|
1 /* |
|
2 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics, |
|
3 * USB2.0 OTG compliant core used in various chips. |
|
4 * |
|
5 * Copyright (C) 2008 Nokia Corporation |
|
6 * Written by Andrzej Zaborowski <andrew@openedhand.com> |
|
7 * |
|
8 * This program is free software; you can redistribute it and/or |
|
9 * modify it under the terms of the GNU General Public License as |
|
10 * published by the Free Software Foundation; either version 2 or |
|
11 * (at your option) version 3 of the License. |
|
12 * |
|
13 * This program is distributed in the hope that it will be useful, |
|
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
16 * GNU General Public License for more details. |
|
17 * |
|
18 * You should have received a copy of the GNU General Public License |
|
19 * along with this program; if not, write to the Free Software |
|
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
|
21 * MA 02111-1307 USA |
|
22 * |
|
23 * Only host-mode and non-DMA accesses are currently supported. |
|
24 */ |
|
25 #include "qemu-common.h" |
|
26 #include "qemu-timer.h" |
|
27 #include "usb.h" |
|
28 #include "irq.h" |
|
29 |
|
30 /* Common USB registers */ |
|
31 #define MUSB_HDRC_FADDR 0x00 /* 8-bit */ |
|
32 #define MUSB_HDRC_POWER 0x01 /* 8-bit */ |
|
33 |
|
34 #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */ |
|
35 #define MUSB_HDRC_INTRRX 0x04 |
|
36 #define MUSB_HDRC_INTRTXE 0x06 |
|
37 #define MUSB_HDRC_INTRRXE 0x08 |
|
38 #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */ |
|
39 #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */ |
|
40 #define MUSB_HDRC_FRAME 0x0c /* 16-bit */ |
|
41 #define MUSB_HDRC_INDEX 0x0e /* 8 bit */ |
|
42 #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */ |
|
43 |
|
44 /* Per-EP registers in indexed mode */ |
|
45 #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */ |
|
46 |
|
47 /* EP FIFOs */ |
|
48 #define MUSB_HDRC_FIFO 0x20 |
|
49 |
|
50 /* Additional Control Registers */ |
|
51 #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */ |
|
52 |
|
53 /* These are indexed */ |
|
54 #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */ |
|
55 #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */ |
|
56 #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */ |
|
57 #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */ |
|
58 |
|
59 /* Some more registers */ |
|
60 #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */ |
|
61 #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */ |
|
62 |
|
63 /* Added in HDRC 1.9(?) & MHDRC 1.4 */ |
|
64 /* ULPI pass-through */ |
|
65 #define MUSB_HDRC_ULPI_VBUSCTL 0x70 |
|
66 #define MUSB_HDRC_ULPI_REGDATA 0x74 |
|
67 #define MUSB_HDRC_ULPI_REGADDR 0x75 |
|
68 #define MUSB_HDRC_ULPI_REGCTL 0x76 |
|
69 |
|
70 /* Extended config & PHY control */ |
|
71 #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */ |
|
72 #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */ |
|
73 #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */ |
|
74 #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */ |
|
75 #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */ |
|
76 #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */ |
|
77 #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */ |
|
78 |
|
79 /* Per-EP BUSCTL registers */ |
|
80 #define MUSB_HDRC_BUSCTL 0x80 |
|
81 |
|
82 /* Per-EP registers in flat mode */ |
|
83 #define MUSB_HDRC_EP 0x100 |
|
84 |
|
85 /* offsets to registers in flat model */ |
|
86 #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */ |
|
87 #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */ |
|
88 #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */ |
|
89 #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */ |
|
90 #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */ |
|
91 #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */ |
|
92 #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */ |
|
93 #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */ |
|
94 #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */ |
|
95 #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */ |
|
96 #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */ |
|
97 #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */ |
|
98 #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */ |
|
99 #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */ |
|
100 #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */ |
|
101 |
|
102 /* "Bus control" registers */ |
|
103 #define MUSB_HDRC_TXFUNCADDR 0x00 |
|
104 #define MUSB_HDRC_TXHUBADDR 0x02 |
|
105 #define MUSB_HDRC_TXHUBPORT 0x03 |
|
106 |
|
107 #define MUSB_HDRC_RXFUNCADDR 0x04 |
|
108 #define MUSB_HDRC_RXHUBADDR 0x06 |
|
109 #define MUSB_HDRC_RXHUBPORT 0x07 |
|
110 |
|
111 /* |
|
112 * MUSBHDRC Register bit masks |
|
113 */ |
|
114 |
|
115 /* POWER */ |
|
116 #define MGC_M_POWER_ISOUPDATE 0x80 |
|
117 #define MGC_M_POWER_SOFTCONN 0x40 |
|
118 #define MGC_M_POWER_HSENAB 0x20 |
|
119 #define MGC_M_POWER_HSMODE 0x10 |
|
120 #define MGC_M_POWER_RESET 0x08 |
|
121 #define MGC_M_POWER_RESUME 0x04 |
|
122 #define MGC_M_POWER_SUSPENDM 0x02 |
|
123 #define MGC_M_POWER_ENSUSPEND 0x01 |
|
124 |
|
125 /* INTRUSB */ |
|
126 #define MGC_M_INTR_SUSPEND 0x01 |
|
127 #define MGC_M_INTR_RESUME 0x02 |
|
128 #define MGC_M_INTR_RESET 0x04 |
|
129 #define MGC_M_INTR_BABBLE 0x04 |
|
130 #define MGC_M_INTR_SOF 0x08 |
|
131 #define MGC_M_INTR_CONNECT 0x10 |
|
132 #define MGC_M_INTR_DISCONNECT 0x20 |
|
133 #define MGC_M_INTR_SESSREQ 0x40 |
|
134 #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */ |
|
135 #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */ |
|
136 |
|
137 /* DEVCTL */ |
|
138 #define MGC_M_DEVCTL_BDEVICE 0x80 |
|
139 #define MGC_M_DEVCTL_FSDEV 0x40 |
|
140 #define MGC_M_DEVCTL_LSDEV 0x20 |
|
141 #define MGC_M_DEVCTL_VBUS 0x18 |
|
142 #define MGC_S_DEVCTL_VBUS 3 |
|
143 #define MGC_M_DEVCTL_HM 0x04 |
|
144 #define MGC_M_DEVCTL_HR 0x02 |
|
145 #define MGC_M_DEVCTL_SESSION 0x01 |
|
146 |
|
147 /* TESTMODE */ |
|
148 #define MGC_M_TEST_FORCE_HOST 0x80 |
|
149 #define MGC_M_TEST_FIFO_ACCESS 0x40 |
|
150 #define MGC_M_TEST_FORCE_FS 0x20 |
|
151 #define MGC_M_TEST_FORCE_HS 0x10 |
|
152 #define MGC_M_TEST_PACKET 0x08 |
|
153 #define MGC_M_TEST_K 0x04 |
|
154 #define MGC_M_TEST_J 0x02 |
|
155 #define MGC_M_TEST_SE0_NAK 0x01 |
|
156 |
|
157 /* CSR0 */ |
|
158 #define MGC_M_CSR0_FLUSHFIFO 0x0100 |
|
159 #define MGC_M_CSR0_TXPKTRDY 0x0002 |
|
160 #define MGC_M_CSR0_RXPKTRDY 0x0001 |
|
161 |
|
162 /* CSR0 in Peripheral mode */ |
|
163 #define MGC_M_CSR0_P_SVDSETUPEND 0x0080 |
|
164 #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040 |
|
165 #define MGC_M_CSR0_P_SENDSTALL 0x0020 |
|
166 #define MGC_M_CSR0_P_SETUPEND 0x0010 |
|
167 #define MGC_M_CSR0_P_DATAEND 0x0008 |
|
168 #define MGC_M_CSR0_P_SENTSTALL 0x0004 |
|
169 |
|
170 /* CSR0 in Host mode */ |
|
171 #define MGC_M_CSR0_H_NO_PING 0x0800 |
|
172 #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */ |
|
173 #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */ |
|
174 #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080 |
|
175 #define MGC_M_CSR0_H_STATUSPKT 0x0040 |
|
176 #define MGC_M_CSR0_H_REQPKT 0x0020 |
|
177 #define MGC_M_CSR0_H_ERROR 0x0010 |
|
178 #define MGC_M_CSR0_H_SETUPPKT 0x0008 |
|
179 #define MGC_M_CSR0_H_RXSTALL 0x0004 |
|
180 |
|
181 /* CONFIGDATA */ |
|
182 #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */ |
|
183 #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */ |
|
184 #define MGC_M_CONFIGDATA_BIGENDIAN 0x20 |
|
185 #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */ |
|
186 #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */ |
|
187 #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */ |
|
188 #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */ |
|
189 #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */ |
|
190 |
|
191 /* TXCSR in Peripheral and Host mode */ |
|
192 #define MGC_M_TXCSR_AUTOSET 0x8000 |
|
193 #define MGC_M_TXCSR_ISO 0x4000 |
|
194 #define MGC_M_TXCSR_MODE 0x2000 |
|
195 #define MGC_M_TXCSR_DMAENAB 0x1000 |
|
196 #define MGC_M_TXCSR_FRCDATATOG 0x0800 |
|
197 #define MGC_M_TXCSR_DMAMODE 0x0400 |
|
198 #define MGC_M_TXCSR_CLRDATATOG 0x0040 |
|
199 #define MGC_M_TXCSR_FLUSHFIFO 0x0008 |
|
200 #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002 |
|
201 #define MGC_M_TXCSR_TXPKTRDY 0x0001 |
|
202 |
|
203 /* TXCSR in Peripheral mode */ |
|
204 #define MGC_M_TXCSR_P_INCOMPTX 0x0080 |
|
205 #define MGC_M_TXCSR_P_SENTSTALL 0x0020 |
|
206 #define MGC_M_TXCSR_P_SENDSTALL 0x0010 |
|
207 #define MGC_M_TXCSR_P_UNDERRUN 0x0004 |
|
208 |
|
209 /* TXCSR in Host mode */ |
|
210 #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200 |
|
211 #define MGC_M_TXCSR_H_DATATOGGLE 0x0100 |
|
212 #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080 |
|
213 #define MGC_M_TXCSR_H_RXSTALL 0x0020 |
|
214 #define MGC_M_TXCSR_H_ERROR 0x0004 |
|
215 |
|
216 /* RXCSR in Peripheral and Host mode */ |
|
217 #define MGC_M_RXCSR_AUTOCLEAR 0x8000 |
|
218 #define MGC_M_RXCSR_DMAENAB 0x2000 |
|
219 #define MGC_M_RXCSR_DISNYET 0x1000 |
|
220 #define MGC_M_RXCSR_DMAMODE 0x0800 |
|
221 #define MGC_M_RXCSR_INCOMPRX 0x0100 |
|
222 #define MGC_M_RXCSR_CLRDATATOG 0x0080 |
|
223 #define MGC_M_RXCSR_FLUSHFIFO 0x0010 |
|
224 #define MGC_M_RXCSR_DATAERROR 0x0008 |
|
225 #define MGC_M_RXCSR_FIFOFULL 0x0002 |
|
226 #define MGC_M_RXCSR_RXPKTRDY 0x0001 |
|
227 |
|
228 /* RXCSR in Peripheral mode */ |
|
229 #define MGC_M_RXCSR_P_ISO 0x4000 |
|
230 #define MGC_M_RXCSR_P_SENTSTALL 0x0040 |
|
231 #define MGC_M_RXCSR_P_SENDSTALL 0x0020 |
|
232 #define MGC_M_RXCSR_P_OVERRUN 0x0004 |
|
233 |
|
234 /* RXCSR in Host mode */ |
|
235 #define MGC_M_RXCSR_H_AUTOREQ 0x4000 |
|
236 #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400 |
|
237 #define MGC_M_RXCSR_H_DATATOGGLE 0x0200 |
|
238 #define MGC_M_RXCSR_H_RXSTALL 0x0040 |
|
239 #define MGC_M_RXCSR_H_REQPKT 0x0020 |
|
240 #define MGC_M_RXCSR_H_ERROR 0x0004 |
|
241 |
|
242 /* HUBADDR */ |
|
243 #define MGC_M_HUBADDR_MULTI_TT 0x80 |
|
244 |
|
245 /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */ |
|
246 #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02 |
|
247 #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01 |
|
248 #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08 |
|
249 #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04 |
|
250 #define MGC_M_ULPI_REGCTL_COMPLETE 0x02 |
|
251 #define MGC_M_ULPI_REGCTL_REG 0x01 |
|
252 |
|
253 static void musb_attach(USBPort *port, USBDevice *dev); |
|
254 |
|
255 struct musb_s { |
|
256 qemu_irq *irqs; |
|
257 USBPort port; |
|
258 |
|
259 int idx; |
|
260 uint8_t devctl; |
|
261 uint8_t power; |
|
262 uint8_t faddr; |
|
263 |
|
264 uint8_t intr; |
|
265 uint8_t mask; |
|
266 uint16_t tx_intr; |
|
267 uint16_t tx_mask; |
|
268 uint16_t rx_intr; |
|
269 uint16_t rx_mask; |
|
270 |
|
271 int setup_len; |
|
272 int session; |
|
273 |
|
274 uint32_t buf[0x2000]; |
|
275 |
|
276 struct musb_ep_s { |
|
277 uint16_t faddr[2]; |
|
278 uint8_t haddr[2]; |
|
279 uint8_t hport[2]; |
|
280 uint16_t csr[2]; |
|
281 uint16_t maxp[2]; |
|
282 uint16_t rxcount; |
|
283 uint8_t type[2]; |
|
284 uint8_t interval[2]; |
|
285 uint8_t config; |
|
286 uint8_t fifosize; |
|
287 int timeout[2]; /* Always in microframes */ |
|
288 |
|
289 uint32_t *buf[2]; |
|
290 int fifolen[2]; |
|
291 int fifostart[2]; |
|
292 int fifoaddr[2]; |
|
293 USBPacket packey[2]; |
|
294 int status[2]; |
|
295 int ext_size[2]; |
|
296 |
|
297 /* For callbacks' use */ |
|
298 int epnum; |
|
299 int interrupt[2]; |
|
300 struct musb_s *musb; |
|
301 USBCallback *delayed_cb[2]; |
|
302 QEMUTimer *intv_timer[2]; |
|
303 /* Duplicating the world since 2008!... probably we should have 32 |
|
304 * logical, single endpoints instead. */ |
|
305 } ep[16]; |
|
306 } *musb_init(qemu_irq *irqs) |
|
307 { |
|
308 struct musb_s *s = qemu_mallocz(sizeof(*s)); |
|
309 int i; |
|
310 |
|
311 s->irqs = irqs; |
|
312 |
|
313 s->faddr = 0x00; |
|
314 s->power = MGC_M_POWER_HSENAB; |
|
315 s->tx_intr = 0x0000; |
|
316 s->rx_intr = 0x0000; |
|
317 s->tx_mask = 0xffff; |
|
318 s->rx_mask = 0xffff; |
|
319 s->intr = 0x00; |
|
320 s->mask = 0x06; |
|
321 s->idx = 0; |
|
322 |
|
323 /* TODO: _DW */ |
|
324 s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO; |
|
325 for (i = 0; i < 16; i ++) { |
|
326 s->ep[i].fifosize = 64; |
|
327 s->ep[i].maxp[0] = 0x40; |
|
328 s->ep[i].maxp[1] = 0x40; |
|
329 s->ep[i].musb = s; |
|
330 s->ep[i].epnum = i; |
|
331 } |
|
332 |
|
333 qemu_register_usb_port(&s->port, s, 0, musb_attach); |
|
334 |
|
335 return s; |
|
336 } |
|
337 |
|
338 static void musb_vbus_set(struct musb_s *s, int level) |
|
339 { |
|
340 if (level) |
|
341 s->devctl |= 3 << MGC_S_DEVCTL_VBUS; |
|
342 else |
|
343 s->devctl &= ~MGC_M_DEVCTL_VBUS; |
|
344 |
|
345 qemu_set_irq(s->irqs[musb_set_vbus], level); |
|
346 } |
|
347 |
|
348 static void musb_intr_set(struct musb_s *s, int line, int level) |
|
349 { |
|
350 if (!level) { |
|
351 s->intr &= ~(1 << line); |
|
352 qemu_irq_lower(s->irqs[line]); |
|
353 } else if (s->mask & (1 << line)) { |
|
354 s->intr |= 1 << line; |
|
355 qemu_irq_raise(s->irqs[line]); |
|
356 } |
|
357 } |
|
358 |
|
359 static void musb_tx_intr_set(struct musb_s *s, int line, int level) |
|
360 { |
|
361 if (!level) { |
|
362 s->tx_intr &= ~(1 << line); |
|
363 if (!s->tx_intr) |
|
364 qemu_irq_lower(s->irqs[musb_irq_tx]); |
|
365 } else if (s->tx_mask & (1 << line)) { |
|
366 s->tx_intr |= 1 << line; |
|
367 qemu_irq_raise(s->irqs[musb_irq_tx]); |
|
368 } |
|
369 } |
|
370 |
|
371 static void musb_rx_intr_set(struct musb_s *s, int line, int level) |
|
372 { |
|
373 if (line) { |
|
374 if (!level) { |
|
375 s->rx_intr &= ~(1 << line); |
|
376 if (!s->rx_intr) |
|
377 qemu_irq_lower(s->irqs[musb_irq_rx]); |
|
378 } else if (s->rx_mask & (1 << line)) { |
|
379 s->rx_intr |= 1 << line; |
|
380 qemu_irq_raise(s->irqs[musb_irq_rx]); |
|
381 } |
|
382 } else |
|
383 musb_tx_intr_set(s, line, level); |
|
384 } |
|
385 |
|
386 uint32_t musb_core_intr_get(struct musb_s *s) |
|
387 { |
|
388 return (s->rx_intr << 15) | s->tx_intr; |
|
389 } |
|
390 |
|
391 void musb_core_intr_clear(struct musb_s *s, uint32_t mask) |
|
392 { |
|
393 if (s->rx_intr) { |
|
394 s->rx_intr &= mask >> 15; |
|
395 if (!s->rx_intr) |
|
396 qemu_irq_lower(s->irqs[musb_irq_rx]); |
|
397 } |
|
398 |
|
399 if (s->tx_intr) { |
|
400 s->tx_intr &= mask & 0xffff; |
|
401 if (!s->tx_intr) |
|
402 qemu_irq_lower(s->irqs[musb_irq_tx]); |
|
403 } |
|
404 } |
|
405 |
|
406 void musb_set_size(struct musb_s *s, int epnum, int size, int is_tx) |
|
407 { |
|
408 s->ep[epnum].ext_size[!is_tx] = size; |
|
409 s->ep[epnum].fifostart[0] = 0; |
|
410 s->ep[epnum].fifostart[1] = 0; |
|
411 s->ep[epnum].fifolen[0] = 0; |
|
412 s->ep[epnum].fifolen[1] = 0; |
|
413 } |
|
414 |
|
415 static void musb_session_update(struct musb_s *s, int prev_dev, int prev_sess) |
|
416 { |
|
417 int detect_prev = prev_dev && prev_sess; |
|
418 int detect = !!s->port.dev && s->session; |
|
419 |
|
420 if (detect && !detect_prev) { |
|
421 /* Let's skip the ID pin sense and VBUS sense formalities and |
|
422 * and signal a successful SRP directly. This should work at least |
|
423 * for the Linux driver stack. */ |
|
424 musb_intr_set(s, musb_irq_connect, 1); |
|
425 |
|
426 if (s->port.dev->speed == USB_SPEED_LOW) { |
|
427 s->devctl &= ~MGC_M_DEVCTL_FSDEV; |
|
428 s->devctl |= MGC_M_DEVCTL_LSDEV; |
|
429 } else { |
|
430 s->devctl |= MGC_M_DEVCTL_FSDEV; |
|
431 s->devctl &= ~MGC_M_DEVCTL_LSDEV; |
|
432 } |
|
433 |
|
434 /* A-mode? */ |
|
435 s->devctl &= ~MGC_M_DEVCTL_BDEVICE; |
|
436 |
|
437 /* Host-mode bit? */ |
|
438 s->devctl |= MGC_M_DEVCTL_HM; |
|
439 #if 1 |
|
440 musb_vbus_set(s, 1); |
|
441 #endif |
|
442 } else if (!detect && detect_prev) { |
|
443 #if 1 |
|
444 musb_vbus_set(s, 0); |
|
445 #endif |
|
446 } |
|
447 } |
|
448 |
|
449 /* Attach or detach a device on our only port. */ |
|
450 static void musb_attach(USBPort *port, USBDevice *dev) |
|
451 { |
|
452 struct musb_s *s = (struct musb_s *) port->opaque; |
|
453 USBDevice *curr; |
|
454 |
|
455 port = &s->port; |
|
456 curr = port->dev; |
|
457 |
|
458 if (dev) { |
|
459 if (curr) { |
|
460 usb_attach(port, NULL); |
|
461 /* TODO: signal some interrupts */ |
|
462 } |
|
463 |
|
464 musb_intr_set(s, musb_irq_vbus_request, 1); |
|
465 |
|
466 /* Send the attach message to device */ |
|
467 usb_send_msg(dev, USB_MSG_ATTACH); |
|
468 } else if (curr) { |
|
469 /* Send the detach message */ |
|
470 usb_send_msg(curr, USB_MSG_DETACH); |
|
471 |
|
472 musb_intr_set(s, musb_irq_disconnect, 1); |
|
473 } |
|
474 |
|
475 port->dev = dev; |
|
476 |
|
477 musb_session_update(s, !!curr, s->session); |
|
478 } |
|
479 |
|
480 static inline void musb_cb_tick0(void *opaque) |
|
481 { |
|
482 struct musb_ep_s *ep = (struct musb_ep_s *) opaque; |
|
483 |
|
484 ep->delayed_cb[0](&ep->packey[0], opaque); |
|
485 } |
|
486 |
|
487 static inline void musb_cb_tick1(void *opaque) |
|
488 { |
|
489 struct musb_ep_s *ep = (struct musb_ep_s *) opaque; |
|
490 |
|
491 ep->delayed_cb[1](&ep->packey[1], opaque); |
|
492 } |
|
493 |
|
494 #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0) |
|
495 |
|
496 static inline void musb_schedule_cb(USBPacket *packey, void *opaque, int dir) |
|
497 { |
|
498 struct musb_ep_s *ep = (struct musb_ep_s *) opaque; |
|
499 int timeout = 0; |
|
500 |
|
501 if (ep->status[dir] == USB_RET_NAK) |
|
502 timeout = ep->timeout[dir]; |
|
503 else if (ep->interrupt[dir]) |
|
504 timeout = 8; |
|
505 else |
|
506 return musb_cb_tick(opaque); |
|
507 |
|
508 if (!ep->intv_timer[dir]) |
|
509 ep->intv_timer[dir] = qemu_new_timer(vm_clock, musb_cb_tick, opaque); |
|
510 |
|
511 qemu_mod_timer(ep->intv_timer[dir], qemu_get_clock(vm_clock) + |
|
512 muldiv64(timeout, ticks_per_sec, 8000)); |
|
513 } |
|
514 |
|
515 static void musb_schedule0_cb(USBPacket *packey, void *opaque) |
|
516 { |
|
517 return musb_schedule_cb(packey, opaque, 0); |
|
518 } |
|
519 |
|
520 static void musb_schedule1_cb(USBPacket *packey, void *opaque) |
|
521 { |
|
522 return musb_schedule_cb(packey, opaque, 1); |
|
523 } |
|
524 |
|
525 static int musb_timeout(int ttype, int speed, int val) |
|
526 { |
|
527 #if 1 |
|
528 return val << 3; |
|
529 #endif |
|
530 |
|
531 switch (ttype) { |
|
532 case USB_ENDPOINT_XFER_CONTROL: |
|
533 if (val < 2) |
|
534 return 0; |
|
535 else if (speed == USB_SPEED_HIGH) |
|
536 return 1 << (val - 1); |
|
537 else |
|
538 return 8 << (val - 1); |
|
539 |
|
540 case USB_ENDPOINT_XFER_INT: |
|
541 if (speed == USB_SPEED_HIGH) |
|
542 if (val < 2) |
|
543 return 0; |
|
544 else |
|
545 return 1 << (val - 1); |
|
546 else |
|
547 return val << 3; |
|
548 |
|
549 case USB_ENDPOINT_XFER_BULK: |
|
550 case USB_ENDPOINT_XFER_ISOC: |
|
551 if (val < 2) |
|
552 return 0; |
|
553 else if (speed == USB_SPEED_HIGH) |
|
554 return 1 << (val - 1); |
|
555 else |
|
556 return 8 << (val - 1); |
|
557 /* TODO: what with low-speed Bulk and Isochronous? */ |
|
558 } |
|
559 |
|
560 cpu_abort(cpu_single_env, "bad interval\n"); |
|
561 } |
|
562 |
|
563 static inline void musb_packet(struct musb_s *s, struct musb_ep_s *ep, |
|
564 int epnum, int pid, int len, USBCallback cb, int dir) |
|
565 { |
|
566 int ret; |
|
567 int idx = epnum && dir; |
|
568 int ttype; |
|
569 |
|
570 /* ep->type[0,1] contains: |
|
571 * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow) |
|
572 * in bits 5:4 the transfer type (BULK / INT) |
|
573 * in bits 3:0 the EP num |
|
574 */ |
|
575 ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0; |
|
576 |
|
577 ep->timeout[dir] = musb_timeout(ttype, |
|
578 ep->type[idx] >> 6, ep->interval[idx]); |
|
579 ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT; |
|
580 ep->delayed_cb[dir] = cb; |
|
581 cb = dir ? musb_schedule1_cb : musb_schedule0_cb; |
|
582 |
|
583 ep->packey[dir].pid = pid; |
|
584 /* A wild guess on the FADDR semantics... */ |
|
585 ep->packey[dir].devaddr = ep->faddr[idx]; |
|
586 ep->packey[dir].devep = ep->type[idx] & 0xf; |
|
587 ep->packey[dir].data = (void *) ep->buf[idx]; |
|
588 ep->packey[dir].len = len; |
|
589 ep->packey[dir].complete_cb = cb; |
|
590 ep->packey[dir].complete_opaque = ep; |
|
591 |
|
592 if (s->port.dev) |
|
593 ret = s->port.dev->handle_packet(s->port.dev, &ep->packey[dir]); |
|
594 else |
|
595 ret = USB_RET_NODEV; |
|
596 |
|
597 if (ret == USB_RET_ASYNC) { |
|
598 ep->status[dir] = len; |
|
599 return; |
|
600 } |
|
601 |
|
602 ep->status[dir] = ret; |
|
603 usb_packet_complete(&ep->packey[dir]); |
|
604 } |
|
605 |
|
606 static void musb_tx_packet_complete(USBPacket *packey, void *opaque) |
|
607 { |
|
608 /* Unfortunately we can't use packey->devep because that's the remote |
|
609 * endpoint number and may be different than our local. */ |
|
610 struct musb_ep_s *ep = (struct musb_ep_s *) opaque; |
|
611 int epnum = ep->epnum; |
|
612 struct musb_s *s = ep->musb; |
|
613 |
|
614 ep->fifostart[0] = 0; |
|
615 ep->fifolen[0] = 0; |
|
616 #ifdef CLEAR_NAK |
|
617 if (ep->status[0] != USB_RET_NAK) { |
|
618 #endif |
|
619 if (epnum) |
|
620 ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY); |
|
621 else |
|
622 ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY; |
|
623 #ifdef CLEAR_NAK |
|
624 } |
|
625 #endif |
|
626 |
|
627 /* Clear all of the error bits first */ |
|
628 if (epnum) |
|
629 ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL | |
|
630 MGC_M_TXCSR_H_NAKTIMEOUT); |
|
631 else |
|
632 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL | |
|
633 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING); |
|
634 |
|
635 if (ep->status[0] == USB_RET_STALL) { |
|
636 /* Command not supported by target! */ |
|
637 ep->status[0] = 0; |
|
638 |
|
639 if (epnum) |
|
640 ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL; |
|
641 else |
|
642 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL; |
|
643 } |
|
644 |
|
645 if (ep->status[0] == USB_RET_NAK) { |
|
646 ep->status[0] = 0; |
|
647 |
|
648 /* NAK timeouts are only generated in Bulk transfers and |
|
649 * Data-errors in Isochronous. */ |
|
650 if (ep->interrupt[0]) { |
|
651 return; |
|
652 } |
|
653 |
|
654 if (epnum) |
|
655 ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT; |
|
656 else |
|
657 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT; |
|
658 } |
|
659 |
|
660 if (ep->status[0] < 0) { |
|
661 if (ep->status[0] == USB_RET_BABBLE) |
|
662 musb_intr_set(s, musb_irq_rst_babble, 1); |
|
663 |
|
664 /* Pretend we've tried three times already and failed (in |
|
665 * case of USB_TOKEN_SETUP). */ |
|
666 if (epnum) |
|
667 ep->csr[0] |= MGC_M_TXCSR_H_ERROR; |
|
668 else |
|
669 ep->csr[0] |= MGC_M_CSR0_H_ERROR; |
|
670 |
|
671 musb_tx_intr_set(s, epnum, 1); |
|
672 return; |
|
673 } |
|
674 /* TODO: check len for over/underruns of an OUT packet? */ |
|
675 |
|
676 #ifdef SETUPLEN_HACK |
|
677 if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP) |
|
678 s->setup_len = ep->packey[0].data[6]; |
|
679 #endif |
|
680 |
|
681 /* In DMA mode: if no error, assert DMA request for this EP, |
|
682 * and skip the interrupt. */ |
|
683 musb_tx_intr_set(s, epnum, 1); |
|
684 } |
|
685 |
|
686 static void musb_rx_packet_complete(USBPacket *packey, void *opaque) |
|
687 { |
|
688 /* Unfortunately we can't use packey->devep because that's the remote |
|
689 * endpoint number and may be different than our local. */ |
|
690 struct musb_ep_s *ep = (struct musb_ep_s *) opaque; |
|
691 int epnum = ep->epnum; |
|
692 struct musb_s *s = ep->musb; |
|
693 |
|
694 ep->fifostart[1] = 0; |
|
695 ep->fifolen[1] = 0; |
|
696 |
|
697 #ifdef CLEAR_NAK |
|
698 if (ep->status[1] != USB_RET_NAK) { |
|
699 #endif |
|
700 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT; |
|
701 if (!epnum) |
|
702 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT; |
|
703 #ifdef CLEAR_NAK |
|
704 } |
|
705 #endif |
|
706 |
|
707 /* Clear all of the imaginable error bits first */ |
|
708 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL | |
|
709 MGC_M_RXCSR_DATAERROR); |
|
710 if (!epnum) |
|
711 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL | |
|
712 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING); |
|
713 |
|
714 if (ep->status[1] == USB_RET_STALL) { |
|
715 ep->status[1] = 0; |
|
716 packey->len = 0; |
|
717 |
|
718 ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL; |
|
719 if (!epnum) |
|
720 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL; |
|
721 } |
|
722 |
|
723 if (ep->status[1] == USB_RET_NAK) { |
|
724 ep->status[1] = 0; |
|
725 |
|
726 /* NAK timeouts are only generated in Bulk transfers and |
|
727 * Data-errors in Isochronous. */ |
|
728 if (ep->interrupt[1]) |
|
729 return musb_packet(s, ep, epnum, USB_TOKEN_IN, |
|
730 packey->len, musb_rx_packet_complete, 1); |
|
731 |
|
732 ep->csr[1] |= MGC_M_RXCSR_DATAERROR; |
|
733 if (!epnum) |
|
734 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT; |
|
735 } |
|
736 |
|
737 if (ep->status[1] < 0) { |
|
738 if (ep->status[1] == USB_RET_BABBLE) { |
|
739 musb_intr_set(s, musb_irq_rst_babble, 1); |
|
740 return; |
|
741 } |
|
742 |
|
743 /* Pretend we've tried three times already and failed (in |
|
744 * case of a control transfer). */ |
|
745 ep->csr[1] |= MGC_M_RXCSR_H_ERROR; |
|
746 if (!epnum) |
|
747 ep->csr[0] |= MGC_M_CSR0_H_ERROR; |
|
748 |
|
749 musb_rx_intr_set(s, epnum, 1); |
|
750 return; |
|
751 } |
|
752 /* TODO: check len for over/underruns of an OUT packet? */ |
|
753 /* TODO: perhaps make use of e->ext_size[1] here. */ |
|
754 |
|
755 packey->len = ep->status[1]; |
|
756 |
|
757 if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) { |
|
758 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY; |
|
759 if (!epnum) |
|
760 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY; |
|
761 |
|
762 ep->rxcount = packey->len; /* XXX: MIN(packey->len, ep->maxp[1]); */ |
|
763 /* In DMA mode: assert DMA request for this EP */ |
|
764 } |
|
765 |
|
766 /* Only if DMA has not been asserted */ |
|
767 musb_rx_intr_set(s, epnum, 1); |
|
768 } |
|
769 |
|
770 static void musb_tx_rdy(struct musb_s *s, int epnum) |
|
771 { |
|
772 struct musb_ep_s *ep = s->ep + epnum; |
|
773 int pid; |
|
774 int total, valid = 0; |
|
775 |
|
776 ep->fifostart[0] += ep->fifolen[0]; |
|
777 ep->fifolen[0] = 0; |
|
778 |
|
779 /* XXX: how's the total size of the packet retrieved exactly in |
|
780 * the generic case? */ |
|
781 total = ep->maxp[0] & 0x3ff; |
|
782 |
|
783 if (ep->ext_size[0]) { |
|
784 total = ep->ext_size[0]; |
|
785 ep->ext_size[0] = 0; |
|
786 valid = 1; |
|
787 } |
|
788 |
|
789 /* If the packet is not fully ready yet, wait for a next segment. */ |
|
790 if (epnum && (ep->fifostart[0] << 2) < total) |
|
791 return; |
|
792 |
|
793 if (!valid) |
|
794 total = ep->fifostart[0] << 2; |
|
795 |
|
796 pid = USB_TOKEN_OUT; |
|
797 if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) { |
|
798 pid = USB_TOKEN_SETUP; |
|
799 if (total != 8) |
|
800 printf("%s: illegal SETUPPKT length of %i bytes\n", |
|
801 __FUNCTION__, total); |
|
802 /* Controller should retry SETUP packets three times on errors |
|
803 * but it doesn't make sense for us to do that. */ |
|
804 } |
|
805 |
|
806 return musb_packet(s, ep, epnum, pid, |
|
807 total, musb_tx_packet_complete, 0); |
|
808 } |
|
809 |
|
810 static void musb_rx_req(struct musb_s *s, int epnum) |
|
811 { |
|
812 struct musb_ep_s *ep = s->ep + epnum; |
|
813 int total; |
|
814 |
|
815 /* If we already have a packet, which didn't fit into the |
|
816 * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */ |
|
817 if (ep->packey[1].pid == USB_TOKEN_IN && ep->status[1] >= 0 && |
|
818 (ep->fifostart[1] << 2) + ep->rxcount < |
|
819 ep->packey[1].len) { |
|
820 ep->fifostart[1] += ep->rxcount >> 2; |
|
821 ep->fifolen[1] = 0; |
|
822 |
|
823 ep->rxcount = MIN(ep->packey[0].len - (ep->fifostart[1] << 2), |
|
824 ep->maxp[1]); |
|
825 |
|
826 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT; |
|
827 if (!epnum) |
|
828 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT; |
|
829 |
|
830 /* Clear all of the error bits first */ |
|
831 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL | |
|
832 MGC_M_RXCSR_DATAERROR); |
|
833 if (!epnum) |
|
834 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL | |
|
835 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING); |
|
836 |
|
837 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY; |
|
838 if (!epnum) |
|
839 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY; |
|
840 musb_rx_intr_set(s, epnum, 1); |
|
841 return; |
|
842 } |
|
843 |
|
844 /* The driver sets maxp[1] to 64 or less because it knows the hardware |
|
845 * FIFO is this deep. Bigger packets get split in |
|
846 * usb_generic_handle_packet but we can also do the splitting locally |
|
847 * for performance. It turns out we can also have a bigger FIFO and |
|
848 * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals |
|
849 * OK with single packets of even 32KB and we avoid splitting, however |
|
850 * usb_msd.c sometimes sends a packet bigger than what Linux expects |
|
851 * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting |
|
852 * hides this overrun from Linux. Up to 4096 everything is fine |
|
853 * though. Currently this is disabled. |
|
854 * |
|
855 * XXX: mind ep->fifosize. */ |
|
856 total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf)); |
|
857 |
|
858 #ifdef SETUPLEN_HACK |
|
859 /* Why should *we* do that instead of Linux? */ |
|
860 if (!epnum) { |
|
861 if (ep->packey[0].devaddr == 2) |
|
862 total = MIN(s->setup_len, 8); |
|
863 else |
|
864 total = MIN(s->setup_len, 64); |
|
865 s->setup_len -= total; |
|
866 } |
|
867 #endif |
|
868 |
|
869 return musb_packet(s, ep, epnum, USB_TOKEN_IN, |
|
870 total, musb_rx_packet_complete, 1); |
|
871 } |
|
872 |
|
873 static void musb_ep_frame_cancel(struct musb_ep_s *ep, int dir) |
|
874 { |
|
875 if (ep->intv_timer[dir]) |
|
876 qemu_del_timer(ep->intv_timer[dir]); |
|
877 } |
|
878 |
|
879 /* Bus control */ |
|
880 static uint8_t musb_busctl_readb(void *opaque, int ep, int addr) |
|
881 { |
|
882 struct musb_s *s = (struct musb_s *) opaque; |
|
883 |
|
884 switch (addr) { |
|
885 /* For USB2.0 HS hubs only */ |
|
886 case MUSB_HDRC_TXHUBADDR: |
|
887 return s->ep[ep].haddr[0]; |
|
888 case MUSB_HDRC_TXHUBPORT: |
|
889 return s->ep[ep].hport[0]; |
|
890 case MUSB_HDRC_RXHUBADDR: |
|
891 return s->ep[ep].haddr[1]; |
|
892 case MUSB_HDRC_RXHUBPORT: |
|
893 return s->ep[ep].hport[1]; |
|
894 |
|
895 default: |
|
896 printf("%s: unknown register at %02x\n", __FUNCTION__, addr); |
|
897 return 0x00; |
|
898 }; |
|
899 } |
|
900 |
|
901 static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value) |
|
902 { |
|
903 struct musb_s *s = (struct musb_s *) opaque; |
|
904 |
|
905 switch (addr) { |
|
906 case MUSB_HDRC_TXHUBADDR: |
|
907 s->ep[ep].haddr[0] = value; |
|
908 break; |
|
909 case MUSB_HDRC_TXHUBPORT: |
|
910 s->ep[ep].hport[0] = value; |
|
911 break; |
|
912 case MUSB_HDRC_RXHUBADDR: |
|
913 s->ep[ep].haddr[1] = value; |
|
914 break; |
|
915 case MUSB_HDRC_RXHUBPORT: |
|
916 s->ep[ep].hport[1] = value; |
|
917 break; |
|
918 |
|
919 default: |
|
920 printf("%s: unknown register at %02x\n", __FUNCTION__, addr); |
|
921 }; |
|
922 } |
|
923 |
|
924 static uint16_t musb_busctl_readh(void *opaque, int ep, int addr) |
|
925 { |
|
926 struct musb_s *s = (struct musb_s *) opaque; |
|
927 |
|
928 switch (addr) { |
|
929 case MUSB_HDRC_TXFUNCADDR: |
|
930 return s->ep[ep].faddr[0]; |
|
931 case MUSB_HDRC_RXFUNCADDR: |
|
932 return s->ep[ep].faddr[1]; |
|
933 |
|
934 default: |
|
935 return musb_busctl_readb(s, ep, addr) | |
|
936 (musb_busctl_readb(s, ep, addr | 1) << 8); |
|
937 }; |
|
938 } |
|
939 |
|
940 static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value) |
|
941 { |
|
942 struct musb_s *s = (struct musb_s *) opaque; |
|
943 |
|
944 switch (addr) { |
|
945 case MUSB_HDRC_TXFUNCADDR: |
|
946 s->ep[ep].faddr[0] = value; |
|
947 break; |
|
948 case MUSB_HDRC_RXFUNCADDR: |
|
949 s->ep[ep].faddr[1] = value; |
|
950 break; |
|
951 |
|
952 default: |
|
953 musb_busctl_writeb(s, ep, addr, value & 0xff); |
|
954 musb_busctl_writeb(s, ep, addr | 1, value >> 8); |
|
955 }; |
|
956 } |
|
957 |
|
958 /* Endpoint control */ |
|
959 static uint8_t musb_ep_readb(void *opaque, int ep, int addr) |
|
960 { |
|
961 struct musb_s *s = (struct musb_s *) opaque; |
|
962 |
|
963 switch (addr) { |
|
964 case MUSB_HDRC_TXTYPE: |
|
965 return s->ep[ep].type[0]; |
|
966 case MUSB_HDRC_TXINTERVAL: |
|
967 return s->ep[ep].interval[0]; |
|
968 case MUSB_HDRC_RXTYPE: |
|
969 return s->ep[ep].type[1]; |
|
970 case MUSB_HDRC_RXINTERVAL: |
|
971 return s->ep[ep].interval[1]; |
|
972 case (MUSB_HDRC_FIFOSIZE & ~1): |
|
973 return 0x00; |
|
974 case MUSB_HDRC_FIFOSIZE: |
|
975 return ep ? s->ep[ep].fifosize : s->ep[ep].config; |
|
976 |
|
977 default: |
|
978 printf("%s: unknown register at %02x\n", __FUNCTION__, addr); |
|
979 return 0x00; |
|
980 }; |
|
981 } |
|
982 |
|
983 static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value) |
|
984 { |
|
985 struct musb_s *s = (struct musb_s *) opaque; |
|
986 |
|
987 switch (addr) { |
|
988 case MUSB_HDRC_TXTYPE: |
|
989 s->ep[ep].type[0] = value; |
|
990 break; |
|
991 case MUSB_HDRC_TXINTERVAL: |
|
992 s->ep[ep].interval[0] = value; |
|
993 musb_ep_frame_cancel(&s->ep[ep], 0); |
|
994 break; |
|
995 case MUSB_HDRC_RXTYPE: |
|
996 s->ep[ep].type[1] = value; |
|
997 break; |
|
998 case MUSB_HDRC_RXINTERVAL: |
|
999 s->ep[ep].interval[1] = value; |
|
1000 musb_ep_frame_cancel(&s->ep[ep], 1); |
|
1001 break; |
|
1002 case (MUSB_HDRC_FIFOSIZE & ~1): |
|
1003 break; |
|
1004 case MUSB_HDRC_FIFOSIZE: |
|
1005 printf("%s: somebody messes with fifosize (now %i bytes)\n", |
|
1006 __FUNCTION__, value); |
|
1007 s->ep[ep].fifosize = value; |
|
1008 break; |
|
1009 |
|
1010 default: |
|
1011 printf("%s: unknown register at %02x\n", __FUNCTION__, addr); |
|
1012 }; |
|
1013 } |
|
1014 |
|
1015 static uint16_t musb_ep_readh(void *opaque, int ep, int addr) |
|
1016 { |
|
1017 struct musb_s *s = (struct musb_s *) opaque; |
|
1018 uint16_t ret; |
|
1019 |
|
1020 switch (addr) { |
|
1021 case MUSB_HDRC_TXMAXP: |
|
1022 return s->ep[ep].maxp[0]; |
|
1023 case MUSB_HDRC_TXCSR: |
|
1024 return s->ep[ep].csr[0]; |
|
1025 case MUSB_HDRC_RXMAXP: |
|
1026 return s->ep[ep].maxp[1]; |
|
1027 case MUSB_HDRC_RXCSR: |
|
1028 ret = s->ep[ep].csr[1]; |
|
1029 |
|
1030 /* TODO: This and other bits probably depend on |
|
1031 * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */ |
|
1032 if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR) |
|
1033 s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY; |
|
1034 |
|
1035 return ret; |
|
1036 case MUSB_HDRC_RXCOUNT: |
|
1037 return s->ep[ep].rxcount; |
|
1038 |
|
1039 default: |
|
1040 return musb_ep_readb(s, ep, addr) | |
|
1041 (musb_ep_readb(s, ep, addr | 1) << 8); |
|
1042 }; |
|
1043 } |
|
1044 |
|
1045 static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value) |
|
1046 { |
|
1047 struct musb_s *s = (struct musb_s *) opaque; |
|
1048 |
|
1049 switch (addr) { |
|
1050 case MUSB_HDRC_TXMAXP: |
|
1051 s->ep[ep].maxp[0] = value; |
|
1052 break; |
|
1053 case MUSB_HDRC_TXCSR: |
|
1054 if (ep) { |
|
1055 s->ep[ep].csr[0] &= value & 0xa6; |
|
1056 s->ep[ep].csr[0] |= value & 0xff59; |
|
1057 } else { |
|
1058 s->ep[ep].csr[0] &= value & 0x85; |
|
1059 s->ep[ep].csr[0] |= value & 0xf7a; |
|
1060 } |
|
1061 |
|
1062 musb_ep_frame_cancel(&s->ep[ep], 0); |
|
1063 |
|
1064 if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) || |
|
1065 (!ep && (value & MGC_M_CSR0_FLUSHFIFO))) { |
|
1066 s->ep[ep].fifolen[0] = 0; |
|
1067 s->ep[ep].fifostart[0] = 0; |
|
1068 if (ep) |
|
1069 s->ep[ep].csr[0] &= |
|
1070 ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY); |
|
1071 else |
|
1072 s->ep[ep].csr[0] &= |
|
1073 ~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY); |
|
1074 } |
|
1075 if ( |
|
1076 (ep && |
|
1077 #ifdef CLEAR_NAK |
|
1078 (value & MGC_M_TXCSR_TXPKTRDY) && |
|
1079 !(value & MGC_M_TXCSR_H_NAKTIMEOUT)) || |
|
1080 #else |
|
1081 (value & MGC_M_TXCSR_TXPKTRDY)) || |
|
1082 #endif |
|
1083 (!ep && |
|
1084 #ifdef CLEAR_NAK |
|
1085 (value & MGC_M_CSR0_TXPKTRDY) && |
|
1086 !(value & MGC_M_CSR0_H_NAKTIMEOUT))) |
|
1087 #else |
|
1088 (value & MGC_M_CSR0_TXPKTRDY))) |
|
1089 #endif |
|
1090 musb_tx_rdy(s, ep); |
|
1091 if (!ep && |
|
1092 (value & MGC_M_CSR0_H_REQPKT) && |
|
1093 #ifdef CLEAR_NAK |
|
1094 !(value & (MGC_M_CSR0_H_NAKTIMEOUT | |
|
1095 MGC_M_CSR0_RXPKTRDY))) |
|
1096 #else |
|
1097 !(value & MGC_M_CSR0_RXPKTRDY)) |
|
1098 #endif |
|
1099 musb_rx_req(s, ep); |
|
1100 break; |
|
1101 |
|
1102 case MUSB_HDRC_RXMAXP: |
|
1103 s->ep[ep].maxp[1] = value; |
|
1104 break; |
|
1105 case MUSB_HDRC_RXCSR: |
|
1106 /* (DMA mode only) */ |
|
1107 if ( |
|
1108 (value & MGC_M_RXCSR_H_AUTOREQ) && |
|
1109 !(value & MGC_M_RXCSR_RXPKTRDY) && |
|
1110 (s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY)) |
|
1111 value |= MGC_M_RXCSR_H_REQPKT; |
|
1112 |
|
1113 s->ep[ep].csr[1] &= 0x102 | (value & 0x4d); |
|
1114 s->ep[ep].csr[1] |= value & 0xfeb0; |
|
1115 |
|
1116 musb_ep_frame_cancel(&s->ep[ep], 1); |
|
1117 |
|
1118 if (value & MGC_M_RXCSR_FLUSHFIFO) { |
|
1119 s->ep[ep].fifolen[1] = 0; |
|
1120 s->ep[ep].fifostart[1] = 0; |
|
1121 s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY); |
|
1122 /* If double buffering and we have two packets ready, flush |
|
1123 * only the first one and set up the fifo at the second packet. */ |
|
1124 } |
|
1125 #ifdef CLEAR_NAK |
|
1126 if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR)) |
|
1127 #else |
|
1128 if (value & MGC_M_RXCSR_H_REQPKT) |
|
1129 #endif |
|
1130 musb_rx_req(s, ep); |
|
1131 break; |
|
1132 case MUSB_HDRC_RXCOUNT: |
|
1133 s->ep[ep].rxcount = value; |
|
1134 break; |
|
1135 |
|
1136 default: |
|
1137 musb_ep_writeb(s, ep, addr, value & 0xff); |
|
1138 musb_ep_writeb(s, ep, addr | 1, value >> 8); |
|
1139 }; |
|
1140 } |
|
1141 |
|
1142 /* Generic control */ |
|
1143 static uint32_t musb_readb(void *opaque, target_phys_addr_t addr) |
|
1144 { |
|
1145 struct musb_s *s = (struct musb_s *) opaque; |
|
1146 int ep, i; |
|
1147 uint8_t ret; |
|
1148 |
|
1149 switch (addr) { |
|
1150 case MUSB_HDRC_FADDR: |
|
1151 return s->faddr; |
|
1152 case MUSB_HDRC_POWER: |
|
1153 return s->power; |
|
1154 case MUSB_HDRC_INTRUSB: |
|
1155 ret = s->intr; |
|
1156 for (i = 0; i < sizeof(ret) * 8; i ++) |
|
1157 if (ret & (1 << i)) |
|
1158 musb_intr_set(s, i, 0); |
|
1159 return ret; |
|
1160 case MUSB_HDRC_INTRUSBE: |
|
1161 return s->mask; |
|
1162 case MUSB_HDRC_INDEX: |
|
1163 return s->idx; |
|
1164 case MUSB_HDRC_TESTMODE: |
|
1165 return 0x00; |
|
1166 |
|
1167 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): |
|
1168 return musb_ep_readb(s, s->idx, addr & 0xf); |
|
1169 |
|
1170 case MUSB_HDRC_DEVCTL: |
|
1171 return s->devctl; |
|
1172 |
|
1173 case MUSB_HDRC_TXFIFOSZ: |
|
1174 case MUSB_HDRC_RXFIFOSZ: |
|
1175 case MUSB_HDRC_VCTRL: |
|
1176 /* TODO */ |
|
1177 return 0x00; |
|
1178 |
|
1179 case MUSB_HDRC_HWVERS: |
|
1180 return (1 << 10) | 400; |
|
1181 |
|
1182 case (MUSB_HDRC_VCTRL | 1): |
|
1183 case (MUSB_HDRC_HWVERS | 1): |
|
1184 case (MUSB_HDRC_DEVCTL | 1): |
|
1185 return 0x00; |
|
1186 |
|
1187 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): |
|
1188 ep = (addr >> 3) & 0xf; |
|
1189 return musb_busctl_readb(s, ep, addr & 0x7); |
|
1190 |
|
1191 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): |
|
1192 ep = (addr >> 4) & 0xf; |
|
1193 return musb_ep_readb(s, ep, addr & 0xf); |
|
1194 |
|
1195 default: |
|
1196 printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr); |
|
1197 return 0x00; |
|
1198 }; |
|
1199 } |
|
1200 |
|
1201 static void musb_writeb(void *opaque, target_phys_addr_t addr, uint32_t value) |
|
1202 { |
|
1203 struct musb_s *s = (struct musb_s *) opaque; |
|
1204 int ep; |
|
1205 |
|
1206 switch (addr) { |
|
1207 case MUSB_HDRC_FADDR: |
|
1208 s->faddr = value & 0x7f; |
|
1209 break; |
|
1210 case MUSB_HDRC_POWER: |
|
1211 s->power = (value & 0xef) | (s->power & 0x10); |
|
1212 /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */ |
|
1213 if ((value & MGC_M_POWER_RESET) && s->port.dev) { |
|
1214 usb_send_msg(s->port.dev, USB_MSG_RESET); |
|
1215 /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */ |
|
1216 if ((value & MGC_M_POWER_HSENAB) && |
|
1217 s->port.dev->speed == USB_SPEED_HIGH) |
|
1218 s->power |= MGC_M_POWER_HSMODE; /* Success */ |
|
1219 /* Restart frame counting. */ |
|
1220 } |
|
1221 if (value & MGC_M_POWER_SUSPENDM) { |
|
1222 /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND |
|
1223 * is set, also go into low power mode. Frame counting stops. */ |
|
1224 /* XXX: Cleared when the interrupt register is read */ |
|
1225 } |
|
1226 if (value & MGC_M_POWER_RESUME) { |
|
1227 /* Wait 20ms and signal resuming on the bus. Frame counting |
|
1228 * restarts. */ |
|
1229 } |
|
1230 break; |
|
1231 case MUSB_HDRC_INTRUSB: |
|
1232 break; |
|
1233 case MUSB_HDRC_INTRUSBE: |
|
1234 s->mask = value & 0xff; |
|
1235 break; |
|
1236 case MUSB_HDRC_INDEX: |
|
1237 s->idx = value & 0xf; |
|
1238 break; |
|
1239 case MUSB_HDRC_TESTMODE: |
|
1240 break; |
|
1241 |
|
1242 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): |
|
1243 musb_ep_writeb(s, s->idx, addr & 0xf, value); |
|
1244 break; |
|
1245 |
|
1246 case MUSB_HDRC_DEVCTL: |
|
1247 s->session = !!(value & MGC_M_DEVCTL_SESSION); |
|
1248 musb_session_update(s, |
|
1249 !!s->port.dev, |
|
1250 !!(s->devctl & MGC_M_DEVCTL_SESSION)); |
|
1251 |
|
1252 /* It seems this is the only R/W bit in this register? */ |
|
1253 s->devctl &= ~MGC_M_DEVCTL_SESSION; |
|
1254 s->devctl |= value & MGC_M_DEVCTL_SESSION; |
|
1255 break; |
|
1256 |
|
1257 case MUSB_HDRC_TXFIFOSZ: |
|
1258 case MUSB_HDRC_RXFIFOSZ: |
|
1259 case MUSB_HDRC_VCTRL: |
|
1260 /* TODO */ |
|
1261 break; |
|
1262 |
|
1263 case (MUSB_HDRC_VCTRL | 1): |
|
1264 case (MUSB_HDRC_DEVCTL | 1): |
|
1265 break; |
|
1266 |
|
1267 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): |
|
1268 ep = (addr >> 3) & 0xf; |
|
1269 musb_busctl_writeb(s, ep, addr & 0x7, value); |
|
1270 break; |
|
1271 |
|
1272 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): |
|
1273 ep = (addr >> 4) & 0xf; |
|
1274 musb_ep_writeb(s, ep, addr & 0xf, value); |
|
1275 break; |
|
1276 |
|
1277 default: |
|
1278 printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr); |
|
1279 }; |
|
1280 } |
|
1281 |
|
1282 static uint32_t musb_readh(void *opaque, target_phys_addr_t addr) |
|
1283 { |
|
1284 struct musb_s *s = (struct musb_s *) opaque; |
|
1285 int ep, i; |
|
1286 uint16_t ret; |
|
1287 |
|
1288 switch (addr) { |
|
1289 case MUSB_HDRC_INTRTX: |
|
1290 ret = s->tx_intr; |
|
1291 /* Auto clear */ |
|
1292 for (i = 0; i < sizeof(ret) * 8; i ++) |
|
1293 if (ret & (1 << i)) |
|
1294 musb_tx_intr_set(s, i, 0); |
|
1295 return ret; |
|
1296 case MUSB_HDRC_INTRRX: |
|
1297 ret = s->rx_intr; |
|
1298 /* Auto clear */ |
|
1299 for (i = 0; i < sizeof(ret) * 8; i ++) |
|
1300 if (ret & (1 << i)) |
|
1301 musb_rx_intr_set(s, i, 0); |
|
1302 return ret; |
|
1303 case MUSB_HDRC_INTRTXE: |
|
1304 return s->tx_mask; |
|
1305 case MUSB_HDRC_INTRRXE: |
|
1306 return s->rx_mask; |
|
1307 |
|
1308 case MUSB_HDRC_FRAME: |
|
1309 /* TODO */ |
|
1310 return 0x0000; |
|
1311 case MUSB_HDRC_TXFIFOADDR: |
|
1312 return s->ep[s->idx].fifoaddr[0]; |
|
1313 case MUSB_HDRC_RXFIFOADDR: |
|
1314 return s->ep[s->idx].fifoaddr[1]; |
|
1315 |
|
1316 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): |
|
1317 return musb_ep_readh(s, s->idx, addr & 0xf); |
|
1318 |
|
1319 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): |
|
1320 ep = (addr >> 3) & 0xf; |
|
1321 return musb_busctl_readh(s, ep, addr & 0x7); |
|
1322 |
|
1323 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): |
|
1324 ep = (addr >> 4) & 0xf; |
|
1325 return musb_ep_readh(s, ep, addr & 0xf); |
|
1326 |
|
1327 default: |
|
1328 return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8); |
|
1329 }; |
|
1330 } |
|
1331 |
|
1332 static void musb_writeh(void *opaque, target_phys_addr_t addr, uint32_t value) |
|
1333 { |
|
1334 struct musb_s *s = (struct musb_s *) opaque; |
|
1335 int ep; |
|
1336 |
|
1337 switch (addr) { |
|
1338 case MUSB_HDRC_INTRTXE: |
|
1339 s->tx_mask = value; |
|
1340 /* XXX: the masks seem to apply on the raising edge like with |
|
1341 * edge-triggered interrupts, thus no need to update. I may be |
|
1342 * wrong though. */ |
|
1343 break; |
|
1344 case MUSB_HDRC_INTRRXE: |
|
1345 s->rx_mask = value; |
|
1346 break; |
|
1347 |
|
1348 case MUSB_HDRC_FRAME: |
|
1349 /* TODO */ |
|
1350 break; |
|
1351 case MUSB_HDRC_TXFIFOADDR: |
|
1352 s->ep[s->idx].fifoaddr[0] = value; |
|
1353 s->ep[s->idx].buf[0] = |
|
1354 s->buf + ((value << 1) & (sizeof(s->buf) / 4 - 1)); |
|
1355 break; |
|
1356 case MUSB_HDRC_RXFIFOADDR: |
|
1357 s->ep[s->idx].fifoaddr[1] = value; |
|
1358 s->ep[s->idx].buf[1] = |
|
1359 s->buf + ((value << 1) & (sizeof(s->buf) / 4 - 1)); |
|
1360 break; |
|
1361 |
|
1362 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): |
|
1363 musb_ep_writeh(s, s->idx, addr & 0xf, value); |
|
1364 break; |
|
1365 |
|
1366 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): |
|
1367 ep = (addr >> 3) & 0xf; |
|
1368 musb_busctl_writeh(s, ep, addr & 0x7, value); |
|
1369 break; |
|
1370 |
|
1371 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): |
|
1372 ep = (addr >> 4) & 0xf; |
|
1373 musb_ep_writeh(s, ep, addr & 0xf, value); |
|
1374 break; |
|
1375 |
|
1376 default: |
|
1377 musb_writeb(s, addr, value & 0xff); |
|
1378 musb_writeb(s, addr | 1, value >> 8); |
|
1379 }; |
|
1380 } |
|
1381 |
|
1382 static uint32_t musb_readw(void *opaque, target_phys_addr_t addr) |
|
1383 { |
|
1384 struct musb_s *s = (struct musb_s *) opaque; |
|
1385 struct musb_ep_s *ep; |
|
1386 int epnum; |
|
1387 |
|
1388 switch (addr) { |
|
1389 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f): |
|
1390 epnum = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf; |
|
1391 ep = s->ep + epnum; |
|
1392 |
|
1393 if (ep->fifolen[1] >= 16) { |
|
1394 /* We have a FIFO underrun */ |
|
1395 printf("%s: EP%i FIFO is now empty, stop reading\n", |
|
1396 __FUNCTION__, epnum); |
|
1397 return 0x00000000; |
|
1398 } |
|
1399 /* In DMA mode clear RXPKTRDY and set REQPKT automatically |
|
1400 * (if AUTOREQ is set) */ |
|
1401 |
|
1402 ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL; |
|
1403 return ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++]; |
|
1404 |
|
1405 default: |
|
1406 printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr); |
|
1407 return 0x00000000; |
|
1408 }; |
|
1409 } |
|
1410 |
|
1411 static void musb_writew(void *opaque, target_phys_addr_t addr, uint32_t value) |
|
1412 { |
|
1413 struct musb_s *s = (struct musb_s *) opaque; |
|
1414 struct musb_ep_s *ep; |
|
1415 int epnum; |
|
1416 |
|
1417 switch (addr) { |
|
1418 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f): |
|
1419 epnum = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf; |
|
1420 ep = s->ep + epnum; |
|
1421 |
|
1422 if (ep->fifolen[0] >= 16) { |
|
1423 /* We have a FIFO overrun */ |
|
1424 printf("%s: EP%i FIFO exceeded 64 bytes, stop feeding data\n", |
|
1425 __FUNCTION__, epnum); |
|
1426 break; |
|
1427 } |
|
1428 |
|
1429 ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value; |
|
1430 if (epnum) |
|
1431 ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY; |
|
1432 break; |
|
1433 |
|
1434 default: |
|
1435 printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr); |
|
1436 }; |
|
1437 } |
|
1438 |
|
1439 CPUReadMemoryFunc *musb_read[] = { |
|
1440 musb_readb, |
|
1441 musb_readh, |
|
1442 musb_readw, |
|
1443 }; |
|
1444 |
|
1445 CPUWriteMemoryFunc *musb_write[] = { |
|
1446 musb_writeb, |
|
1447 musb_writeh, |
|
1448 musb_writew, |
|
1449 }; |