symbian-qemu-0.9.1-12/python-win32-2.6.1/include/object.h
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 #ifndef Py_OBJECT_H
       
     2 #define Py_OBJECT_H
       
     3 #ifdef __cplusplus
       
     4 extern "C" {
       
     5 #endif
       
     6 
       
     7 
       
     8 /* Object and type object interface */
       
     9 
       
    10 /*
       
    11 Objects are structures allocated on the heap.  Special rules apply to
       
    12 the use of objects to ensure they are properly garbage-collected.
       
    13 Objects are never allocated statically or on the stack; they must be
       
    14 accessed through special macros and functions only.  (Type objects are
       
    15 exceptions to the first rule; the standard types are represented by
       
    16 statically initialized type objects, although work on type/class unification
       
    17 for Python 2.2 made it possible to have heap-allocated type objects too).
       
    18 
       
    19 An object has a 'reference count' that is increased or decreased when a
       
    20 pointer to the object is copied or deleted; when the reference count
       
    21 reaches zero there are no references to the object left and it can be
       
    22 removed from the heap.
       
    23 
       
    24 An object has a 'type' that determines what it represents and what kind
       
    25 of data it contains.  An object's type is fixed when it is created.
       
    26 Types themselves are represented as objects; an object contains a
       
    27 pointer to the corresponding type object.  The type itself has a type
       
    28 pointer pointing to the object representing the type 'type', which
       
    29 contains a pointer to itself!).
       
    30 
       
    31 Objects do not float around in memory; once allocated an object keeps
       
    32 the same size and address.  Objects that must hold variable-size data
       
    33 can contain pointers to variable-size parts of the object.  Not all
       
    34 objects of the same type have the same size; but the size cannot change
       
    35 after allocation.  (These restrictions are made so a reference to an
       
    36 object can be simply a pointer -- moving an object would require
       
    37 updating all the pointers, and changing an object's size would require
       
    38 moving it if there was another object right next to it.)
       
    39 
       
    40 Objects are always accessed through pointers of the type 'PyObject *'.
       
    41 The type 'PyObject' is a structure that only contains the reference count
       
    42 and the type pointer.  The actual memory allocated for an object
       
    43 contains other data that can only be accessed after casting the pointer
       
    44 to a pointer to a longer structure type.  This longer type must start
       
    45 with the reference count and type fields; the macro PyObject_HEAD should be
       
    46 used for this (to accommodate for future changes).  The implementation
       
    47 of a particular object type can cast the object pointer to the proper
       
    48 type and back.
       
    49 
       
    50 A standard interface exists for objects that contain an array of items
       
    51 whose size is determined when the object is allocated.
       
    52 */
       
    53 
       
    54 /* Py_DEBUG implies Py_TRACE_REFS. */
       
    55 #if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
       
    56 #define Py_TRACE_REFS
       
    57 #endif
       
    58 
       
    59 /* Py_TRACE_REFS implies Py_REF_DEBUG. */
       
    60 #if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
       
    61 #define Py_REF_DEBUG
       
    62 #endif
       
    63 
       
    64 #ifdef Py_TRACE_REFS
       
    65 /* Define pointers to support a doubly-linked list of all live heap objects. */
       
    66 #define _PyObject_HEAD_EXTRA		\
       
    67 	struct _object *_ob_next;	\
       
    68 	struct _object *_ob_prev;
       
    69 
       
    70 #define _PyObject_EXTRA_INIT 0, 0,
       
    71 
       
    72 #else
       
    73 #define _PyObject_HEAD_EXTRA
       
    74 #define _PyObject_EXTRA_INIT
       
    75 #endif
       
    76 
       
    77 /* PyObject_HEAD defines the initial segment of every PyObject. */
       
    78 #define PyObject_HEAD			\
       
    79 	_PyObject_HEAD_EXTRA		\
       
    80 	Py_ssize_t ob_refcnt;		\
       
    81 	struct _typeobject *ob_type;
       
    82 
       
    83 #define PyObject_HEAD_INIT(type)	\
       
    84 	_PyObject_EXTRA_INIT		\
       
    85 	1, type,
       
    86 
       
    87 #define PyVarObject_HEAD_INIT(type, size)	\
       
    88 	PyObject_HEAD_INIT(type) size,
       
    89 
       
    90 /* PyObject_VAR_HEAD defines the initial segment of all variable-size
       
    91  * container objects.  These end with a declaration of an array with 1
       
    92  * element, but enough space is malloc'ed so that the array actually
       
    93  * has room for ob_size elements.  Note that ob_size is an element count,
       
    94  * not necessarily a byte count.
       
    95  */
       
    96 #define PyObject_VAR_HEAD		\
       
    97 	PyObject_HEAD			\
       
    98 	Py_ssize_t ob_size; /* Number of items in variable part */
       
    99 #define Py_INVALID_SIZE (Py_ssize_t)-1
       
   100 
       
   101 /* Nothing is actually declared to be a PyObject, but every pointer to
       
   102  * a Python object can be cast to a PyObject*.  This is inheritance built
       
   103  * by hand.  Similarly every pointer to a variable-size Python object can,
       
   104  * in addition, be cast to PyVarObject*.
       
   105  */
       
   106 typedef struct _object {
       
   107 	PyObject_HEAD
       
   108 } PyObject;
       
   109 
       
   110 typedef struct {
       
   111 	PyObject_VAR_HEAD
       
   112 } PyVarObject;
       
   113 
       
   114 #define Py_REFCNT(ob)		(((PyObject*)(ob))->ob_refcnt)
       
   115 #define Py_TYPE(ob)		(((PyObject*)(ob))->ob_type)
       
   116 #define Py_SIZE(ob)		(((PyVarObject*)(ob))->ob_size)
       
   117 
       
   118 /*
       
   119 Type objects contain a string containing the type name (to help somewhat
       
   120 in debugging), the allocation parameters (see PyObject_New() and
       
   121 PyObject_NewVar()),
       
   122 and methods for accessing objects of the type.  Methods are optional, a
       
   123 nil pointer meaning that particular kind of access is not available for
       
   124 this type.  The Py_DECREF() macro uses the tp_dealloc method without
       
   125 checking for a nil pointer; it should always be implemented except if
       
   126 the implementation can guarantee that the reference count will never
       
   127 reach zero (e.g., for statically allocated type objects).
       
   128 
       
   129 NB: the methods for certain type groups are now contained in separate
       
   130 method blocks.
       
   131 */
       
   132 
       
   133 typedef PyObject * (*unaryfunc)(PyObject *);
       
   134 typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
       
   135 typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
       
   136 typedef int (*inquiry)(PyObject *);
       
   137 typedef Py_ssize_t (*lenfunc)(PyObject *);
       
   138 typedef int (*coercion)(PyObject **, PyObject **);
       
   139 typedef PyObject *(*intargfunc)(PyObject *, int) Py_DEPRECATED(2.5);
       
   140 typedef PyObject *(*intintargfunc)(PyObject *, int, int) Py_DEPRECATED(2.5);
       
   141 typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
       
   142 typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
       
   143 typedef int(*intobjargproc)(PyObject *, int, PyObject *);
       
   144 typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
       
   145 typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
       
   146 typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
       
   147 typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
       
   148 
       
   149 
       
   150 
       
   151 /* int-based buffer interface */
       
   152 typedef int (*getreadbufferproc)(PyObject *, int, void **);
       
   153 typedef int (*getwritebufferproc)(PyObject *, int, void **);
       
   154 typedef int (*getsegcountproc)(PyObject *, int *);
       
   155 typedef int (*getcharbufferproc)(PyObject *, int, char **);
       
   156 /* ssize_t-based buffer interface */
       
   157 typedef Py_ssize_t (*readbufferproc)(PyObject *, Py_ssize_t, void **);
       
   158 typedef Py_ssize_t (*writebufferproc)(PyObject *, Py_ssize_t, void **);
       
   159 typedef Py_ssize_t (*segcountproc)(PyObject *, Py_ssize_t *);
       
   160 typedef Py_ssize_t (*charbufferproc)(PyObject *, Py_ssize_t, char **);
       
   161 
       
   162 /* Py3k buffer interface */
       
   163 
       
   164 typedef struct bufferinfo {
       
   165 	void *buf;
       
   166 	PyObject *obj;        /* borrowed reference */
       
   167         Py_ssize_t len;
       
   168         Py_ssize_t itemsize;  /* This is Py_ssize_t so it can be
       
   169                                  pointed to by strides in simple case.*/
       
   170         int readonly;
       
   171         int ndim;
       
   172         char *format;
       
   173         Py_ssize_t *shape;
       
   174         Py_ssize_t *strides;
       
   175         Py_ssize_t *suboffsets;
       
   176         void *internal;
       
   177 } Py_buffer;
       
   178 
       
   179 typedef int (*getbufferproc)(PyObject *, Py_buffer *, int);
       
   180 typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
       
   181 
       
   182         /* Flags for getting buffers */
       
   183 #define PyBUF_SIMPLE 0
       
   184 #define PyBUF_WRITABLE 0x0001
       
   185 /*  we used to include an E, backwards compatible alias  */
       
   186 #define PyBUF_WRITEABLE PyBUF_WRITABLE
       
   187 #define PyBUF_FORMAT 0x0004
       
   188 #define PyBUF_ND 0x0008
       
   189 #define PyBUF_STRIDES (0x0010 | PyBUF_ND)
       
   190 #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
       
   191 #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
       
   192 #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
       
   193 #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
       
   194 
       
   195 #define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE)
       
   196 #define PyBUF_CONTIG_RO (PyBUF_ND)
       
   197 
       
   198 #define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE)
       
   199 #define PyBUF_STRIDED_RO (PyBUF_STRIDES)
       
   200 
       
   201 #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT)
       
   202 #define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT)
       
   203 
       
   204 #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
       
   205 #define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT)
       
   206 
       
   207 
       
   208 #define PyBUF_READ  0x100
       
   209 #define PyBUF_WRITE 0x200
       
   210 #define PyBUF_SHADOW 0x400
       
   211 /* end Py3k buffer interface */
       
   212 
       
   213 typedef int (*objobjproc)(PyObject *, PyObject *);
       
   214 typedef int (*visitproc)(PyObject *, void *);
       
   215 typedef int (*traverseproc)(PyObject *, visitproc, void *);
       
   216 
       
   217 typedef struct {
       
   218 	/* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
       
   219 	   arguments are guaranteed to be of the object's type (modulo
       
   220 	   coercion hacks -- i.e. if the type's coercion function
       
   221 	   returns other types, then these are allowed as well).  Numbers that
       
   222 	   have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
       
   223 	   arguments for proper type and implement the necessary conversions
       
   224 	   in the slot functions themselves. */
       
   225 
       
   226 	binaryfunc nb_add;
       
   227 	binaryfunc nb_subtract;
       
   228 	binaryfunc nb_multiply;
       
   229 	binaryfunc nb_divide;
       
   230 	binaryfunc nb_remainder;
       
   231 	binaryfunc nb_divmod;
       
   232 	ternaryfunc nb_power;
       
   233 	unaryfunc nb_negative;
       
   234 	unaryfunc nb_positive;
       
   235 	unaryfunc nb_absolute;
       
   236 	inquiry nb_nonzero;
       
   237 	unaryfunc nb_invert;
       
   238 	binaryfunc nb_lshift;
       
   239 	binaryfunc nb_rshift;
       
   240 	binaryfunc nb_and;
       
   241 	binaryfunc nb_xor;
       
   242 	binaryfunc nb_or;
       
   243 	coercion nb_coerce;
       
   244 	unaryfunc nb_int;
       
   245 	unaryfunc nb_long;
       
   246 	unaryfunc nb_float;
       
   247 	unaryfunc nb_oct;
       
   248 	unaryfunc nb_hex;
       
   249 	/* Added in release 2.0 */
       
   250 	binaryfunc nb_inplace_add;
       
   251 	binaryfunc nb_inplace_subtract;
       
   252 	binaryfunc nb_inplace_multiply;
       
   253 	binaryfunc nb_inplace_divide;
       
   254 	binaryfunc nb_inplace_remainder;
       
   255 	ternaryfunc nb_inplace_power;
       
   256 	binaryfunc nb_inplace_lshift;
       
   257 	binaryfunc nb_inplace_rshift;
       
   258 	binaryfunc nb_inplace_and;
       
   259 	binaryfunc nb_inplace_xor;
       
   260 	binaryfunc nb_inplace_or;
       
   261 
       
   262 	/* Added in release 2.2 */
       
   263 	/* The following require the Py_TPFLAGS_HAVE_CLASS flag */
       
   264 	binaryfunc nb_floor_divide;
       
   265 	binaryfunc nb_true_divide;
       
   266 	binaryfunc nb_inplace_floor_divide;
       
   267 	binaryfunc nb_inplace_true_divide;
       
   268 
       
   269 	/* Added in release 2.5 */
       
   270 	unaryfunc nb_index;
       
   271 } PyNumberMethods;
       
   272 
       
   273 typedef struct {
       
   274 	lenfunc sq_length;
       
   275 	binaryfunc sq_concat;
       
   276 	ssizeargfunc sq_repeat;
       
   277 	ssizeargfunc sq_item;
       
   278 	ssizessizeargfunc sq_slice;
       
   279 	ssizeobjargproc sq_ass_item;
       
   280 	ssizessizeobjargproc sq_ass_slice;
       
   281 	objobjproc sq_contains;
       
   282 	/* Added in release 2.0 */
       
   283 	binaryfunc sq_inplace_concat;
       
   284 	ssizeargfunc sq_inplace_repeat;
       
   285 } PySequenceMethods;
       
   286 
       
   287 typedef struct {
       
   288 	lenfunc mp_length;
       
   289 	binaryfunc mp_subscript;
       
   290 	objobjargproc mp_ass_subscript;
       
   291 } PyMappingMethods;
       
   292 
       
   293 typedef struct {
       
   294 	readbufferproc bf_getreadbuffer;
       
   295 	writebufferproc bf_getwritebuffer;
       
   296 	segcountproc bf_getsegcount;
       
   297 	charbufferproc bf_getcharbuffer;
       
   298         getbufferproc bf_getbuffer;
       
   299 	releasebufferproc bf_releasebuffer;
       
   300 } PyBufferProcs;
       
   301 
       
   302 
       
   303 typedef void (*freefunc)(void *);
       
   304 typedef void (*destructor)(PyObject *);
       
   305 typedef int (*printfunc)(PyObject *, FILE *, int);
       
   306 typedef PyObject *(*getattrfunc)(PyObject *, char *);
       
   307 typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
       
   308 typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
       
   309 typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
       
   310 typedef int (*cmpfunc)(PyObject *, PyObject *);
       
   311 typedef PyObject *(*reprfunc)(PyObject *);
       
   312 typedef long (*hashfunc)(PyObject *);
       
   313 typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
       
   314 typedef PyObject *(*getiterfunc) (PyObject *);
       
   315 typedef PyObject *(*iternextfunc) (PyObject *);
       
   316 typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
       
   317 typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
       
   318 typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
       
   319 typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
       
   320 typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t);
       
   321 
       
   322 typedef struct _typeobject {
       
   323 	PyObject_VAR_HEAD
       
   324 	const char *tp_name; /* For printing, in format "<module>.<name>" */
       
   325 	Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
       
   326 
       
   327 	/* Methods to implement standard operations */
       
   328 
       
   329 	destructor tp_dealloc;
       
   330 	printfunc tp_print;
       
   331 	getattrfunc tp_getattr;
       
   332 	setattrfunc tp_setattr;
       
   333 	cmpfunc tp_compare;
       
   334 	reprfunc tp_repr;
       
   335 
       
   336 	/* Method suites for standard classes */
       
   337 
       
   338 	PyNumberMethods *tp_as_number;
       
   339 	PySequenceMethods *tp_as_sequence;
       
   340 	PyMappingMethods *tp_as_mapping;
       
   341 
       
   342 	/* More standard operations (here for binary compatibility) */
       
   343 
       
   344 	hashfunc tp_hash;
       
   345 	ternaryfunc tp_call;
       
   346 	reprfunc tp_str;
       
   347 	getattrofunc tp_getattro;
       
   348 	setattrofunc tp_setattro;
       
   349 
       
   350 	/* Functions to access object as input/output buffer */
       
   351 	PyBufferProcs *tp_as_buffer;
       
   352 
       
   353 	/* Flags to define presence of optional/expanded features */
       
   354 	long tp_flags;
       
   355 
       
   356 	const char *tp_doc; /* Documentation string */
       
   357 
       
   358 	/* Assigned meaning in release 2.0 */
       
   359 	/* call function for all accessible objects */
       
   360 	traverseproc tp_traverse;
       
   361 
       
   362 	/* delete references to contained objects */
       
   363 	inquiry tp_clear;
       
   364 
       
   365 	/* Assigned meaning in release 2.1 */
       
   366 	/* rich comparisons */
       
   367 	richcmpfunc tp_richcompare;
       
   368 
       
   369 	/* weak reference enabler */
       
   370 	Py_ssize_t tp_weaklistoffset;
       
   371 
       
   372 	/* Added in release 2.2 */
       
   373 	/* Iterators */
       
   374 	getiterfunc tp_iter;
       
   375 	iternextfunc tp_iternext;
       
   376 
       
   377 	/* Attribute descriptor and subclassing stuff */
       
   378 	struct PyMethodDef *tp_methods;
       
   379 	struct PyMemberDef *tp_members;
       
   380 	struct PyGetSetDef *tp_getset;
       
   381 	struct _typeobject *tp_base;
       
   382 	PyObject *tp_dict;
       
   383 	descrgetfunc tp_descr_get;
       
   384 	descrsetfunc tp_descr_set;
       
   385 	Py_ssize_t tp_dictoffset;
       
   386 	initproc tp_init;
       
   387 	allocfunc tp_alloc;
       
   388 	newfunc tp_new;
       
   389 	freefunc tp_free; /* Low-level free-memory routine */
       
   390 	inquiry tp_is_gc; /* For PyObject_IS_GC */
       
   391 	PyObject *tp_bases;
       
   392 	PyObject *tp_mro; /* method resolution order */
       
   393 	PyObject *tp_cache;
       
   394 	PyObject *tp_subclasses;
       
   395 	PyObject *tp_weaklist;
       
   396 	destructor tp_del;
       
   397 
       
   398 	/* Type attribute cache version tag. Added in version 2.6 */
       
   399 	unsigned int tp_version_tag;
       
   400 
       
   401 #ifdef COUNT_ALLOCS
       
   402 	/* these must be last and never explicitly initialized */
       
   403 	Py_ssize_t tp_allocs;
       
   404 	Py_ssize_t tp_frees;
       
   405 	Py_ssize_t tp_maxalloc;
       
   406 	struct _typeobject *tp_prev;
       
   407 	struct _typeobject *tp_next;
       
   408 #endif
       
   409 } PyTypeObject;
       
   410 
       
   411 
       
   412 /* The *real* layout of a type object when allocated on the heap */
       
   413 typedef struct _heaptypeobject {
       
   414 	/* Note: there's a dependency on the order of these members
       
   415 	   in slotptr() in typeobject.c . */
       
   416 	PyTypeObject ht_type;
       
   417 	PyNumberMethods as_number;
       
   418 	PyMappingMethods as_mapping;
       
   419 	PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
       
   420 					  so that the mapping wins when both
       
   421 					  the mapping and the sequence define
       
   422 					  a given operator (e.g. __getitem__).
       
   423 					  see add_operators() in typeobject.c . */
       
   424 	PyBufferProcs as_buffer;
       
   425 	PyObject *ht_name, *ht_slots;
       
   426 	/* here are optional user slots, followed by the members. */
       
   427 } PyHeapTypeObject;
       
   428 
       
   429 /* access macro to the members which are floating "behind" the object */
       
   430 #define PyHeapType_GET_MEMBERS(etype) \
       
   431     ((PyMemberDef *)(((char *)etype) + Py_TYPE(etype)->tp_basicsize))
       
   432 
       
   433 
       
   434 /* Generic type check */
       
   435 PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
       
   436 #define PyObject_TypeCheck(ob, tp) \
       
   437 	(Py_TYPE(ob) == (tp) || PyType_IsSubtype(Py_TYPE(ob), (tp)))
       
   438 
       
   439 PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
       
   440 PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
       
   441 PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
       
   442 
       
   443 #define PyType_Check(op) \
       
   444 	PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS)
       
   445 #define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type)
       
   446 
       
   447 PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
       
   448 PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
       
   449 PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
       
   450 					       PyObject *, PyObject *);
       
   451 PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
       
   452 PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
       
   453 PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);
       
   454 
       
   455 /* Generic operations on objects */
       
   456 PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
       
   457 PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
       
   458 PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
       
   459 PyAPI_FUNC(PyObject *) _PyObject_Str(PyObject *);
       
   460 PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
       
   461 #define PyObject_Bytes PyObject_Str
       
   462 #ifdef Py_USING_UNICODE
       
   463 PyAPI_FUNC(PyObject *) PyObject_Unicode(PyObject *);
       
   464 #endif
       
   465 PyAPI_FUNC(int) PyObject_Compare(PyObject *, PyObject *);
       
   466 PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
       
   467 PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
       
   468 PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
       
   469 PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
       
   470 PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
       
   471 PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
       
   472 PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
       
   473 PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
       
   474 PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
       
   475 PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
       
   476 PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
       
   477 PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
       
   478 					      PyObject *, PyObject *);
       
   479 PyAPI_FUNC(long) PyObject_Hash(PyObject *);
       
   480 PyAPI_FUNC(long) PyObject_HashNotImplemented(PyObject *);
       
   481 PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
       
   482 PyAPI_FUNC(int) PyObject_Not(PyObject *);
       
   483 PyAPI_FUNC(int) PyCallable_Check(PyObject *);
       
   484 PyAPI_FUNC(int) PyNumber_Coerce(PyObject **, PyObject **);
       
   485 PyAPI_FUNC(int) PyNumber_CoerceEx(PyObject **, PyObject **);
       
   486 
       
   487 PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
       
   488 
       
   489 /* A slot function whose address we need to compare */
       
   490 extern int _PyObject_SlotCompare(PyObject *, PyObject *);
       
   491 
       
   492 
       
   493 /* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a
       
   494    list of strings.  PyObject_Dir(NULL) is like __builtin__.dir(),
       
   495    returning the names of the current locals.  In this case, if there are
       
   496    no current locals, NULL is returned, and PyErr_Occurred() is false.
       
   497 */
       
   498 PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
       
   499 
       
   500 
       
   501 /* Helpers for printing recursive container types */
       
   502 PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
       
   503 PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
       
   504 
       
   505 /* Helpers for hash functions */
       
   506 PyAPI_FUNC(long) _Py_HashDouble(double);
       
   507 PyAPI_FUNC(long) _Py_HashPointer(void*);
       
   508 
       
   509 /* Helper for passing objects to printf and the like */
       
   510 #define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
       
   511 
       
   512 /* Flag bits for printing: */
       
   513 #define Py_PRINT_RAW	1	/* No string quotes etc. */
       
   514 
       
   515 /*
       
   516 `Type flags (tp_flags)
       
   517 
       
   518 These flags are used to extend the type structure in a backwards-compatible
       
   519 fashion. Extensions can use the flags to indicate (and test) when a given
       
   520 type structure contains a new feature. The Python core will use these when
       
   521 introducing new functionality between major revisions (to avoid mid-version
       
   522 changes in the PYTHON_API_VERSION).
       
   523 
       
   524 Arbitration of the flag bit positions will need to be coordinated among
       
   525 all extension writers who publically release their extensions (this will
       
   526 be fewer than you might expect!)..
       
   527 
       
   528 Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
       
   529 
       
   530 Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
       
   531 
       
   532 Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
       
   533 given type object has a specified feature.
       
   534 
       
   535 NOTE: when building the core, Py_TPFLAGS_DEFAULT includes
       
   536 Py_TPFLAGS_HAVE_VERSION_TAG; outside the core, it doesn't.  This is so
       
   537 that extensions that modify tp_dict of their own types directly don't
       
   538 break, since this was allowed in 2.5.  In 3.0 they will have to
       
   539 manually remove this flag though!
       
   540 */
       
   541 
       
   542 /* PyBufferProcs contains bf_getcharbuffer */
       
   543 #define Py_TPFLAGS_HAVE_GETCHARBUFFER  (1L<<0)
       
   544 
       
   545 /* PySequenceMethods contains sq_contains */
       
   546 #define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
       
   547 
       
   548 /* This is here for backwards compatibility.  Extensions that use the old GC
       
   549  * API will still compile but the objects will not be tracked by the GC. */
       
   550 #define Py_TPFLAGS_GC 0 /* used to be (1L<<2) */
       
   551 
       
   552 /* PySequenceMethods and PyNumberMethods contain in-place operators */
       
   553 #define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
       
   554 
       
   555 /* PyNumberMethods do their own coercion */
       
   556 #define Py_TPFLAGS_CHECKTYPES (1L<<4)
       
   557 
       
   558 /* tp_richcompare is defined */
       
   559 #define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
       
   560 
       
   561 /* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
       
   562 #define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
       
   563 
       
   564 /* tp_iter is defined */
       
   565 #define Py_TPFLAGS_HAVE_ITER (1L<<7)
       
   566 
       
   567 /* New members introduced by Python 2.2 exist */
       
   568 #define Py_TPFLAGS_HAVE_CLASS (1L<<8)
       
   569 
       
   570 /* Set if the type object is dynamically allocated */
       
   571 #define Py_TPFLAGS_HEAPTYPE (1L<<9)
       
   572 
       
   573 /* Set if the type allows subclassing */
       
   574 #define Py_TPFLAGS_BASETYPE (1L<<10)
       
   575 
       
   576 /* Set if the type is 'ready' -- fully initialized */
       
   577 #define Py_TPFLAGS_READY (1L<<12)
       
   578 
       
   579 /* Set while the type is being 'readied', to prevent recursive ready calls */
       
   580 #define Py_TPFLAGS_READYING (1L<<13)
       
   581 
       
   582 /* Objects support garbage collection (see objimp.h) */
       
   583 #define Py_TPFLAGS_HAVE_GC (1L<<14)
       
   584 
       
   585 /* These two bits are preserved for Stackless Python, next after this is 17 */
       
   586 #ifdef STACKLESS
       
   587 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
       
   588 #else
       
   589 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
       
   590 #endif
       
   591 
       
   592 /* Objects support nb_index in PyNumberMethods */
       
   593 #define Py_TPFLAGS_HAVE_INDEX (1L<<17)
       
   594 
       
   595 /* Objects support type attribute cache */
       
   596 #define Py_TPFLAGS_HAVE_VERSION_TAG   (1L<<18)
       
   597 #define Py_TPFLAGS_VALID_VERSION_TAG  (1L<<19)
       
   598 
       
   599 /* Type is abstract and cannot be instantiated */
       
   600 #define Py_TPFLAGS_IS_ABSTRACT (1L<<20)
       
   601 
       
   602 /* Has the new buffer protocol */
       
   603 #define Py_TPFLAGS_HAVE_NEWBUFFER (1L<<21)
       
   604 
       
   605 /* These flags are used to determine if a type is a subclass. */
       
   606 #define Py_TPFLAGS_INT_SUBCLASS		(1L<<23)
       
   607 #define Py_TPFLAGS_LONG_SUBCLASS	(1L<<24)
       
   608 #define Py_TPFLAGS_LIST_SUBCLASS	(1L<<25)
       
   609 #define Py_TPFLAGS_TUPLE_SUBCLASS	(1L<<26)
       
   610 #define Py_TPFLAGS_STRING_SUBCLASS	(1L<<27)
       
   611 #define Py_TPFLAGS_UNICODE_SUBCLASS	(1L<<28)
       
   612 #define Py_TPFLAGS_DICT_SUBCLASS	(1L<<29)
       
   613 #define Py_TPFLAGS_BASE_EXC_SUBCLASS	(1L<<30)
       
   614 #define Py_TPFLAGS_TYPE_SUBCLASS	(1L<<31)
       
   615 
       
   616 #define Py_TPFLAGS_DEFAULT_EXTERNAL ( \
       
   617                              Py_TPFLAGS_HAVE_GETCHARBUFFER | \
       
   618                              Py_TPFLAGS_HAVE_SEQUENCE_IN | \
       
   619                              Py_TPFLAGS_HAVE_INPLACEOPS | \
       
   620                              Py_TPFLAGS_HAVE_RICHCOMPARE | \
       
   621                              Py_TPFLAGS_HAVE_WEAKREFS | \
       
   622                              Py_TPFLAGS_HAVE_ITER | \
       
   623                              Py_TPFLAGS_HAVE_CLASS | \
       
   624                              Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
       
   625                              Py_TPFLAGS_HAVE_INDEX | \
       
   626                              0)
       
   627 #define Py_TPFLAGS_DEFAULT_CORE (Py_TPFLAGS_DEFAULT_EXTERNAL | \
       
   628                                  Py_TPFLAGS_HAVE_VERSION_TAG)
       
   629 
       
   630 #ifdef Py_BUILD_CORE
       
   631 #define Py_TPFLAGS_DEFAULT Py_TPFLAGS_DEFAULT_CORE
       
   632 #else
       
   633 #define Py_TPFLAGS_DEFAULT Py_TPFLAGS_DEFAULT_EXTERNAL
       
   634 #endif
       
   635 
       
   636 #define PyType_HasFeature(t,f)  (((t)->tp_flags & (f)) != 0)
       
   637 #define PyType_FastSubclass(t,f)  PyType_HasFeature(t,f)
       
   638 
       
   639 
       
   640 /*
       
   641 The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
       
   642 reference counts.  Py_DECREF calls the object's deallocator function when
       
   643 the refcount falls to 0; for
       
   644 objects that don't contain references to other objects or heap memory
       
   645 this can be the standard function free().  Both macros can be used
       
   646 wherever a void expression is allowed.  The argument must not be a
       
   647 NULL pointer.  If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
       
   648 The macro _Py_NewReference(op) initialize reference counts to 1, and
       
   649 in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
       
   650 bookkeeping appropriate to the special build.
       
   651 
       
   652 We assume that the reference count field can never overflow; this can
       
   653 be proven when the size of the field is the same as the pointer size, so
       
   654 we ignore the possibility.  Provided a C int is at least 32 bits (which
       
   655 is implicitly assumed in many parts of this code), that's enough for
       
   656 about 2**31 references to an object.
       
   657 
       
   658 XXX The following became out of date in Python 2.2, but I'm not sure
       
   659 XXX what the full truth is now.  Certainly, heap-allocated type objects
       
   660 XXX can and should be deallocated.
       
   661 Type objects should never be deallocated; the type pointer in an object
       
   662 is not considered to be a reference to the type object, to save
       
   663 complications in the deallocation function.  (This is actually a
       
   664 decision that's up to the implementer of each new type so if you want,
       
   665 you can count such references to the type object.)
       
   666 
       
   667 *** WARNING*** The Py_DECREF macro must have a side-effect-free argument
       
   668 since it may evaluate its argument multiple times.  (The alternative
       
   669 would be to mace it a proper function or assign it to a global temporary
       
   670 variable first, both of which are slower; and in a multi-threaded
       
   671 environment the global variable trick is not safe.)
       
   672 */
       
   673 
       
   674 /* First define a pile of simple helper macros, one set per special
       
   675  * build symbol.  These either expand to the obvious things, or to
       
   676  * nothing at all when the special mode isn't in effect.  The main
       
   677  * macros can later be defined just once then, yet expand to different
       
   678  * things depending on which special build options are and aren't in effect.
       
   679  * Trust me <wink>:  while painful, this is 20x easier to understand than,
       
   680  * e.g, defining _Py_NewReference five different times in a maze of nested
       
   681  * #ifdefs (we used to do that -- it was impenetrable).
       
   682  */
       
   683 #ifdef Py_REF_DEBUG
       
   684 PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
       
   685 PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
       
   686 					    int lineno, PyObject *op);
       
   687 PyAPI_FUNC(PyObject *) _PyDict_Dummy(void);
       
   688 PyAPI_FUNC(PyObject *) _PySet_Dummy(void);
       
   689 PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void);
       
   690 #define _Py_INC_REFTOTAL	_Py_RefTotal++
       
   691 #define _Py_DEC_REFTOTAL	_Py_RefTotal--
       
   692 #define _Py_REF_DEBUG_COMMA	,
       
   693 #define _Py_CHECK_REFCNT(OP)					\
       
   694 {	if (((PyObject*)OP)->ob_refcnt < 0)				\
       
   695 		_Py_NegativeRefcount(__FILE__, __LINE__,	\
       
   696 				     (PyObject *)(OP));		\
       
   697 }
       
   698 #else
       
   699 #define _Py_INC_REFTOTAL
       
   700 #define _Py_DEC_REFTOTAL
       
   701 #define _Py_REF_DEBUG_COMMA
       
   702 #define _Py_CHECK_REFCNT(OP)	/* a semicolon */;
       
   703 #endif /* Py_REF_DEBUG */
       
   704 
       
   705 #ifdef COUNT_ALLOCS
       
   706 PyAPI_FUNC(void) inc_count(PyTypeObject *);
       
   707 PyAPI_FUNC(void) dec_count(PyTypeObject *);
       
   708 #define _Py_INC_TPALLOCS(OP)	inc_count(Py_TYPE(OP))
       
   709 #define _Py_INC_TPFREES(OP)	dec_count(Py_TYPE(OP))
       
   710 #define _Py_DEC_TPFREES(OP)	Py_TYPE(OP)->tp_frees--
       
   711 #define _Py_COUNT_ALLOCS_COMMA	,
       
   712 #else
       
   713 #define _Py_INC_TPALLOCS(OP)
       
   714 #define _Py_INC_TPFREES(OP)
       
   715 #define _Py_DEC_TPFREES(OP)
       
   716 #define _Py_COUNT_ALLOCS_COMMA
       
   717 #endif /* COUNT_ALLOCS */
       
   718 
       
   719 #ifdef Py_TRACE_REFS
       
   720 /* Py_TRACE_REFS is such major surgery that we call external routines. */
       
   721 PyAPI_FUNC(void) _Py_NewReference(PyObject *);
       
   722 PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
       
   723 PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
       
   724 PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
       
   725 PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
       
   726 PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
       
   727 
       
   728 #else
       
   729 /* Without Py_TRACE_REFS, there's little enough to do that we expand code
       
   730  * inline.
       
   731  */
       
   732 #define _Py_NewReference(op) (				\
       
   733 	_Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA	\
       
   734 	_Py_INC_REFTOTAL  _Py_REF_DEBUG_COMMA		\
       
   735 	Py_REFCNT(op) = 1)
       
   736 
       
   737 #define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
       
   738 
       
   739 #define _Py_Dealloc(op) (				\
       
   740 	_Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA	\
       
   741 	(*Py_TYPE(op)->tp_dealloc)((PyObject *)(op)))
       
   742 #endif /* !Py_TRACE_REFS */
       
   743 
       
   744 #define Py_INCREF(op) (				\
       
   745 	_Py_INC_REFTOTAL  _Py_REF_DEBUG_COMMA	\
       
   746 	((PyObject*)(op))->ob_refcnt++)
       
   747 
       
   748 #define Py_DECREF(op)					\
       
   749 	if (_Py_DEC_REFTOTAL  _Py_REF_DEBUG_COMMA	\
       
   750 	    --((PyObject*)(op))->ob_refcnt != 0)		\
       
   751 		_Py_CHECK_REFCNT(op)			\
       
   752 	else						\
       
   753 		_Py_Dealloc((PyObject *)(op))
       
   754 
       
   755 /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
       
   756  * and tp_dealloc implementatons.
       
   757  *
       
   758  * Note that "the obvious" code can be deadly:
       
   759  *
       
   760  *     Py_XDECREF(op);
       
   761  *     op = NULL;
       
   762  *
       
   763  * Typically, `op` is something like self->containee, and `self` is done
       
   764  * using its `containee` member.  In the code sequence above, suppose
       
   765  * `containee` is non-NULL with a refcount of 1.  Its refcount falls to
       
   766  * 0 on the first line, which can trigger an arbitrary amount of code,
       
   767  * possibly including finalizers (like __del__ methods or weakref callbacks)
       
   768  * coded in Python, which in turn can release the GIL and allow other threads
       
   769  * to run, etc.  Such code may even invoke methods of `self` again, or cause
       
   770  * cyclic gc to trigger, but-- oops! --self->containee still points to the
       
   771  * object being torn down, and it may be in an insane state while being torn
       
   772  * down.  This has in fact been a rich historic source of miserable (rare &
       
   773  * hard-to-diagnose) segfaulting (and other) bugs.
       
   774  *
       
   775  * The safe way is:
       
   776  *
       
   777  *      Py_CLEAR(op);
       
   778  *
       
   779  * That arranges to set `op` to NULL _before_ decref'ing, so that any code
       
   780  * triggered as a side-effect of `op` getting torn down no longer believes
       
   781  * `op` points to a valid object.
       
   782  *
       
   783  * There are cases where it's safe to use the naive code, but they're brittle.
       
   784  * For example, if `op` points to a Python integer, you know that destroying
       
   785  * one of those can't cause problems -- but in part that relies on that
       
   786  * Python integers aren't currently weakly referencable.  Best practice is
       
   787  * to use Py_CLEAR() even if you can't think of a reason for why you need to.
       
   788  */
       
   789 #define Py_CLEAR(op)				\
       
   790         do {                            	\
       
   791                 if (op) {			\
       
   792                         PyObject *_py_tmp = (PyObject *)(op);	\
       
   793                         (op) = NULL;		\
       
   794                         Py_DECREF(_py_tmp);	\
       
   795                 }				\
       
   796         } while (0)
       
   797 
       
   798 /* Macros to use in case the object pointer may be NULL: */
       
   799 #define Py_XINCREF(op) if ((op) == NULL) ; else Py_INCREF(op)
       
   800 #define Py_XDECREF(op) if ((op) == NULL) ; else Py_DECREF(op)
       
   801 
       
   802 /*
       
   803 These are provided as conveniences to Python runtime embedders, so that
       
   804 they can have object code that is not dependent on Python compilation flags.
       
   805 */
       
   806 PyAPI_FUNC(void) Py_IncRef(PyObject *);
       
   807 PyAPI_FUNC(void) Py_DecRef(PyObject *);
       
   808 
       
   809 /*
       
   810 _Py_NoneStruct is an object of undefined type which can be used in contexts
       
   811 where NULL (nil) is not suitable (since NULL often means 'error').
       
   812 
       
   813 Don't forget to apply Py_INCREF() when returning this value!!!
       
   814 */
       
   815 PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
       
   816 #define Py_None (&_Py_NoneStruct)
       
   817 
       
   818 /* Macro for returning Py_None from a function */
       
   819 #define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
       
   820 
       
   821 /*
       
   822 Py_NotImplemented is a singleton used to signal that an operation is
       
   823 not implemented for a given type combination.
       
   824 */
       
   825 PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
       
   826 #define Py_NotImplemented (&_Py_NotImplementedStruct)
       
   827 
       
   828 /* Rich comparison opcodes */
       
   829 #define Py_LT 0
       
   830 #define Py_LE 1
       
   831 #define Py_EQ 2
       
   832 #define Py_NE 3
       
   833 #define Py_GT 4
       
   834 #define Py_GE 5
       
   835 
       
   836 /* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
       
   837  * Defined in object.c.
       
   838  */
       
   839 PyAPI_DATA(int) _Py_SwappedOp[];
       
   840 
       
   841 /*
       
   842 Define staticforward and statichere for source compatibility with old
       
   843 C extensions.
       
   844 
       
   845 The staticforward define was needed to support certain broken C
       
   846 compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the
       
   847 static keyword when it was used with a forward declaration of a static
       
   848 initialized structure.  Standard C allows the forward declaration with
       
   849 static, and we've decided to stop catering to broken C compilers.
       
   850 (In fact, we expect that the compilers are all fixed eight years later.)
       
   851 */
       
   852 
       
   853 #define staticforward static
       
   854 #define statichere static
       
   855 
       
   856 
       
   857 /*
       
   858 More conventions
       
   859 ================
       
   860 
       
   861 Argument Checking
       
   862 -----------------
       
   863 
       
   864 Functions that take objects as arguments normally don't check for nil
       
   865 arguments, but they do check the type of the argument, and return an
       
   866 error if the function doesn't apply to the type.
       
   867 
       
   868 Failure Modes
       
   869 -------------
       
   870 
       
   871 Functions may fail for a variety of reasons, including running out of
       
   872 memory.  This is communicated to the caller in two ways: an error string
       
   873 is set (see errors.h), and the function result differs: functions that
       
   874 normally return a pointer return NULL for failure, functions returning
       
   875 an integer return -1 (which could be a legal return value too!), and
       
   876 other functions return 0 for success and -1 for failure.
       
   877 Callers should always check for errors before using the result.  If
       
   878 an error was set, the caller must either explicitly clear it, or pass
       
   879 the error on to its caller.
       
   880 
       
   881 Reference Counts
       
   882 ----------------
       
   883 
       
   884 It takes a while to get used to the proper usage of reference counts.
       
   885 
       
   886 Functions that create an object set the reference count to 1; such new
       
   887 objects must be stored somewhere or destroyed again with Py_DECREF().
       
   888 Some functions that 'store' objects, such as PyTuple_SetItem() and
       
   889 PyList_SetItem(),
       
   890 don't increment the reference count of the object, since the most
       
   891 frequent use is to store a fresh object.  Functions that 'retrieve'
       
   892 objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
       
   893 don't increment
       
   894 the reference count, since most frequently the object is only looked at
       
   895 quickly.  Thus, to retrieve an object and store it again, the caller
       
   896 must call Py_INCREF() explicitly.
       
   897 
       
   898 NOTE: functions that 'consume' a reference count, like
       
   899 PyList_SetItem(), consume the reference even if the object wasn't
       
   900 successfully stored, to simplify error handling.
       
   901 
       
   902 It seems attractive to make other functions that take an object as
       
   903 argument consume a reference count; however, this may quickly get
       
   904 confusing (even the current practice is already confusing).  Consider
       
   905 it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
       
   906 times.
       
   907 */
       
   908 
       
   909 
       
   910 /* Trashcan mechanism, thanks to Christian Tismer.
       
   911 
       
   912 When deallocating a container object, it's possible to trigger an unbounded
       
   913 chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
       
   914 next" object in the chain to 0.  This can easily lead to stack faults, and
       
   915 especially in threads (which typically have less stack space to work with).
       
   916 
       
   917 A container object that participates in cyclic gc can avoid this by
       
   918 bracketing the body of its tp_dealloc function with a pair of macros:
       
   919 
       
   920 static void
       
   921 mytype_dealloc(mytype *p)
       
   922 {
       
   923         ... declarations go here ...
       
   924 
       
   925  	PyObject_GC_UnTrack(p);	   // must untrack first
       
   926 	Py_TRASHCAN_SAFE_BEGIN(p)
       
   927 	... The body of the deallocator goes here, including all calls ...
       
   928 	... to Py_DECREF on contained objects.                         ...
       
   929 	Py_TRASHCAN_SAFE_END(p)
       
   930 }
       
   931 
       
   932 CAUTION:  Never return from the middle of the body!  If the body needs to
       
   933 "get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
       
   934 call, and goto it.  Else the call-depth counter (see below) will stay
       
   935 above 0 forever, and the trashcan will never get emptied.
       
   936 
       
   937 How it works:  The BEGIN macro increments a call-depth counter.  So long
       
   938 as this counter is small, the body of the deallocator is run directly without
       
   939 further ado.  But if the counter gets large, it instead adds p to a list of
       
   940 objects to be deallocated later, skips the body of the deallocator, and
       
   941 resumes execution after the END macro.  The tp_dealloc routine then returns
       
   942 without deallocating anything (and so unbounded call-stack depth is avoided).
       
   943 
       
   944 When the call stack finishes unwinding again, code generated by the END macro
       
   945 notices this, and calls another routine to deallocate all the objects that
       
   946 may have been added to the list of deferred deallocations.  In effect, a
       
   947 chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
       
   948 with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
       
   949 */
       
   950 
       
   951 PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
       
   952 PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
       
   953 PyAPI_DATA(int) _PyTrash_delete_nesting;
       
   954 PyAPI_DATA(PyObject *) _PyTrash_delete_later;
       
   955 
       
   956 #define PyTrash_UNWIND_LEVEL 50
       
   957 
       
   958 #define Py_TRASHCAN_SAFE_BEGIN(op) \
       
   959 	if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
       
   960 		++_PyTrash_delete_nesting;
       
   961 		/* The body of the deallocator is here. */
       
   962 #define Py_TRASHCAN_SAFE_END(op) \
       
   963 		--_PyTrash_delete_nesting; \
       
   964 		if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
       
   965 			_PyTrash_destroy_chain(); \
       
   966 	} \
       
   967 	else \
       
   968 		_PyTrash_deposit_object((PyObject*)op);
       
   969 
       
   970 #ifdef __cplusplus
       
   971 }
       
   972 #endif
       
   973 #endif /* !Py_OBJECT_H */