symbian-qemu-0.9.1-12/python-2.6.1/Lib/test/test_random.py
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Lib/test/test_random.py	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,564 @@
+#!/usr/bin/env python
+
+import unittest
+import random
+import time
+import pickle
+import warnings
+from math import log, exp, sqrt, pi, fsum as msum
+from test import test_support
+
+class TestBasicOps(unittest.TestCase):
+    # Superclass with tests common to all generators.
+    # Subclasses must arrange for self.gen to retrieve the Random instance
+    # to be tested.
+
+    def randomlist(self, n):
+        """Helper function to make a list of random numbers"""
+        return [self.gen.random() for i in xrange(n)]
+
+    def test_autoseed(self):
+        self.gen.seed()
+        state1 = self.gen.getstate()
+        time.sleep(0.1)
+        self.gen.seed()      # diffent seeds at different times
+        state2 = self.gen.getstate()
+        self.assertNotEqual(state1, state2)
+
+    def test_saverestore(self):
+        N = 1000
+        self.gen.seed()
+        state = self.gen.getstate()
+        randseq = self.randomlist(N)
+        self.gen.setstate(state)    # should regenerate the same sequence
+        self.assertEqual(randseq, self.randomlist(N))
+
+    def test_seedargs(self):
+        for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20),
+                    3.14, 1+2j, 'a', tuple('abc')]:
+            self.gen.seed(arg)
+        for arg in [range(3), dict(one=1)]:
+            self.assertRaises(TypeError, self.gen.seed, arg)
+        self.assertRaises(TypeError, self.gen.seed, 1, 2)
+        self.assertRaises(TypeError, type(self.gen), [])
+
+    def test_jumpahead(self):
+        self.gen.seed()
+        state1 = self.gen.getstate()
+        self.gen.jumpahead(100)
+        state2 = self.gen.getstate()    # s/b distinct from state1
+        self.assertNotEqual(state1, state2)
+        self.gen.jumpahead(100)
+        state3 = self.gen.getstate()    # s/b distinct from state2
+        self.assertNotEqual(state2, state3)
+
+        self.assertRaises(TypeError, self.gen.jumpahead)  # needs an arg
+        self.assertRaises(TypeError, self.gen.jumpahead, "ick")  # wrong type
+        self.assertRaises(TypeError, self.gen.jumpahead, 2.3)  # wrong type
+        self.assertRaises(TypeError, self.gen.jumpahead, 2, 3)  # too many
+
+    def test_sample(self):
+        # For the entire allowable range of 0 <= k <= N, validate that
+        # the sample is of the correct length and contains only unique items
+        N = 100
+        population = xrange(N)
+        for k in xrange(N+1):
+            s = self.gen.sample(population, k)
+            self.assertEqual(len(s), k)
+            uniq = set(s)
+            self.assertEqual(len(uniq), k)
+            self.failUnless(uniq <= set(population))
+        self.assertEqual(self.gen.sample([], 0), [])  # test edge case N==k==0
+
+    def test_sample_distribution(self):
+        # For the entire allowable range of 0 <= k <= N, validate that
+        # sample generates all possible permutations
+        n = 5
+        pop = range(n)
+        trials = 10000  # large num prevents false negatives without slowing normal case
+        def factorial(n):
+            return reduce(int.__mul__, xrange(1, n), 1)
+        for k in xrange(n):
+            expected = factorial(n) // factorial(n-k)
+            perms = {}
+            for i in xrange(trials):
+                perms[tuple(self.gen.sample(pop, k))] = None
+                if len(perms) == expected:
+                    break
+            else:
+                self.fail()
+
+    def test_sample_inputs(self):
+        # SF bug #801342 -- population can be any iterable defining __len__()
+        self.gen.sample(set(range(20)), 2)
+        self.gen.sample(range(20), 2)
+        self.gen.sample(xrange(20), 2)
+        self.gen.sample(str('abcdefghijklmnopqrst'), 2)
+        self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
+
+    def test_sample_on_dicts(self):
+        self.gen.sample(dict.fromkeys('abcdefghijklmnopqrst'), 2)
+
+        # SF bug #1460340 -- random.sample can raise KeyError
+        a = dict.fromkeys(range(10)+range(10,100,2)+range(100,110))
+        self.gen.sample(a, 3)
+
+        # A followup to bug #1460340:  sampling from a dict could return
+        # a subset of its keys or of its values, depending on the size of
+        # the subset requested.
+        N = 30
+        d = dict((i, complex(i, i)) for i in xrange(N))
+        for k in xrange(N+1):
+            samp = self.gen.sample(d, k)
+            # Verify that we got ints back (keys); the values are complex.
+            for x in samp:
+                self.assert_(type(x) is int)
+        samp.sort()
+        self.assertEqual(samp, range(N))
+
+    def test_gauss(self):
+        # Ensure that the seed() method initializes all the hidden state.  In
+        # particular, through 2.2.1 it failed to reset a piece of state used
+        # by (and only by) the .gauss() method.
+
+        for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
+            self.gen.seed(seed)
+            x1 = self.gen.random()
+            y1 = self.gen.gauss(0, 1)
+
+            self.gen.seed(seed)
+            x2 = self.gen.random()
+            y2 = self.gen.gauss(0, 1)
+
+            self.assertEqual(x1, x2)
+            self.assertEqual(y1, y2)
+
+    def test_pickling(self):
+        state = pickle.dumps(self.gen)
+        origseq = [self.gen.random() for i in xrange(10)]
+        newgen = pickle.loads(state)
+        restoredseq = [newgen.random() for i in xrange(10)]
+        self.assertEqual(origseq, restoredseq)
+
+    def test_bug_1727780(self):
+        # verify that version-2-pickles can be loaded
+        # fine, whether they are created on 32-bit or 64-bit
+        # platforms, and that version-3-pickles load fine.
+        files = [("randv2_32.pck", 780),
+                 ("randv2_64.pck", 866),
+                 ("randv3.pck", 343)]
+        for file, value in files:
+            f = open(test_support.findfile(file),"rb")
+            r = pickle.load(f)
+            f.close()
+            self.assertEqual(r.randrange(1000), value)
+
+class WichmannHill_TestBasicOps(TestBasicOps):
+    gen = random.WichmannHill()
+
+    def test_setstate_first_arg(self):
+        self.assertRaises(ValueError, self.gen.setstate, (2, None, None))
+
+    def test_strong_jumpahead(self):
+        # tests that jumpahead(n) semantics correspond to n calls to random()
+        N = 1000
+        s = self.gen.getstate()
+        self.gen.jumpahead(N)
+        r1 = self.gen.random()
+        # now do it the slow way
+        self.gen.setstate(s)
+        for i in xrange(N):
+            self.gen.random()
+        r2 = self.gen.random()
+        self.assertEqual(r1, r2)
+
+    def test_gauss_with_whseed(self):
+        # Ensure that the seed() method initializes all the hidden state.  In
+        # particular, through 2.2.1 it failed to reset a piece of state used
+        # by (and only by) the .gauss() method.
+
+        for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
+            self.gen.whseed(seed)
+            x1 = self.gen.random()
+            y1 = self.gen.gauss(0, 1)
+
+            self.gen.whseed(seed)
+            x2 = self.gen.random()
+            y2 = self.gen.gauss(0, 1)
+
+            self.assertEqual(x1, x2)
+            self.assertEqual(y1, y2)
+
+    def test_bigrand(self):
+        # Verify warnings are raised when randrange is too large for random()
+        with warnings.catch_warnings():
+            warnings.filterwarnings("error", "Underlying random")
+            self.assertRaises(UserWarning, self.gen.randrange, 2**60)
+
+class SystemRandom_TestBasicOps(TestBasicOps):
+    gen = random.SystemRandom()
+
+    def test_autoseed(self):
+        # Doesn't need to do anything except not fail
+        self.gen.seed()
+
+    def test_saverestore(self):
+        self.assertRaises(NotImplementedError, self.gen.getstate)
+        self.assertRaises(NotImplementedError, self.gen.setstate, None)
+
+    def test_seedargs(self):
+        # Doesn't need to do anything except not fail
+        self.gen.seed(100)
+
+    def test_jumpahead(self):
+        # Doesn't need to do anything except not fail
+        self.gen.jumpahead(100)
+
+    def test_gauss(self):
+        self.gen.gauss_next = None
+        self.gen.seed(100)
+        self.assertEqual(self.gen.gauss_next, None)
+
+    def test_pickling(self):
+        self.assertRaises(NotImplementedError, pickle.dumps, self.gen)
+
+    def test_53_bits_per_float(self):
+        # This should pass whenever a C double has 53 bit precision.
+        span = 2 ** 53
+        cum = 0
+        for i in xrange(100):
+            cum |= int(self.gen.random() * span)
+        self.assertEqual(cum, span-1)
+
+    def test_bigrand(self):
+        # The randrange routine should build-up the required number of bits
+        # in stages so that all bit positions are active.
+        span = 2 ** 500
+        cum = 0
+        for i in xrange(100):
+            r = self.gen.randrange(span)
+            self.assert_(0 <= r < span)
+            cum |= r
+        self.assertEqual(cum, span-1)
+
+    def test_bigrand_ranges(self):
+        for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
+            start = self.gen.randrange(2 ** i)
+            stop = self.gen.randrange(2 ** (i-2))
+            if stop <= start:
+                return
+            self.assert_(start <= self.gen.randrange(start, stop) < stop)
+
+    def test_rangelimits(self):
+        for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
+            self.assertEqual(set(range(start,stop)),
+                set([self.gen.randrange(start,stop) for i in xrange(100)]))
+
+    def test_genrandbits(self):
+        # Verify ranges
+        for k in xrange(1, 1000):
+            self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
+
+        # Verify all bits active
+        getbits = self.gen.getrandbits
+        for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
+            cum = 0
+            for i in xrange(100):
+                cum |= getbits(span)
+            self.assertEqual(cum, 2**span-1)
+
+        # Verify argument checking
+        self.assertRaises(TypeError, self.gen.getrandbits)
+        self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
+        self.assertRaises(ValueError, self.gen.getrandbits, 0)
+        self.assertRaises(ValueError, self.gen.getrandbits, -1)
+        self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
+
+    def test_randbelow_logic(self, _log=log, int=int):
+        # check bitcount transition points:  2**i and 2**(i+1)-1
+        # show that: k = int(1.001 + _log(n, 2))
+        # is equal to or one greater than the number of bits in n
+        for i in xrange(1, 1000):
+            n = 1L << i # check an exact power of two
+            numbits = i+1
+            k = int(1.00001 + _log(n, 2))
+            self.assertEqual(k, numbits)
+            self.assert_(n == 2**(k-1))
+
+            n += n - 1      # check 1 below the next power of two
+            k = int(1.00001 + _log(n, 2))
+            self.assert_(k in [numbits, numbits+1])
+            self.assert_(2**k > n > 2**(k-2))
+
+            n -= n >> 15     # check a little farther below the next power of two
+            k = int(1.00001 + _log(n, 2))
+            self.assertEqual(k, numbits)        # note the stronger assertion
+            self.assert_(2**k > n > 2**(k-1))   # note the stronger assertion
+
+
+class MersenneTwister_TestBasicOps(TestBasicOps):
+    gen = random.Random()
+
+    def test_setstate_first_arg(self):
+        self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
+
+    def test_setstate_middle_arg(self):
+        # Wrong type, s/b tuple
+        self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
+        # Wrong length, s/b 625
+        self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
+        # Wrong type, s/b tuple of 625 ints
+        self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
+        # Last element s/b an int also
+        self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
+
+    def test_referenceImplementation(self):
+        # Compare the python implementation with results from the original
+        # code.  Create 2000 53-bit precision random floats.  Compare only
+        # the last ten entries to show that the independent implementations
+        # are tracking.  Here is the main() function needed to create the
+        # list of expected random numbers:
+        #    void main(void){
+        #         int i;
+        #         unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
+        #         init_by_array(init, length);
+        #         for (i=0; i<2000; i++) {
+        #           printf("%.15f ", genrand_res53());
+        #           if (i%5==4) printf("\n");
+        #         }
+        #     }
+        expected = [0.45839803073713259,
+                    0.86057815201978782,
+                    0.92848331726782152,
+                    0.35932681119782461,
+                    0.081823493762449573,
+                    0.14332226470169329,
+                    0.084297823823520024,
+                    0.53814864671831453,
+                    0.089215024911993401,
+                    0.78486196105372907]
+
+        self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
+        actual = self.randomlist(2000)[-10:]
+        for a, e in zip(actual, expected):
+            self.assertAlmostEqual(a,e,places=14)
+
+    def test_strong_reference_implementation(self):
+        # Like test_referenceImplementation, but checks for exact bit-level
+        # equality.  This should pass on any box where C double contains
+        # at least 53 bits of precision (the underlying algorithm suffers
+        # no rounding errors -- all results are exact).
+        from math import ldexp
+
+        expected = [0x0eab3258d2231fL,
+                    0x1b89db315277a5L,
+                    0x1db622a5518016L,
+                    0x0b7f9af0d575bfL,
+                    0x029e4c4db82240L,
+                    0x04961892f5d673L,
+                    0x02b291598e4589L,
+                    0x11388382c15694L,
+                    0x02dad977c9e1feL,
+                    0x191d96d4d334c6L]
+        self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
+        actual = self.randomlist(2000)[-10:]
+        for a, e in zip(actual, expected):
+            self.assertEqual(long(ldexp(a, 53)), e)
+
+    def test_long_seed(self):
+        # This is most interesting to run in debug mode, just to make sure
+        # nothing blows up.  Under the covers, a dynamically resized array
+        # is allocated, consuming space proportional to the number of bits
+        # in the seed.  Unfortunately, that's a quadratic-time algorithm,
+        # so don't make this horribly big.
+        seed = (1L << (10000 * 8)) - 1  # about 10K bytes
+        self.gen.seed(seed)
+
+    def test_53_bits_per_float(self):
+        # This should pass whenever a C double has 53 bit precision.
+        span = 2 ** 53
+        cum = 0
+        for i in xrange(100):
+            cum |= int(self.gen.random() * span)
+        self.assertEqual(cum, span-1)
+
+    def test_bigrand(self):
+        # The randrange routine should build-up the required number of bits
+        # in stages so that all bit positions are active.
+        span = 2 ** 500
+        cum = 0
+        for i in xrange(100):
+            r = self.gen.randrange(span)
+            self.assert_(0 <= r < span)
+            cum |= r
+        self.assertEqual(cum, span-1)
+
+    def test_bigrand_ranges(self):
+        for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
+            start = self.gen.randrange(2 ** i)
+            stop = self.gen.randrange(2 ** (i-2))
+            if stop <= start:
+                return
+            self.assert_(start <= self.gen.randrange(start, stop) < stop)
+
+    def test_rangelimits(self):
+        for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
+            self.assertEqual(set(range(start,stop)),
+                set([self.gen.randrange(start,stop) for i in xrange(100)]))
+
+    def test_genrandbits(self):
+        # Verify cross-platform repeatability
+        self.gen.seed(1234567)
+        self.assertEqual(self.gen.getrandbits(100),
+                         97904845777343510404718956115L)
+        # Verify ranges
+        for k in xrange(1, 1000):
+            self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
+
+        # Verify all bits active
+        getbits = self.gen.getrandbits
+        for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
+            cum = 0
+            for i in xrange(100):
+                cum |= getbits(span)
+            self.assertEqual(cum, 2**span-1)
+
+        # Verify argument checking
+        self.assertRaises(TypeError, self.gen.getrandbits)
+        self.assertRaises(TypeError, self.gen.getrandbits, 'a')
+        self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
+        self.assertRaises(ValueError, self.gen.getrandbits, 0)
+        self.assertRaises(ValueError, self.gen.getrandbits, -1)
+
+    def test_randbelow_logic(self, _log=log, int=int):
+        # check bitcount transition points:  2**i and 2**(i+1)-1
+        # show that: k = int(1.001 + _log(n, 2))
+        # is equal to or one greater than the number of bits in n
+        for i in xrange(1, 1000):
+            n = 1L << i # check an exact power of two
+            numbits = i+1
+            k = int(1.00001 + _log(n, 2))
+            self.assertEqual(k, numbits)
+            self.assert_(n == 2**(k-1))
+
+            n += n - 1      # check 1 below the next power of two
+            k = int(1.00001 + _log(n, 2))
+            self.assert_(k in [numbits, numbits+1])
+            self.assert_(2**k > n > 2**(k-2))
+
+            n -= n >> 15     # check a little farther below the next power of two
+            k = int(1.00001 + _log(n, 2))
+            self.assertEqual(k, numbits)        # note the stronger assertion
+            self.assert_(2**k > n > 2**(k-1))   # note the stronger assertion
+
+    def test_randrange_bug_1590891(self):
+        start = 1000000000000
+        stop = -100000000000000000000
+        step = -200
+        x = self.gen.randrange(start, stop, step)
+        self.assert_(stop < x <= start)
+        self.assertEqual((x+stop)%step, 0)
+
+_gammacoeff = (0.9999999999995183, 676.5203681218835, -1259.139216722289,
+              771.3234287757674,  -176.6150291498386, 12.50734324009056,
+              -0.1385710331296526, 0.9934937113930748e-05, 0.1659470187408462e-06)
+
+def gamma(z, cof=_gammacoeff, g=7):
+    z -= 1.0
+    s = msum([cof[0]] + [cof[i] / (z+i) for i in range(1,len(cof))])
+    z += 0.5
+    return (z+g)**z / exp(z+g) * sqrt(2.0*pi) * s
+
+class TestDistributions(unittest.TestCase):
+    def test_zeroinputs(self):
+        # Verify that distributions can handle a series of zero inputs'
+        g = random.Random()
+        x = [g.random() for i in xrange(50)] + [0.0]*5
+        g.random = x[:].pop; g.uniform(1,10)
+        g.random = x[:].pop; g.paretovariate(1.0)
+        g.random = x[:].pop; g.expovariate(1.0)
+        g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
+        g.random = x[:].pop; g.normalvariate(0.0, 1.0)
+        g.random = x[:].pop; g.gauss(0.0, 1.0)
+        g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
+        g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
+        g.random = x[:].pop; g.gammavariate(0.01, 1.0)
+        g.random = x[:].pop; g.gammavariate(1.0, 1.0)
+        g.random = x[:].pop; g.gammavariate(200.0, 1.0)
+        g.random = x[:].pop; g.betavariate(3.0, 3.0)
+        g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0)
+
+    def test_avg_std(self):
+        # Use integration to test distribution average and standard deviation.
+        # Only works for distributions which do not consume variates in pairs
+        g = random.Random()
+        N = 5000
+        x = [i/float(N) for i in xrange(1,N)]
+        for variate, args, mu, sigmasqrd in [
+                (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
+                (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
+                (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
+                (g.paretovariate, (5.0,), 5.0/(5.0-1),
+                                  5.0/((5.0-1)**2*(5.0-2))),
+                (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
+                                  gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
+            g.random = x[:].pop
+            y = []
+            for i in xrange(len(x)):
+                try:
+                    y.append(variate(*args))
+                except IndexError:
+                    pass
+            s1 = s2 = 0
+            for e in y:
+                s1 += e
+                s2 += (e - mu) ** 2
+            N = len(y)
+            self.assertAlmostEqual(s1/N, mu, 2)
+            self.assertAlmostEqual(s2/(N-1), sigmasqrd, 2)
+
+class TestModule(unittest.TestCase):
+    def testMagicConstants(self):
+        self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
+        self.assertAlmostEqual(random.TWOPI, 6.28318530718)
+        self.assertAlmostEqual(random.LOG4, 1.38629436111989)
+        self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
+
+    def test__all__(self):
+        # tests validity but not completeness of the __all__ list
+        self.failUnless(set(random.__all__) <= set(dir(random)))
+
+    def test_random_subclass_with_kwargs(self):
+        # SF bug #1486663 -- this used to erroneously raise a TypeError
+        class Subclass(random.Random):
+            def __init__(self, newarg=None):
+                random.Random.__init__(self)
+        Subclass(newarg=1)
+
+
+def test_main(verbose=None):
+    testclasses =    [WichmannHill_TestBasicOps,
+                      MersenneTwister_TestBasicOps,
+                      TestDistributions,
+                      TestModule]
+
+    try:
+        random.SystemRandom().random()
+    except NotImplementedError:
+        pass
+    else:
+        testclasses.append(SystemRandom_TestBasicOps)
+
+    test_support.run_unittest(*testclasses)
+
+    # verify reference counting
+    import sys
+    if verbose and hasattr(sys, "gettotalrefcount"):
+        counts = [None] * 5
+        for i in xrange(len(counts)):
+            test_support.run_unittest(*testclasses)
+            counts[i] = sys.gettotalrefcount()
+        print counts
+
+if __name__ == "__main__":
+    test_main(verbose=True)