|
1 /* |
|
2 * General purpose implementation of a simple periodic countdown timer. |
|
3 * |
|
4 * Copyright (c) 2007 CodeSourcery. |
|
5 * |
|
6 * This code is licenced under the GNU LGPL. |
|
7 */ |
|
8 #include "hw.h" |
|
9 #include "qemu-timer.h" |
|
10 |
|
11 |
|
12 struct ptimer_state |
|
13 { |
|
14 int enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ |
|
15 uint64_t limit; |
|
16 uint64_t delta; |
|
17 uint32_t period_frac; |
|
18 int64_t period; |
|
19 int64_t last_event; |
|
20 int64_t next_event; |
|
21 QEMUBH *bh; |
|
22 QEMUTimer *timer; |
|
23 }; |
|
24 |
|
25 /* Use a bottom-half routine to avoid reentrancy issues. */ |
|
26 static void ptimer_trigger(ptimer_state *s) |
|
27 { |
|
28 if (s->bh) { |
|
29 qemu_bh_schedule(s->bh); |
|
30 } |
|
31 } |
|
32 |
|
33 static void ptimer_reload(ptimer_state *s) |
|
34 { |
|
35 if (s->delta == 0) { |
|
36 ptimer_trigger(s); |
|
37 s->delta = s->limit; |
|
38 } |
|
39 if (s->delta == 0 || s->period == 0) { |
|
40 fprintf(stderr, "Timer with period zero, disabling\n"); |
|
41 s->enabled = 0; |
|
42 return; |
|
43 } |
|
44 |
|
45 s->last_event = s->next_event; |
|
46 s->next_event = s->last_event + s->delta * s->period; |
|
47 if (s->period_frac) { |
|
48 s->next_event += ((int64_t)s->period_frac * s->delta) >> 32; |
|
49 } |
|
50 qemu_mod_timer(s->timer, s->next_event); |
|
51 } |
|
52 |
|
53 static void ptimer_tick(void *opaque) |
|
54 { |
|
55 ptimer_state *s = (ptimer_state *)opaque; |
|
56 ptimer_trigger(s); |
|
57 s->delta = 0; |
|
58 if (s->enabled == 2) { |
|
59 s->enabled = 0; |
|
60 } else { |
|
61 ptimer_reload(s); |
|
62 } |
|
63 } |
|
64 |
|
65 uint64_t ptimer_get_count(ptimer_state *s) |
|
66 { |
|
67 int64_t now; |
|
68 uint64_t counter; |
|
69 |
|
70 if (s->enabled) { |
|
71 now = qemu_get_clock(vm_clock); |
|
72 /* Figure out the current counter value. */ |
|
73 if (now - s->next_event > 0 |
|
74 || s->period == 0) { |
|
75 /* Prevent timer underflowing if it should already have |
|
76 triggered. */ |
|
77 counter = 0; |
|
78 } else { |
|
79 uint64_t rem; |
|
80 uint64_t div; |
|
81 |
|
82 rem = s->next_event - now; |
|
83 div = s->period; |
|
84 counter = rem / div; |
|
85 } |
|
86 } else { |
|
87 counter = s->delta; |
|
88 } |
|
89 return counter; |
|
90 } |
|
91 |
|
92 void ptimer_set_count(ptimer_state *s, uint64_t count) |
|
93 { |
|
94 s->delta = count; |
|
95 if (s->enabled) { |
|
96 s->next_event = qemu_get_clock(vm_clock); |
|
97 ptimer_reload(s); |
|
98 } |
|
99 } |
|
100 |
|
101 void ptimer_run(ptimer_state *s, int oneshot) |
|
102 { |
|
103 if (s->enabled) { |
|
104 return; |
|
105 } |
|
106 if (s->period == 0) { |
|
107 fprintf(stderr, "Timer with period zero, disabling\n"); |
|
108 return; |
|
109 } |
|
110 s->enabled = oneshot ? 2 : 1; |
|
111 s->next_event = qemu_get_clock(vm_clock); |
|
112 ptimer_reload(s); |
|
113 } |
|
114 |
|
115 /* Pause a timer. Note that this may cause it to "lose" time, even if it |
|
116 is immediately restarted. */ |
|
117 void ptimer_stop(ptimer_state *s) |
|
118 { |
|
119 if (!s->enabled) |
|
120 return; |
|
121 |
|
122 s->delta = ptimer_get_count(s); |
|
123 qemu_del_timer(s->timer); |
|
124 s->enabled = 0; |
|
125 } |
|
126 |
|
127 /* Set counter increment interval in nanoseconds. */ |
|
128 void ptimer_set_period(ptimer_state *s, int64_t period) |
|
129 { |
|
130 s->period = period; |
|
131 s->period_frac = 0; |
|
132 if (s->enabled) { |
|
133 s->next_event = qemu_get_clock(vm_clock); |
|
134 ptimer_reload(s); |
|
135 } |
|
136 } |
|
137 |
|
138 /* Set counter frequency in Hz. */ |
|
139 void ptimer_set_freq(ptimer_state *s, uint32_t freq) |
|
140 { |
|
141 s->period = 1000000000ll / freq; |
|
142 s->period_frac = (1000000000ll << 32) / freq; |
|
143 if (s->enabled) { |
|
144 s->next_event = qemu_get_clock(vm_clock); |
|
145 ptimer_reload(s); |
|
146 } |
|
147 } |
|
148 |
|
149 /* Set the initial countdown value. If reload is nonzero then also set |
|
150 count = limit. */ |
|
151 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) |
|
152 { |
|
153 s->limit = limit; |
|
154 if (reload) |
|
155 s->delta = limit; |
|
156 if (s->enabled && reload) { |
|
157 s->next_event = qemu_get_clock(vm_clock); |
|
158 ptimer_reload(s); |
|
159 } |
|
160 } |
|
161 |
|
162 void qemu_put_ptimer(QEMUFile *f, ptimer_state *s) |
|
163 { |
|
164 qemu_put_byte(f, s->enabled); |
|
165 qemu_put_be64s(f, &s->limit); |
|
166 qemu_put_be64s(f, &s->delta); |
|
167 qemu_put_be32s(f, &s->period_frac); |
|
168 qemu_put_sbe64s(f, &s->period); |
|
169 qemu_put_sbe64s(f, &s->last_event); |
|
170 qemu_put_sbe64s(f, &s->next_event); |
|
171 qemu_put_timer(f, s->timer); |
|
172 } |
|
173 |
|
174 void qemu_get_ptimer(QEMUFile *f, ptimer_state *s) |
|
175 { |
|
176 s->enabled = qemu_get_byte(f); |
|
177 qemu_get_be64s(f, &s->limit); |
|
178 qemu_get_be64s(f, &s->delta); |
|
179 qemu_get_be32s(f, &s->period_frac); |
|
180 qemu_get_sbe64s(f, &s->period); |
|
181 qemu_get_sbe64s(f, &s->last_event); |
|
182 qemu_get_sbe64s(f, &s->next_event); |
|
183 qemu_get_timer(f, s->timer); |
|
184 } |
|
185 |
|
186 ptimer_state *ptimer_init(QEMUBH *bh) |
|
187 { |
|
188 ptimer_state *s; |
|
189 |
|
190 s = (ptimer_state *)qemu_mallocz(sizeof(ptimer_state)); |
|
191 s->bh = bh; |
|
192 s->timer = qemu_new_timer(vm_clock, ptimer_tick, s); |
|
193 return s; |
|
194 } |