symbian-qemu-0.9.1-12/python-2.6.1/Doc/howto/advocacy.rst
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Doc/howto/advocacy.rst	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,356 @@
+*************************
+  Python Advocacy HOWTO
+*************************
+
+:Author: A.M. Kuchling
+:Release: 0.03
+
+
+.. topic:: Abstract
+
+   It's usually difficult to get your management to accept open source software,
+   and Python is no exception to this rule.  This document discusses reasons to use
+   Python, strategies for winning acceptance, facts and arguments you can use, and
+   cases where you *shouldn't* try to use Python.
+
+
+Reasons to Use Python
+=====================
+
+There are several reasons to incorporate a scripting language into your
+development process, and this section will discuss them, and why Python has some
+properties that make it a particularly good choice.
+
+
+Programmability
+---------------
+
+Programs are often organized in a modular fashion.  Lower-level operations are
+grouped together, and called by higher-level functions, which may in turn be
+used as basic operations by still further upper levels.
+
+For example, the lowest level might define a very low-level set of functions for
+accessing a hash table.  The next level might use hash tables to store the
+headers of a mail message, mapping a header name like ``Date`` to a value such
+as ``Tue, 13 May 1997 20:00:54 -0400``.  A yet higher level may operate on
+message objects, without knowing or caring that message headers are stored in a
+hash table, and so forth.
+
+Often, the lowest levels do very simple things; they implement a data structure
+such as a binary tree or hash table, or they perform some simple computation,
+such as converting a date string to a number.  The higher levels then contain
+logic connecting these primitive operations.  Using the approach, the primitives
+can be seen as basic building blocks which are then glued together to produce
+the complete product.
+
+Why is this design approach relevant to Python?  Because Python is well suited
+to functioning as such a glue language.  A common approach is to write a Python
+module that implements the lower level operations; for the sake of speed, the
+implementation might be in C, Java, or even Fortran.  Once the primitives are
+available to Python programs, the logic underlying higher level operations is
+written in the form of Python code.  The high-level logic is then more
+understandable, and easier to modify.
+
+John Ousterhout wrote a paper that explains this idea at greater length,
+entitled "Scripting: Higher Level Programming for the 21st Century".  I
+recommend that you read this paper; see the references for the URL.  Ousterhout
+is the inventor of the Tcl language, and therefore argues that Tcl should be
+used for this purpose; he only briefly refers to other languages such as Python,
+Perl, and Lisp/Scheme, but in reality, Ousterhout's argument applies to
+scripting languages in general, since you could equally write extensions for any
+of the languages mentioned above.
+
+
+Prototyping
+-----------
+
+In *The Mythical Man-Month*, Fredrick Brooks suggests the following rule when
+planning software projects: "Plan to throw one away; you will anyway."  Brooks
+is saying that the first attempt at a software design often turns out to be
+wrong; unless the problem is very simple or you're an extremely good designer,
+you'll find that new requirements and features become apparent once development
+has actually started.  If these new requirements can't be cleanly incorporated
+into the program's structure, you're presented with two unpleasant choices:
+hammer the new features into the program somehow, or scrap everything and write
+a new version of the program, taking the new features into account from the
+beginning.
+
+Python provides you with a good environment for quickly developing an initial
+prototype.  That lets you get the overall program structure and logic right, and
+you can fine-tune small details in the fast development cycle that Python
+provides.  Once you're satisfied with the GUI interface or program output, you
+can translate the Python code into C++, Fortran, Java, or some other compiled
+language.
+
+Prototyping means you have to be careful not to use too many Python features
+that are hard to implement in your other language.  Using ``eval()``, or regular
+expressions, or the :mod:`pickle` module, means that you're going to need C or
+Java libraries for formula evaluation, regular expressions, and serialization,
+for example.  But it's not hard to avoid such tricky code, and in the end the
+translation usually isn't very difficult.  The resulting code can be rapidly
+debugged, because any serious logical errors will have been removed from the
+prototype, leaving only more minor slip-ups in the translation to track down.
+
+This strategy builds on the earlier discussion of programmability. Using Python
+as glue to connect lower-level components has obvious relevance for constructing
+prototype systems.  In this way Python can help you with development, even if
+end users never come in contact with Python code at all.  If the performance of
+the Python version is adequate and corporate politics allow it, you may not need
+to do a translation into C or Java, but it can still be faster to develop a
+prototype and then translate it, instead of attempting to produce the final
+version immediately.
+
+One example of this development strategy is Microsoft Merchant Server. Version
+1.0 was written in pure Python, by a company that subsequently was purchased by
+Microsoft.  Version 2.0 began to translate the code into C++, shipping with some
+C++code and some Python code.  Version 3.0 didn't contain any Python at all; all
+the code had been translated into C++.  Even though the product doesn't contain
+a Python interpreter, the Python language has still served a useful purpose by
+speeding up development.
+
+This is a very common use for Python.  Past conference papers have also
+described this approach for developing high-level numerical algorithms; see
+David M. Beazley and Peter S. Lomdahl's paper "Feeding a Large-scale Physics
+Application to Python" in the references for a good example.  If an algorithm's
+basic operations are things like "Take the inverse of this 4000x4000 matrix",
+and are implemented in some lower-level language, then Python has almost no
+additional performance cost; the extra time required for Python to evaluate an
+expression like ``m.invert()`` is dwarfed by the cost of the actual computation.
+It's particularly good for applications where seemingly endless tweaking is
+required to get things right. GUI interfaces and Web sites are prime examples.
+
+The Python code is also shorter and faster to write (once you're familiar with
+Python), so it's easier to throw it away if you decide your approach was wrong;
+if you'd spent two weeks working on it instead of just two hours, you might
+waste time trying to patch up what you've got out of a natural reluctance to
+admit that those two weeks were wasted.  Truthfully, those two weeks haven't
+been wasted, since you've learnt something about the problem and the technology
+you're using to solve it, but it's human nature to view this as a failure of
+some sort.
+
+
+Simplicity and Ease of Understanding
+------------------------------------
+
+Python is definitely *not* a toy language that's only usable for small tasks.
+The language features are general and powerful enough to enable it to be used
+for many different purposes.  It's useful at the small end, for 10- or 20-line
+scripts, but it also scales up to larger systems that contain thousands of lines
+of code.
+
+However, this expressiveness doesn't come at the cost of an obscure or tricky
+syntax.  While Python has some dark corners that can lead to obscure code, there
+are relatively few such corners, and proper design can isolate their use to only
+a few classes or modules.  It's certainly possible to write confusing code by
+using too many features with too little concern for clarity, but most Python
+code can look a lot like a slightly-formalized version of human-understandable
+pseudocode.
+
+In *The New Hacker's Dictionary*, Eric S. Raymond gives the following definition
+for "compact":
+
+.. epigraph::
+
+   Compact *adj.*  Of a design, describes the valuable property that it can all be
+   apprehended at once in one's head. This generally means the thing created from
+   the design can be used with greater facility and fewer errors than an equivalent
+   tool that is not compact. Compactness does not imply triviality or lack of
+   power; for example, C is compact and FORTRAN is not, but C is more powerful than
+   FORTRAN. Designs become non-compact through accreting features and cruft that
+   don't merge cleanly into the overall design scheme (thus, some fans of Classic C
+   maintain that ANSI C is no longer compact).
+
+   (From http://www.catb.org/~esr/jargon/html/C/compact.html)
+
+In this sense of the word, Python is quite compact, because the language has
+just a few ideas, which are used in lots of places.  Take namespaces, for
+example.  Import a module with ``import math``, and you create a new namespace
+called ``math``.  Classes are also namespaces that share many of the properties
+of modules, and have a few of their own; for example, you can create instances
+of a class. Instances?  They're yet another namespace.  Namespaces are currently
+implemented as Python dictionaries, so they have the same methods as the
+standard dictionary data type: .keys() returns all the keys, and so forth.
+
+This simplicity arises from Python's development history.  The language syntax
+derives from different sources; ABC, a relatively obscure teaching language, is
+one primary influence, and Modula-3 is another.  (For more information about ABC
+and Modula-3, consult their respective Web sites at http://www.cwi.nl/~steven/abc/
+and http://www.m3.org.)  Other features have come from C, Icon,
+Algol-68, and even Perl.  Python hasn't really innovated very much, but instead
+has tried to keep the language small and easy to learn, building on ideas that
+have been tried in other languages and found useful.
+
+Simplicity is a virtue that should not be underestimated.  It lets you learn the
+language more quickly, and then rapidly write code -- code that often works the
+first time you run it.
+
+
+Java Integration
+----------------
+
+If you're working with Java, Jython (http://www.jython.org/) is definitely worth
+your attention.  Jython is a re-implementation of Python in Java that compiles
+Python code into Java bytecodes.  The resulting environment has very tight,
+almost seamless, integration with Java.  It's trivial to access Java classes
+from Python, and you can write Python classes that subclass Java classes.
+Jython can be used for prototyping Java applications in much the same way
+CPython is used, and it can also be used for test suites for Java code, or
+embedded in a Java application to add scripting capabilities.
+
+
+Arguments and Rebuttals
+=======================
+
+Let's say that you've decided upon Python as the best choice for your
+application.  How can you convince your management, or your fellow developers,
+to use Python?  This section lists some common arguments against using Python,
+and provides some possible rebuttals.
+
+**Python is freely available software that doesn't cost anything. How good can
+it be?**
+
+Very good, indeed.  These days Linux and Apache, two other pieces of open source
+software, are becoming more respected as alternatives to commercial software,
+but Python hasn't had all the publicity.
+
+Python has been around for several years, with many users and developers.
+Accordingly, the interpreter has been used by many people, and has gotten most
+of the bugs shaken out of it.  While bugs are still discovered at intervals,
+they're usually either quite obscure (they'd have to be, for no one to have run
+into them before) or they involve interfaces to external libraries.  The
+internals of the language itself are quite stable.
+
+Having the source code should be viewed as making the software available for
+peer review; people can examine the code, suggest (and implement) improvements,
+and track down bugs.  To find out more about the idea of open source code, along
+with arguments and case studies supporting it, go to http://www.opensource.org.
+
+**Who's going to support it?**
+
+Python has a sizable community of developers, and the number is still growing.
+The Internet community surrounding the language is an active one, and is worth
+being considered another one of Python's advantages. Most questions posted to
+the comp.lang.python newsgroup are quickly answered by someone.
+
+Should you need to dig into the source code, you'll find it's clear and
+well-organized, so it's not very difficult to write extensions and track down
+bugs yourself.  If you'd prefer to pay for support, there are companies and
+individuals who offer commercial support for Python.
+
+**Who uses Python for serious work?**
+
+Lots of people; one interesting thing about Python is the surprising diversity
+of applications that it's been used for.  People are using Python to:
+
+* Run Web sites
+
+* Write GUI interfaces
+
+* Control number-crunching code on supercomputers
+
+* Make a commercial application scriptable by embedding the Python interpreter
+  inside it
+
+* Process large XML data sets
+
+* Build test suites for C or Java code
+
+Whatever your application domain is, there's probably someone who's used Python
+for something similar.  Yet, despite being useable for such high-end
+applications, Python's still simple enough to use for little jobs.
+
+See http://wiki.python.org/moin/OrganizationsUsingPython for a list of some of
+the  organizations that use Python.
+
+**What are the restrictions on Python's use?**
+
+They're practically nonexistent.  Consult the :file:`Misc/COPYRIGHT` file in the
+source distribution, or the section :ref:`history-and-license` for the full
+language, but it boils down to three conditions:
+
+* You have to leave the copyright notice on the software; if you don't include
+  the source code in a product, you have to put the copyright notice in the
+  supporting documentation.
+
+* Don't claim that the institutions that have developed Python endorse your
+  product in any way.
+
+* If something goes wrong, you can't sue for damages.  Practically all software
+  licenses contain this condition.
+
+Notice that you don't have to provide source code for anything that contains
+Python or is built with it.  Also, the Python interpreter and accompanying
+documentation can be modified and redistributed in any way you like, and you
+don't have to pay anyone any licensing fees at all.
+
+**Why should we use an obscure language like Python instead of well-known
+language X?**
+
+I hope this HOWTO, and the documents listed in the final section, will help
+convince you that Python isn't obscure, and has a healthily growing user base.
+One word of advice: always present Python's positive advantages, instead of
+concentrating on language X's failings.  People want to know why a solution is
+good, rather than why all the other solutions are bad.  So instead of attacking
+a competing solution on various grounds, simply show how Python's virtues can
+help.
+
+
+Useful Resources
+================
+
+http://www.pythonology.com/success
+   The Python Success Stories are a collection of stories from successful users of
+   Python, with the emphasis on business and corporate users.
+
+.. http://www.fsbassociates.com/books/pythonchpt1.htm
+   The first chapter of \emph{Internet Programming with Python} also
+   examines some of the reasons for using Python.  The book is well worth
+   buying, but the publishers have made the first chapter available on
+   the Web.
+
+http://home.pacbell.net/ouster/scripting.html
+   John Ousterhout's white paper on scripting is a good argument for the utility of
+   scripting languages, though naturally enough, he emphasizes Tcl, the language he
+   developed.  Most of the arguments would apply to any scripting language.
+
+http://www.python.org/workshops/1997-10/proceedings/beazley.html
+   The authors, David M. Beazley and Peter S. Lomdahl,  describe their use of
+   Python at Los Alamos National Laboratory. It's another good example of how
+   Python can help get real work done. This quotation from the paper has been
+   echoed by many people:
+
+   .. epigraph::
+
+      Originally developed as a large monolithic application for massively parallel
+      processing systems, we have used Python to transform our application into a
+      flexible, highly modular, and extremely powerful system for performing
+      simulation, data analysis, and visualization. In addition, we describe how
+      Python has solved a number of important problems related to the development,
+      debugging, deployment, and maintenance of scientific software.
+
+http://pythonjournal.cognizor.com/pyj1/Everitt-Feit_interview98-V1.html
+   This interview with Andy Feit, discussing Infoseek's use of Python, can be used
+   to show that choosing Python didn't introduce any difficulties into a company's
+   development process, and provided some substantial benefits.
+
+.. http://www.python.org/psa/Commercial.html
+   Robin Friedrich wrote this document on how to support Python's use in
+   commercial projects.
+
+http://www.python.org/workshops/1997-10/proceedings/stein.ps
+   For the 6th Python conference, Greg Stein presented a paper that traced Python's
+   adoption and usage at a startup called eShop, and later at Microsoft.
+
+http://www.opensource.org
+   Management may be doubtful of the reliability and usefulness of software that
+   wasn't written commercially.  This site presents arguments that show how open
+   source software can have considerable advantages over closed-source software.
+
+http://www.faqs.org/docs/Linux-mini/Advocacy.html
+   The Linux Advocacy mini-HOWTO was the inspiration for this document, and is also
+   well worth reading for general suggestions on winning acceptance for a new
+   technology, such as Linux or Python.  In general, you won't make much progress
+   by simply attacking existing systems and complaining about their inadequacies;
+   this often ends up looking like unfocused whining.  It's much better to point
+   out some of the many areas where Python is an improvement over other systems.
+