |
|
585 int n; /* code index */ |
|
586 |
|
587 /* The distribution counts are first used to generate the code values |
|
588 * without bit reversal. |
|
589 */ |
|
590 for (bits = 1; bits <= MAX_BITS; bits++) { |
|
591 next_code[bits] = code = (code + bl_count[bits-1]) << 1; |
|
592 } |
|
593 /* Check that the bit counts in bl_count are consistent. The last code |
|
594 * must be all ones. |
|
595 */ |
|
596 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
|
597 "inconsistent bit counts"); |
|
598 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); |
|
599 |
|
600 for (n = 0; n <= max_code; n++) { |
|
601 int len = tree[n].Len; |
|
602 if (len == 0) continue; |
|
603 /* Now reverse the bits */ |
|
604 tree[n].Code = bi_reverse(next_code[len]++, len); |
|
605 |
|
606 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", |
|
607 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
|
608 } |
|
609 } |
|
610 |
|
611 /* =========================================================================== |
|
612 * Construct one Huffman tree and assigns the code bit strings and lengths. |
|
613 * Update the total bit length for the current block. |
|
614 * IN assertion: the field freq is set for all tree elements. |
|
615 * OUT assertions: the fields len and code are set to the optimal bit length |
|
616 * and corresponding code. The length opt_len is updated; static_len is |
|
617 * also updated if stree is not null. The field max_code is set. |
|
618 */ |
|
619 local void build_tree(s, desc) |
|
620 deflate_state *s; |
|
621 tree_desc *desc; /* the tree descriptor */ |
|
622 { |
|
623 ct_data *tree = desc->dyn_tree; |
|
624 const ct_data *stree = desc->stat_desc->static_tree; |
|
625 int elems = desc->stat_desc->elems; |
|
626 int n, m; /* iterate over heap elements */ |
|
627 int max_code = -1; /* largest code with non zero frequency */ |
|
628 int node; /* new node being created */ |
|
629 |
|
630 /* Construct the initial heap, with least frequent element in |
|
631 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
|
632 * heap[0] is not used. |
|
633 */ |
|
634 s->heap_len = 0, s->heap_max = HEAP_SIZE; |
|
635 |
|
636 for (n = 0; n < elems; n++) { |
|
637 if (tree[n].Freq != 0) { |
|
638 s->heap[++(s->heap_len)] = max_code = n; |
|
639 s->depth[n] = 0; |
|
640 } else { |
|
641 tree[n].Len = 0; |
|
642 } |
|
643 } |
|
644 |
|
645 /* The pkzip format requires that at least one distance code exists, |
|
646 * and that at least one bit should be sent even if there is only one |
|
647 * possible code. So to avoid special checks later on we force at least |
|
648 * two codes of non zero frequency. |
|
649 */ |
|
650 while (s->heap_len < 2) { |
|
651 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
|
652 tree[node].Freq = 1; |
|
653 s->depth[node] = 0; |
|
654 s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
|
655 /* node is 0 or 1 so it does not have extra bits */ |
|
656 } |
|
657 desc->max_code = max_code; |
|
658 |
|
659 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
|
660 * establish sub-heaps of increasing lengths: |
|
661 */ |
|
662 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
|
663 |
|
664 /* Construct the Huffman tree by repeatedly combining the least two |
|
665 * frequent nodes. |
|
666 */ |
|
667 node = elems; /* next internal node of the tree */ |
|
668 do { |
|
669 pqremove(s, tree, n); /* n = node of least frequency */ |
|
670 m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
|
671 |
|
672 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
|
673 s->heap[--(s->heap_max)] = m; |
|
674 |
|
675 /* Create a new node father of n and m */ |
|
676 tree[node].Freq = tree[n].Freq + tree[m].Freq; |
|
677 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? |
|
678 s->depth[n] : s->depth[m]) + 1); |
|
679 tree[n].Dad = tree[m].Dad = (ush)node; |
|
680 #ifdef DUMP_BL_TREE |
|
681 if (tree == s->bl_tree) { |
|
682 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", |
|
683 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
|
684 } |
|
685 #endif |
|
686 /* and insert the new node in the heap */ |
|
687 s->heap[SMALLEST] = node++; |
|
688 pqdownheap(s, tree, SMALLEST); |
|
689 |
|
690 } while (s->heap_len >= 2); |
|
691 |
|
692 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
|
693 |
|
694 /* At this point, the fields freq and dad are set. We can now |
|
695 * generate the bit lengths. |
|
696 */ |
|
697 gen_bitlen(s, (tree_desc *)desc); |
|
698 |
|
699 /* The field len is now set, we can generate the bit codes */ |
|
700 gen_codes ((ct_data *)tree, max_code, s->bl_count); |
|
701 } |
|
702 |
|
703 /* =========================================================================== |
|
704 * Scan a literal or distance tree to determine the frequencies of the codes |
|
705 * in the bit length tree. |
|
706 */ |
|
707 local void scan_tree (s, tree, max_code) |
|
708 deflate_state *s; |
|
709 ct_data *tree; /* the tree to be scanned */ |
|
710 int max_code; /* and its largest code of non zero frequency */ |
|
711 { |
|
712 int n; /* iterates over all tree elements */ |
|
713 int prevlen = -1; /* last emitted length */ |
|
714 int curlen; /* length of current code */ |
|
715 int nextlen = tree[0].Len; /* length of next code */ |
|
716 int count = 0; /* repeat count of the current code */ |
|
717 int max_count = 7; /* max repeat count */ |
|
718 int min_count = 4; /* min repeat count */ |
|
719 |
|
720 if (nextlen == 0) max_count = 138, min_count = 3; |
|
721 tree[max_code+1].Len = (ush)0xffff; /* guard */ |
|
722 |
|
723 for (n = 0; n <= max_code; n++) { |
|
724 curlen = nextlen; nextlen = tree[n+1].Len; |
|
725 if (++count < max_count && curlen == nextlen) { |
|
726 continue; |
|
727 } else if (count < min_count) { |
|
728 s->bl_tree[curlen].Freq += count; |
|
729 } else if (curlen != 0) { |
|
730 if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
|
731 s->bl_tree[REP_3_6].Freq++; |
|
732 } else if (count <= 10) { |
|
733 s->bl_tree[REPZ_3_10].Freq++; |
|
734 } else { |
|
735 s->bl_tree[REPZ_11_138].Freq++; |
|
736 } |
|
737 count = 0; prevlen = curlen; |
|
738 if (nextlen == 0) { |
|
739 max_count = 138, min_count = 3; |
|
740 } else if (curlen == nextlen) { |
|
741 max_count = 6, min_count = 3; |
|
742 } else { |
|
743 max_count = 7, min_count = 4; |
|
744 } |
|
745 } |
|
746 } |
|
747 |
|
748 /* =========================================================================== |
|
749 * Send a literal or distance tree in compressed form, using the codes in |
|
750 * bl_tree. |
|
751 */ |
|
752 local void send_tree (s, tree, max_code) |
|
753 deflate_state *s; |
|
754 ct_data *tree; /* the tree to be scanned */ |
|
755 int max_code; /* and its largest code of non zero frequency */ |
|
756 { |
|
757 int n; /* iterates over all tree elements */ |
|
758 int prevlen = -1; /* last emitted length */ |
|
759 int curlen; /* length of current code */ |
|
760 int nextlen = tree[0].Len; /* length of next code */ |
|
761 int count = 0; /* repeat count of the current code */ |
|
762 int max_count = 7; /* max repeat count */ |
|
763 int min_count = 4; /* min repeat count */ |
|
764 |
|
765 /* tree[max_code+1].Len = -1; */ /* guard already set */ |
|
766 if (nextlen == 0) max_count = 138, min_count = 3; |
|
767 |
|
768 for (n = 0; n <= max_code; n++) { |
|
769 curlen = nextlen; nextlen = tree[n+1].Len; |
|
770 if (++count < max_count && curlen == nextlen) { |
|
771 continue; |
|
772 } else if (count < min_count) { |
|
773 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
|
774 |
|
775 } else if (curlen != 0) { |
|
776 if (curlen != prevlen) { |
|
777 send_code(s, curlen, s->bl_tree); count--; |
|
778 } |
|
779 Assert(count >= 3 && count <= 6, " 3_6?"); |
|
780 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); |
|
781 |
|
782 } else if (count <= 10) { |
|
783 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); |
|
784 |
|
785 } else { |
|
786 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); |
|
787 } |
|
788 count = 0; prevlen = curlen; |
|
789 if (nextlen == 0) { |
|
790 max_count = 138, min_count = 3; |
|
791 } else if (curlen == nextlen) { |
|
792 max_count = 6, min_count = 3; |
|
793 } else { |
|
794 max_count = 7, min_count = 4; |
|
795 } |
|
796 } |
|
797 } |
|
798 |
|
799 /* =========================================================================== |
|
800 * Construct the Huffman tree for the bit lengths and return the index in |
|
801 * bl_order of the last bit length code to send. |
|
802 */ |
|
803 local int build_bl_tree(s) |
|
804 deflate_state *s; |
|
805 { |
|
806 int max_blindex; /* index of last bit length code of non zero freq */ |
|
807 |
|
808 /* Determine the bit length frequencies for literal and distance trees */ |
|
809 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
|
810 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
|
811 |
|
812 /* Build the bit length tree: */ |
|
813 build_tree(s, (tree_desc *)(&(s->bl_desc))); |
|
814 /* opt_len now includes the length of the tree representations, except |
|
815 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
|
816 */ |
|
817 |
|
818 /* Determine the number of bit length codes to send. The pkzip format |
|
819 * requires that at least 4 bit length codes be sent. (appnote.txt says |
|
820 * 3 but the actual value used is 4.) |
|
821 */ |
|
822 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
|
823 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
|
824 } |
|
825 /* Update opt_len to include the bit length tree and counts */ |
|
826 s->opt_len += 3*(max_blindex+1) + 5+5+4; |
|
827 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", |
|
828 s->opt_len, s->static_len)); |
|
829 |
|
830 return max_blindex; |
|
831 } |
|
832 |
|
833 /* =========================================================================== |
|
834 * Send the header for a block using dynamic Huffman trees: the counts, the |
|
835 * lengths of the bit length codes, the literal tree and the distance tree. |
|
836 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
|
837 */ |
|
838 local void send_all_trees(s, lcodes, dcodes, blcodes) |
|
839 deflate_state *s; |
|
840 int lcodes, dcodes, blcodes; /* number of codes for each tree */ |
|
841 { |
|
842 int rank; /* index in bl_order */ |
|
843 |
|
844 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); |
|
845 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
|
846 "too many codes"); |
|
847 Tracev((stderr, "\nbl counts: ")); |
|
848 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ |
|
849 send_bits(s, dcodes-1, 5); |
|
850 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ |
|
851 for (rank = 0; rank < blcodes; rank++) { |
|
852 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); |
|
853 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
|
854 } |
|
855 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); |
|
856 |
|
857 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
|
858 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); |
|
859 |
|
860 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
|
861 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); |
|
862 } |
|
863 |
|
864 /* =========================================================================== |
|
865 * Send a stored block |
|
866 */ |
|
867 void _tr_stored_block(s, buf, stored_len, eof) |
|
868 deflate_state *s; |
|
869 charf *buf; /* input block */ |
|
870 ulg stored_len; /* length of input block */ |
|
871 int eof; /* true if this is the last block for a file */ |
|
872 { |
|
873 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ |
|
874 #ifdef DEBUG |
|
875 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; |
|
876 s->compressed_len += (stored_len + 4) << 3; |
|
877 #endif |
|
878 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ |
|
879 } |
|
880 |
|
881 /* =========================================================================== |
|
882 * Send one empty static block to give enough lookahead for inflate. |
|
883 * This takes 10 bits, of which 7 may remain in the bit buffer. |
|
884 * The current inflate code requires 9 bits of lookahead. If the |
|
885 * last two codes for the previous block (real code plus EOB) were coded |
|
886 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode |
|
887 * the last real code. In this case we send two empty static blocks instead |
|
888 * of one. (There are no problems if the previous block is stored or fixed.) |
|
889 * To simplify the code, we assume the worst case of last real code encoded |
|
890 * on one bit only. |
|
891 */ |
|
892 void _tr_align(s) |
|
893 deflate_state *s; |
|
894 { |
|
895 send_bits(s, STATIC_TREES<<1, 3); |
|
896 send_code(s, END_BLOCK, static_ltree); |
|
897 #ifdef DEBUG |
|
898 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
|
899 #endif |
|
900 bi_flush(s); |
|
901 /* Of the 10 bits for the empty block, we have already sent |
|
902 * (10 - bi_valid) bits. The lookahead for the last real code (before |
|
903 * the EOB of the previous block) was thus at least one plus the length |
|
904 * of the EOB plus what we have just sent of the empty static block. |
|
905 */ |
|
906 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { |
|
907 send_bits(s, STATIC_TREES<<1, 3); |
|
908 send_code(s, END_BLOCK, static_ltree); |
|
909 #ifdef DEBUG |
|
910 s->compressed_len += 10L; |
|
911 #endif |
|
912 bi_flush(s); |
|
913 } |
|
914 s->last_eob_len = 7; |
|
915 } |
|
916 |
|
917 /* =========================================================================== |
|
918 * Determine the best encoding for the current block: dynamic trees, static |
|
919 * trees or store, and output the encoded block to the zip file. |
|
920 */ |
|
921 void _tr_flush_block(s, buf, stored_len, eof) |
|
922 deflate_state *s; |
|
923 charf *buf; /* input block, or NULL if too old */ |
|
924 ulg stored_len; /* length of input block */ |
|
925 int eof; /* true if this is the last block for a file */ |
|
926 { |
|
927 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
|
928 int max_blindex = 0; /* index of last bit length code of non zero freq */ |
|
929 |
|
930 /* Build the Huffman trees unless a stored block is forced */ |
|
931 if (s->level > 0) { |
|
932 |
|
933 /* Check if the file is binary or text */ |
|
934 if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN) |
|
935 set_data_type(s); |
|
936 |
|
937 /* Construct the literal and distance trees */ |
|
938 build_tree(s, (tree_desc *)(&(s->l_desc))); |
|
939 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, |
|
940 s->static_len)); |
|
941 |
|
942 build_tree(s, (tree_desc *)(&(s->d_desc))); |
|
943 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, |
|
944 s->static_len)); |
|
945 /* At this point, opt_len and static_len are the total bit lengths of |
|
946 * the compressed block data, excluding the tree representations. |
|
947 */ |
|
948 |
|
949 /* Build the bit length tree for the above two trees, and get the index |
|
950 * in bl_order of the last bit length code to send. |
|
951 */ |
|
952 max_blindex = build_bl_tree(s); |
|
953 |
|
954 /* Determine the best encoding. Compute the block lengths in bytes. */ |
|
955 opt_lenb = (s->opt_len+3+7)>>3; |
|
956 static_lenb = (s->static_len+3+7)>>3; |
|
957 |
|
958 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", |
|
959 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
|
960 s->last_lit)); |
|
961 |
|
962 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; |
|
963 |
|
964 } else { |
|
965 Assert(buf != (char*)0, "lost buf"); |
|
966 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
|
967 } |
|
968 |
|
969 #ifdef FORCE_STORED |
|
970 if (buf != (char*)0) { /* force stored block */ |
|
971 #else |
|
972 if (stored_len+4 <= opt_lenb && buf != (char*)0) { |
|
973 /* 4: two words for the lengths */ |
|
974 #endif |
|
975 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
|
976 * Otherwise we can't have processed more than WSIZE input bytes since |
|
977 * the last block flush, because compression would have been |
|
978 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
|
979 * transform a block into a stored block. |
|
980 */ |
|
981 _tr_stored_block(s, buf, stored_len, eof); |
|
982 |
|
983 #ifdef FORCE_STATIC |
|
984 } else if (static_lenb >= 0) { /* force static trees */ |
|
985 #else |
|
986 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { |
|
987 #endif |
|
988 send_bits(s, (STATIC_TREES<<1)+eof, 3); |
|
989 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); |
|
990 #ifdef DEBUG |
|
991 s->compressed_len += 3 + s->static_len; |
|
992 #endif |
|
993 } else { |
|
994 send_bits(s, (DYN_TREES<<1)+eof, 3); |
|
995 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, |
|
996 max_blindex+1); |
|
997 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); |
|
998 #ifdef DEBUG |
|
999 s->compressed_len += 3 + s->opt_len; |
|
1000 #endif |
|
1001 } |
|
1002 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); |
|
1003 /* The above check is made mod 2^32, for files larger than 512 MB |
|
1004 * and uLong implemented on 32 bits. |
|
1005 */ |
|
1006 init_block(s); |
|
1007 |
|
1008 if (eof) { |
|
1009 bi_windup(s); |
|
1010 #ifdef DEBUG |
|
1011 s->compressed_len += 7; /* align on byte boundary */ |
|
1012 #endif |
|
1013 } |
|
1014 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, |
|
1015 s->compressed_len-7*eof)); |
|
1016 } |
|
1017 |
|
1018 /* =========================================================================== |
|
1019 * Save the match info and tally the frequency counts. Return true if |
|
1020 * the current block must be flushed. |
|
1021 */ |
|
1022 int _tr_tally (s, dist, lc) |
|
1023 deflate_state *s; |
|
1024 unsigned dist; /* distance of matched string */ |
|
1025 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ |
|
1026 { |
|
1027 s->d_buf[s->last_lit] = (ush)dist; |
|
1028 s->l_buf[s->last_lit++] = (uch)lc; |
|
1029 if (dist == 0) { |
|
1030 /* lc is the unmatched char */ |
|
1031 s->dyn_ltree[lc].Freq++; |
|
1032 } else { |
|
1033 s->matches++; |
|
1034 /* Here, lc is the match length - MIN_MATCH */ |
|
1035 dist--; /* dist = match distance - 1 */ |
|
1036 Assert((ush)dist < (ush)MAX_DIST(s) && |
|
1037 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
|
1038 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); |
|
1039 |
|
1040 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; |
|
1041 s->dyn_dtree[d_code(dist)].Freq++; |
|
1042 } |
|
1043 |
|
1044 #ifdef TRUNCATE_BLOCK |
|
1045 /* Try to guess if it is profitable to stop the current block here */ |
|
1046 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { |
|
1047 /* Compute an upper bound for the compressed length */ |
|
1048 ulg out_length = (ulg)s->last_lit*8L; |
|
1049 ulg in_length = (ulg)((long)s->strstart - s->block_start); |
|
1050 int dcode; |
|
1051 for (dcode = 0; dcode < D_CODES; dcode++) { |
|
1052 out_length += (ulg)s->dyn_dtree[dcode].Freq * |
|
1053 (5L+extra_dbits[dcode]); |
|
1054 } |
|
1055 out_length >>= 3; |
|
1056 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", |
|
1057 s->last_lit, in_length, out_length, |
|
1058 100L - out_length*100L/in_length)); |
|
1059 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; |
|
1060 } |
|
1061 #endif |
|
1062 return (s->last_lit == s->lit_bufsize-1); |
|
1063 /* We avoid equality with lit_bufsize because of wraparound at 64K |
|
1064 * on 16 bit machines and because stored blocks are restricted to |
|
1065 * 64K-1 bytes. |
|
1066 */ |
|
1067 } |
|
1068 |
|
1069 /* =========================================================================== |
|
1070 * Send the block data compressed using the given Huffman trees |
|
1071 */ |
|
1072 local void compress_block(s, ltree, dtree) |
|
1073 deflate_state *s; |
|
1074 ct_data *ltree; /* literal tree */ |
|
1075 ct_data *dtree; /* distance tree */ |
|
1076 { |
|
1077 unsigned dist; /* distance of matched string */ |
|
1078 int lc; /* match length or unmatched char (if dist == 0) */ |
|
1079 unsigned lx = 0; /* running index in l_buf */ |
|
1080 unsigned code; /* the code to send */ |
|
1081 int extra; /* number of extra bits to send */ |
|
1082 |
|
1083 if (s->last_lit != 0) do { |
|
1084 dist = s->d_buf[lx]; |
|
1085 lc = s->l_buf[lx++]; |
|
1086 if (dist == 0) { |
|
1087 send_code(s, lc, ltree); /* send a literal byte */ |
|
1088 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); |
|
1089 } else { |
|
1090 /* Here, lc is the match length - MIN_MATCH */ |
|
1091 code = _length_code[lc]; |
|
1092 send_code(s, code+LITERALS+1, ltree); /* send the length code */ |
|
1093 extra = extra_lbits[code]; |
|
1094 if (extra != 0) { |
|
1095 lc -= base_length[code]; |
|
1096 send_bits(s, lc, extra); /* send the extra length bits */ |
|
1097 } |
|
1098 dist--; /* dist is now the match distance - 1 */ |
|
1099 code = d_code(dist); |
|
1100 Assert (code < D_CODES, "bad d_code"); |
|
1101 |
|
1102 send_code(s, code, dtree); /* send the distance code */ |
|
1103 extra = extra_dbits[code]; |
|
1104 if (extra != 0) { |
|
1105 dist -= base_dist[code]; |
|
1106 send_bits(s, dist, extra); /* send the extra distance bits */ |
|
1107 } |
|
1108 } /* literal or match pair ? */ |
|
1109 |
|
1110 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ |
|
1111 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, |
|
1112 "pendingBuf overflow"); |
|
1113 |
|
1114 } while (lx < s->last_lit); |
|
1115 |
|
1116 send_code(s, END_BLOCK, ltree); |
|
1117 s->last_eob_len = ltree[END_BLOCK].Len; |
|
1118 } |
|
1119 |
|
1120 /* =========================================================================== |
|
1121 * Set the data type to BINARY or TEXT, using a crude approximation: |
|
1122 * set it to Z_TEXT if all symbols are either printable characters (33 to 255) |
|
1123 * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise. |
|
1124 * IN assertion: the fields Freq of dyn_ltree are set. |
|
1125 */ |
|
1126 local void set_data_type(s) |
|
1127 deflate_state *s; |
|
1128 { |
|
1129 int n; |
|
1130 |
|
1131 for (n = 0; n < 9; n++) |
|
1132 if (s->dyn_ltree[n].Freq != 0) |
|
1133 break; |
|
1134 if (n == 9) |
|
1135 for (n = 14; n < 32; n++) |
|
1136 if (s->dyn_ltree[n].Freq != 0) |
|
1137 break; |
|
1138 s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY; |
|
1139 } |
|
1140 |
|
1141 /* =========================================================================== |
|
1142 * Reverse the first len bits of a code, using straightforward code (a faster |
|
1143 * method would use a table) |
|
1144 * IN assertion: 1 <= len <= 15 |
|
1145 */ |
|
1146 local unsigned bi_reverse(code, len) |
|
1147 unsigned code; /* the value to invert */ |
|
1148 int len; /* its bit length */ |
|
1149 { |
|
1150 register unsigned res = 0; |
|
1151 do { |
|
1152 res |= code & 1; |
|
1153 code >>= 1, res <<= 1; |
|
1154 } while (--len > 0); |
|
1155 return res >> 1; |
|
1156 } |
|
1157 |
|
1158 /* =========================================================================== |
|
1159 * Flush the bit buffer, keeping at most 7 bits in it. |
|
1160 */ |
|
1161 local void bi_flush(s) |
|
1162 deflate_state *s; |
|
1163 { |
|
1164 if (s->bi_valid == 16) { |
|
1165 put_short(s, s->bi_buf); |
|
1166 s->bi_buf = 0; |
|
1167 s->bi_valid = 0; |
|
1168 } else if (s->bi_valid >= 8) { |
|
1169 put_byte(s, (Byte)s->bi_buf); |
|
1170 s->bi_buf >>= 8; |
|
1171 s->bi_valid -= 8; |
|
1172 } |
|
1173 } |
|
1174 |
|
1175 /* =========================================================================== |
|
1176 * Flush the bit buffer and align the output on a byte boundary |
|
1177 */ |
|
1178 local void bi_windup(s) |
|
1179 deflate_state *s; |
|
1180 { |
|
1181 if (s->bi_valid > 8) { |
|
1182 put_short(s, s->bi_buf); |
|
1183 } else if (s->bi_valid > 0) { |
|
1184 put_byte(s, (Byte)s->bi_buf); |
|
1185 } |
|
1186 s->bi_buf = 0; |
|
1187 s->bi_valid = 0; |
|
1188 #ifdef DEBUG |
|
1189 s->bits_sent = (s->bits_sent+7) & ~7; |
|
1190 #endif |
|
1191 } |
|
1192 |
|
1193 /* =========================================================================== |
|
1194 * Copy a stored block, storing first the length and its |
|
1195 * one's complement if requested. |
|
1196 */ |
|
1197 local void copy_block(s, buf, len, header) |
|
1198 deflate_state *s; |
|
1199 charf *buf; /* the input data */ |
|
1200 unsigned len; /* its length */ |
|
1201 int header; /* true if block header must be written */ |
|
1202 { |
|
1203 bi_windup(s); /* align on byte boundary */ |
|
1204 s->last_eob_len = 8; /* enough lookahead for inflate */ |
|
1205 |
|
1206 if (header) { |
|
1207 put_short(s, (ush)len); |
|
1208 put_short(s, (ush)~len); |
|
1209 #ifdef DEBUG |
|
1210 s->bits_sent += 2*16; |
|
1211 #endif |
|
1212 } |
|
1213 #ifdef DEBUG |
|
1214 s->bits_sent += (ulg)len<<3; |
|
1215 #endif |
|
1216 while (len--) { |
|
1217 put_byte(s, *buf++); |
|
1218 } |
|
1219 } |