symbian-qemu-0.9.1-12/python-2.6.1/Modules/cmathmodule.c
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Modules/cmathmodule.c	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,1209 @@
+/* Complex math module */
+
+/* much code borrowed from mathmodule.c */
+
+#include "Python.h"
+/* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
+   float.h.  We assume that FLT_RADIX is either 2 or 16. */
+#include <float.h>
+
+#if (FLT_RADIX != 2 && FLT_RADIX != 16)
+#error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
+#endif
+
+#ifndef M_LN2
+#define M_LN2 (0.6931471805599453094) /* natural log of 2 */
+#endif
+
+#ifndef M_LN10
+#define M_LN10 (2.302585092994045684) /* natural log of 10 */
+#endif
+
+/*
+   CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
+   inverse trig and inverse hyperbolic trig functions.  Its log is used in the
+   evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unecessary
+   overflow.
+ */
+
+#define CM_LARGE_DOUBLE (DBL_MAX/4.)
+#define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
+#define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
+#define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
+
+/* 
+   CM_SCALE_UP is an odd integer chosen such that multiplication by
+   2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
+   CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2).  These scalings are used to compute
+   square roots accurately when the real and imaginary parts of the argument
+   are subnormal.
+*/
+
+#if FLT_RADIX==2
+#define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
+#elif FLT_RADIX==16
+#define CM_SCALE_UP (4*DBL_MANT_DIG+1)
+#endif
+#define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
+
+/* forward declarations */
+static Py_complex c_asinh(Py_complex);
+static Py_complex c_atanh(Py_complex);
+static Py_complex c_cosh(Py_complex);
+static Py_complex c_sinh(Py_complex);
+static Py_complex c_sqrt(Py_complex);
+static Py_complex c_tanh(Py_complex);
+static PyObject * math_error(void);
+
+/* Code to deal with special values (infinities, NaNs, etc.). */
+
+/* special_type takes a double and returns an integer code indicating
+   the type of the double as follows:
+*/
+
+enum special_types {
+	ST_NINF,	/* 0, negative infinity */
+	ST_NEG,		/* 1, negative finite number (nonzero) */
+	ST_NZERO,	/* 2, -0. */
+	ST_PZERO,	/* 3, +0. */
+	ST_POS,		/* 4, positive finite number (nonzero) */
+	ST_PINF,	/* 5, positive infinity */
+	ST_NAN,		/* 6, Not a Number */
+};
+
+static enum special_types
+special_type(double d)
+{
+	if (Py_IS_FINITE(d)) {
+		if (d != 0) {
+			if (copysign(1., d) == 1.)
+				return ST_POS;
+			else
+				return ST_NEG;
+		}
+		else {
+			if (copysign(1., d) == 1.)
+				return ST_PZERO;
+			else
+				return ST_NZERO;
+		}
+	}
+	if (Py_IS_NAN(d))
+		return ST_NAN;
+	if (copysign(1., d) == 1.)
+		return ST_PINF;
+	else
+		return ST_NINF;
+}
+
+#define SPECIAL_VALUE(z, table)						\
+	if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) {	\
+		errno = 0;                                              \
+		return table[special_type((z).real)]	                \
+			    [special_type((z).imag)];			\
+	}
+
+#define P Py_MATH_PI
+#define P14 0.25*Py_MATH_PI
+#define P12 0.5*Py_MATH_PI
+#define P34 0.75*Py_MATH_PI
+#define INF Py_HUGE_VAL
+#define N Py_NAN
+#define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
+
+/* First, the C functions that do the real work.  Each of the c_*
+   functions computes and returns the C99 Annex G recommended result
+   and also sets errno as follows: errno = 0 if no floating-point
+   exception is associated with the result; errno = EDOM if C99 Annex
+   G recommends raising divide-by-zero or invalid for this result; and
+   errno = ERANGE where the overflow floating-point signal should be
+   raised.
+*/
+
+static Py_complex acos_special_values[7][7];
+
+static Py_complex
+c_acos(Py_complex z)
+{
+	Py_complex s1, s2, r;
+
+	SPECIAL_VALUE(z, acos_special_values);
+
+	if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+		/* avoid unnecessary overflow for large arguments */
+		r.real = atan2(fabs(z.imag), z.real);
+		/* split into cases to make sure that the branch cut has the
+		   correct continuity on systems with unsigned zeros */
+		if (z.real < 0.) {
+			r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
+					   M_LN2*2., z.imag);
+		} else {
+			r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
+					  M_LN2*2., -z.imag);
+		}
+	} else {
+		s1.real = 1.-z.real;
+		s1.imag = -z.imag;
+		s1 = c_sqrt(s1);
+		s2.real = 1.+z.real;
+		s2.imag = z.imag;
+		s2 = c_sqrt(s2);
+		r.real = 2.*atan2(s1.real, s2.real);
+		r.imag = asinh(s2.real*s1.imag - s2.imag*s1.real);
+	}
+	errno = 0;
+	return r;
+}
+
+PyDoc_STRVAR(c_acos_doc,
+"acos(x)\n"
+"\n"
+"Return the arc cosine of x.");
+
+
+static Py_complex acosh_special_values[7][7];
+
+static Py_complex
+c_acosh(Py_complex z)
+{
+	Py_complex s1, s2, r;
+
+	SPECIAL_VALUE(z, acosh_special_values);
+
+	if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+		/* avoid unnecessary overflow for large arguments */
+		r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
+		r.imag = atan2(z.imag, z.real);
+	} else {
+		s1.real = z.real - 1.;
+		s1.imag = z.imag;
+		s1 = c_sqrt(s1);
+		s2.real = z.real + 1.;
+		s2.imag = z.imag;
+		s2 = c_sqrt(s2);
+		r.real = asinh(s1.real*s2.real + s1.imag*s2.imag);
+		r.imag = 2.*atan2(s1.imag, s2.real);
+	}
+	errno = 0;
+	return r;
+}
+
+PyDoc_STRVAR(c_acosh_doc,
+"acosh(x)\n"
+"\n"
+"Return the hyperbolic arccosine of x.");
+
+
+static Py_complex
+c_asin(Py_complex z)
+{
+	/* asin(z) = -i asinh(iz) */
+	Py_complex s, r;
+	s.real = -z.imag;
+	s.imag = z.real;
+	s = c_asinh(s);
+	r.real = s.imag;
+	r.imag = -s.real;
+	return r;
+}
+
+PyDoc_STRVAR(c_asin_doc,
+"asin(x)\n"
+"\n"
+"Return the arc sine of x.");
+
+
+static Py_complex asinh_special_values[7][7];
+
+static Py_complex
+c_asinh(Py_complex z)
+{
+	Py_complex s1, s2, r;
+
+	SPECIAL_VALUE(z, asinh_special_values);
+
+	if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+		if (z.imag >= 0.) {
+			r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
+					  M_LN2*2., z.real);
+		} else {
+			r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
+					   M_LN2*2., -z.real);
+		}
+		r.imag = atan2(z.imag, fabs(z.real));
+	} else {
+		s1.real = 1.+z.imag;
+		s1.imag = -z.real;
+		s1 = c_sqrt(s1);
+		s2.real = 1.-z.imag;
+		s2.imag = z.real;
+		s2 = c_sqrt(s2);
+		r.real = asinh(s1.real*s2.imag-s2.real*s1.imag);
+		r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
+	}
+	errno = 0;
+	return r;
+}
+
+PyDoc_STRVAR(c_asinh_doc,
+"asinh(x)\n"
+"\n"
+"Return the hyperbolic arc sine of x.");
+
+
+static Py_complex
+c_atan(Py_complex z)
+{
+	/* atan(z) = -i atanh(iz) */
+	Py_complex s, r;
+	s.real = -z.imag;
+	s.imag = z.real;
+	s = c_atanh(s);
+	r.real = s.imag;
+	r.imag = -s.real;
+	return r;
+}
+
+/* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
+   C99 for atan2(0., 0.). */
+static double
+c_atan2(Py_complex z)
+{
+	if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
+		return Py_NAN;
+	if (Py_IS_INFINITY(z.imag)) {
+		if (Py_IS_INFINITY(z.real)) {
+			if (copysign(1., z.real) == 1.)
+				/* atan2(+-inf, +inf) == +-pi/4 */
+				return copysign(0.25*Py_MATH_PI, z.imag);
+			else
+				/* atan2(+-inf, -inf) == +-pi*3/4 */
+				return copysign(0.75*Py_MATH_PI, z.imag);
+		}
+		/* atan2(+-inf, x) == +-pi/2 for finite x */
+		return copysign(0.5*Py_MATH_PI, z.imag);
+	}
+	if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
+		if (copysign(1., z.real) == 1.)
+			/* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
+			return copysign(0., z.imag);
+		else
+			/* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
+			return copysign(Py_MATH_PI, z.imag);
+	}
+	return atan2(z.imag, z.real);
+}
+
+PyDoc_STRVAR(c_atan_doc,
+"atan(x)\n"
+"\n"
+"Return the arc tangent of x.");
+
+
+static Py_complex atanh_special_values[7][7];
+
+static Py_complex
+c_atanh(Py_complex z)
+{
+	Py_complex r;
+	double ay, h;
+
+	SPECIAL_VALUE(z, atanh_special_values);
+
+	/* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
+	if (z.real < 0.) {
+		return c_neg(c_atanh(c_neg(z)));
+	}
+
+	ay = fabs(z.imag);
+	if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
+		/*
+		   if abs(z) is large then we use the approximation
+		   atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
+		   of z.imag)
+		*/
+		h = hypot(z.real/2., z.imag/2.);  /* safe from overflow */
+		r.real = z.real/4./h/h;
+		/* the two negations in the next line cancel each other out
+		   except when working with unsigned zeros: they're there to
+		   ensure that the branch cut has the correct continuity on
+		   systems that don't support signed zeros */
+		r.imag = -copysign(Py_MATH_PI/2., -z.imag);
+		errno = 0;
+	} else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
+		/* C99 standard says:  atanh(1+/-0.) should be inf +/- 0i */
+		if (ay == 0.) {
+			r.real = INF;
+			r.imag = z.imag;
+			errno = EDOM;
+		} else {
+			r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
+			r.imag = copysign(atan2(2., -ay)/2, z.imag);
+			errno = 0;
+		}
+	} else {
+		r.real = log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
+		r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
+		errno = 0;
+	}
+	return r;
+}
+
+PyDoc_STRVAR(c_atanh_doc,
+"atanh(x)\n"
+"\n"
+"Return the hyperbolic arc tangent of x.");
+
+
+static Py_complex
+c_cos(Py_complex z)
+{
+	/* cos(z) = cosh(iz) */
+	Py_complex r;
+	r.real = -z.imag;
+	r.imag = z.real;
+	r = c_cosh(r);
+	return r;
+}
+
+PyDoc_STRVAR(c_cos_doc,
+"cos(x)\n"
+"n"
+"Return the cosine of x.");
+
+
+/* cosh(infinity + i*y) needs to be dealt with specially */
+static Py_complex cosh_special_values[7][7];
+
+static Py_complex
+c_cosh(Py_complex z)
+{
+	Py_complex r;
+	double x_minus_one;
+
+	/* special treatment for cosh(+/-inf + iy) if y is not a NaN */
+	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
+		    (z.imag != 0.)) {
+			if (z.real > 0) {
+				r.real = copysign(INF, cos(z.imag));
+				r.imag = copysign(INF, sin(z.imag));
+			}
+			else {
+				r.real = copysign(INF, cos(z.imag));
+				r.imag = -copysign(INF, sin(z.imag));
+			}
+		}
+		else {
+			r = cosh_special_values[special_type(z.real)]
+				               [special_type(z.imag)];
+		}
+		/* need to set errno = EDOM if y is +/- infinity and x is not
+		   a NaN */
+		if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
+			errno = EDOM;
+		else
+			errno = 0;
+		return r;
+	}
+
+	if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+		/* deal correctly with cases where cosh(z.real) overflows but
+		   cosh(z) does not. */
+		x_minus_one = z.real - copysign(1., z.real);
+		r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
+		r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
+	} else {
+		r.real = cos(z.imag) * cosh(z.real);
+		r.imag = sin(z.imag) * sinh(z.real);
+	}
+	/* detect overflow, and set errno accordingly */
+	if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+		errno = ERANGE;
+	else
+		errno = 0;
+	return r;
+}
+
+PyDoc_STRVAR(c_cosh_doc,
+"cosh(x)\n"
+"n"
+"Return the hyperbolic cosine of x.");
+
+
+/* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
+   finite y */
+static Py_complex exp_special_values[7][7];
+
+static Py_complex
+c_exp(Py_complex z)
+{
+	Py_complex r;
+	double l;
+
+	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+		    && (z.imag != 0.)) {
+			if (z.real > 0) {
+				r.real = copysign(INF, cos(z.imag));
+				r.imag = copysign(INF, sin(z.imag));
+			}
+			else {
+				r.real = copysign(0., cos(z.imag));
+				r.imag = copysign(0., sin(z.imag));
+			}
+		}
+		else {
+			r = exp_special_values[special_type(z.real)]
+				              [special_type(z.imag)];
+		}
+		/* need to set errno = EDOM if y is +/- infinity and x is not
+		   a NaN and not -infinity */
+		if (Py_IS_INFINITY(z.imag) &&
+		    (Py_IS_FINITE(z.real) ||
+		     (Py_IS_INFINITY(z.real) && z.real > 0)))
+			errno = EDOM;
+		else
+			errno = 0;
+		return r;
+	}
+
+	if (z.real > CM_LOG_LARGE_DOUBLE) {
+		l = exp(z.real-1.);
+		r.real = l*cos(z.imag)*Py_MATH_E;
+		r.imag = l*sin(z.imag)*Py_MATH_E;
+	} else {
+		l = exp(z.real);
+		r.real = l*cos(z.imag);
+		r.imag = l*sin(z.imag);
+	}
+	/* detect overflow, and set errno accordingly */
+	if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+		errno = ERANGE;
+	else
+		errno = 0;
+	return r;
+}
+
+PyDoc_STRVAR(c_exp_doc,
+"exp(x)\n"
+"\n"
+"Return the exponential value e**x.");
+
+
+static Py_complex log_special_values[7][7];
+
+static Py_complex
+c_log(Py_complex z)
+{
+	/*
+	   The usual formula for the real part is log(hypot(z.real, z.imag)).
+	   There are four situations where this formula is potentially
+	   problematic:
+
+	   (1) the absolute value of z is subnormal.  Then hypot is subnormal,
+	   so has fewer than the usual number of bits of accuracy, hence may
+	   have large relative error.  This then gives a large absolute error
+	   in the log.  This can be solved by rescaling z by a suitable power
+	   of 2.
+
+	   (2) the absolute value of z is greater than DBL_MAX (e.g. when both
+	   z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
+	   Again, rescaling solves this.
+
+	   (3) the absolute value of z is close to 1.  In this case it's
+	   difficult to achieve good accuracy, at least in part because a
+	   change of 1ulp in the real or imaginary part of z can result in a
+	   change of billions of ulps in the correctly rounded answer.
+
+	   (4) z = 0.  The simplest thing to do here is to call the
+	   floating-point log with an argument of 0, and let its behaviour
+	   (returning -infinity, signaling a floating-point exception, setting
+	   errno, or whatever) determine that of c_log.  So the usual formula
+	   is fine here.
+
+	 */
+
+	Py_complex r;
+	double ax, ay, am, an, h;
+
+	SPECIAL_VALUE(z, log_special_values);
+
+	ax = fabs(z.real);
+	ay = fabs(z.imag);
+
+	if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
+		r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
+	} else if (ax < DBL_MIN && ay < DBL_MIN) {
+		if (ax > 0. || ay > 0.) {
+			/* catch cases where hypot(ax, ay) is subnormal */
+			r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
+				 ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
+		}
+		else {
+			/* log(+/-0. +/- 0i) */
+			r.real = -INF;
+			r.imag = atan2(z.imag, z.real);
+			errno = EDOM;
+			return r;
+		}
+	} else {
+		h = hypot(ax, ay);
+		if (0.71 <= h && h <= 1.73) {
+			am = ax > ay ? ax : ay;  /* max(ax, ay) */
+			an = ax > ay ? ay : ax;  /* min(ax, ay) */
+			r.real = log1p((am-1)*(am+1)+an*an)/2.;
+		} else {
+			r.real = log(h);
+		}
+	}
+	r.imag = atan2(z.imag, z.real);
+	errno = 0;
+	return r;
+}
+
+
+static Py_complex
+c_log10(Py_complex z)
+{
+	Py_complex r;
+	int errno_save;
+
+	r = c_log(z);
+	errno_save = errno; /* just in case the divisions affect errno */
+	r.real = r.real / M_LN10;
+	r.imag = r.imag / M_LN10;
+	errno = errno_save;
+	return r;
+}
+
+PyDoc_STRVAR(c_log10_doc,
+"log10(x)\n"
+"\n"
+"Return the base-10 logarithm of x.");
+
+
+static Py_complex
+c_sin(Py_complex z)
+{
+	/* sin(z) = -i sin(iz) */
+	Py_complex s, r;
+	s.real = -z.imag;
+	s.imag = z.real;
+	s = c_sinh(s);
+	r.real = s.imag;
+	r.imag = -s.real;
+	return r;
+}
+
+PyDoc_STRVAR(c_sin_doc,
+"sin(x)\n"
+"\n"
+"Return the sine of x.");
+
+
+/* sinh(infinity + i*y) needs to be dealt with specially */
+static Py_complex sinh_special_values[7][7];
+
+static Py_complex
+c_sinh(Py_complex z)
+{
+	Py_complex r;
+	double x_minus_one;
+
+	/* special treatment for sinh(+/-inf + iy) if y is finite and
+	   nonzero */
+	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+		    && (z.imag != 0.)) {
+			if (z.real > 0) {
+				r.real = copysign(INF, cos(z.imag));
+				r.imag = copysign(INF, sin(z.imag));
+			}
+			else {
+				r.real = -copysign(INF, cos(z.imag));
+				r.imag = copysign(INF, sin(z.imag));
+			}
+		}
+		else {
+			r = sinh_special_values[special_type(z.real)]
+				               [special_type(z.imag)];
+		}
+		/* need to set errno = EDOM if y is +/- infinity and x is not
+		   a NaN */
+		if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
+			errno = EDOM;
+		else
+			errno = 0;
+		return r;
+	}
+
+	if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+		x_minus_one = z.real - copysign(1., z.real);
+		r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
+		r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
+	} else {
+		r.real = cos(z.imag) * sinh(z.real);
+		r.imag = sin(z.imag) * cosh(z.real);
+	}
+	/* detect overflow, and set errno accordingly */
+	if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+		errno = ERANGE;
+	else
+		errno = 0;
+	return r;
+}
+
+PyDoc_STRVAR(c_sinh_doc,
+"sinh(x)\n"
+"\n"
+"Return the hyperbolic sine of x.");
+
+
+static Py_complex sqrt_special_values[7][7];
+
+static Py_complex
+c_sqrt(Py_complex z)
+{
+	/*
+	   Method: use symmetries to reduce to the case when x = z.real and y
+	   = z.imag are nonnegative.  Then the real part of the result is
+	   given by
+
+	     s = sqrt((x + hypot(x, y))/2)
+
+	   and the imaginary part is
+
+	     d = (y/2)/s
+
+	   If either x or y is very large then there's a risk of overflow in
+	   computation of the expression x + hypot(x, y).  We can avoid this
+	   by rewriting the formula for s as:
+
+	     s = 2*sqrt(x/8 + hypot(x/8, y/8))
+
+	   This costs us two extra multiplications/divisions, but avoids the
+	   overhead of checking for x and y large.
+
+	   If both x and y are subnormal then hypot(x, y) may also be
+	   subnormal, so will lack full precision.  We solve this by rescaling
+	   x and y by a sufficiently large power of 2 to ensure that x and y
+	   are normal.
+	*/
+
+
+	Py_complex r;
+	double s,d;
+	double ax, ay;
+
+	SPECIAL_VALUE(z, sqrt_special_values);
+
+	if (z.real == 0. && z.imag == 0.) {
+		r.real = 0.;
+		r.imag = z.imag;
+		return r;
+	}
+
+	ax = fabs(z.real);
+	ay = fabs(z.imag);
+
+	if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
+		/* here we catch cases where hypot(ax, ay) is subnormal */
+		ax = ldexp(ax, CM_SCALE_UP);
+		s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
+			  CM_SCALE_DOWN);
+	} else {
+		ax /= 8.;
+		s = 2.*sqrt(ax + hypot(ax, ay/8.));
+	}
+	d = ay/(2.*s);
+
+	if (z.real >= 0.) {
+		r.real = s;
+		r.imag = copysign(d, z.imag);
+	} else {
+		r.real = d;
+		r.imag = copysign(s, z.imag);
+	}
+	errno = 0;
+	return r;
+}
+
+PyDoc_STRVAR(c_sqrt_doc,
+"sqrt(x)\n"
+"\n"
+"Return the square root of x.");
+
+
+static Py_complex
+c_tan(Py_complex z)
+{
+	/* tan(z) = -i tanh(iz) */
+	Py_complex s, r;
+	s.real = -z.imag;
+	s.imag = z.real;
+	s = c_tanh(s);
+	r.real = s.imag;
+	r.imag = -s.real;
+	return r;
+}
+
+PyDoc_STRVAR(c_tan_doc,
+"tan(x)\n"
+"\n"
+"Return the tangent of x.");
+
+
+/* tanh(infinity + i*y) needs to be dealt with specially */
+static Py_complex tanh_special_values[7][7];
+
+static Py_complex
+c_tanh(Py_complex z)
+{
+	/* Formula:
+
+	   tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
+	   (1+tan(y)^2 tanh(x)^2)
+
+	   To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
+	   as 1/cosh(x)^2.  When abs(x) is large, we approximate 1-tanh(x)^2
+	   by 4 exp(-2*x) instead, to avoid possible overflow in the
+	   computation of cosh(x).
+
+	*/
+
+	Py_complex r;
+	double tx, ty, cx, txty, denom;
+
+	/* special treatment for tanh(+/-inf + iy) if y is finite and
+	   nonzero */
+	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+		    && (z.imag != 0.)) {
+			if (z.real > 0) {
+				r.real = 1.0;
+				r.imag = copysign(0.,
+						  2.*sin(z.imag)*cos(z.imag));
+			}
+			else {
+				r.real = -1.0;
+				r.imag = copysign(0.,
+						  2.*sin(z.imag)*cos(z.imag));
+			}
+		}
+		else {
+			r = tanh_special_values[special_type(z.real)]
+				               [special_type(z.imag)];
+		}
+		/* need to set errno = EDOM if z.imag is +/-infinity and
+		   z.real is finite */
+		if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
+			errno = EDOM;
+		else
+			errno = 0;
+		return r;
+	}
+
+	/* danger of overflow in 2.*z.imag !*/
+	if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+		r.real = copysign(1., z.real);
+		r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
+	} else {
+		tx = tanh(z.real);
+		ty = tan(z.imag);
+		cx = 1./cosh(z.real);
+		txty = tx*ty;
+		denom = 1. + txty*txty;
+		r.real = tx*(1.+ty*ty)/denom;
+		r.imag = ((ty/denom)*cx)*cx;
+	}
+	errno = 0;
+	return r;
+}
+
+PyDoc_STRVAR(c_tanh_doc,
+"tanh(x)\n"
+"\n"
+"Return the hyperbolic tangent of x.");
+
+
+static PyObject *
+cmath_log(PyObject *self, PyObject *args)
+{
+	Py_complex x;
+	Py_complex y;
+
+	if (!PyArg_ParseTuple(args, "D|D", &x, &y))
+		return NULL;
+
+	errno = 0;
+	PyFPE_START_PROTECT("complex function", return 0)
+	x = c_log(x);
+	if (PyTuple_GET_SIZE(args) == 2) {
+		y = c_log(y);
+		x = c_quot(x, y);
+	}
+	PyFPE_END_PROTECT(x)
+	if (errno != 0)
+		return math_error();
+	return PyComplex_FromCComplex(x);
+}
+
+PyDoc_STRVAR(cmath_log_doc,
+"log(x[, base]) -> the logarithm of x to the given base.\n\
+If the base not specified, returns the natural logarithm (base e) of x.");
+
+
+/* And now the glue to make them available from Python: */
+
+static PyObject *
+math_error(void)
+{
+	if (errno == EDOM)
+		PyErr_SetString(PyExc_ValueError, "math domain error");
+	else if (errno == ERANGE)
+		PyErr_SetString(PyExc_OverflowError, "math range error");
+	else    /* Unexpected math error */
+		PyErr_SetFromErrno(PyExc_ValueError);
+	return NULL;
+}
+
+static PyObject *
+math_1(PyObject *args, Py_complex (*func)(Py_complex))
+{
+	Py_complex x,r ;
+	if (!PyArg_ParseTuple(args, "D", &x))
+		return NULL;
+	errno = 0;
+	PyFPE_START_PROTECT("complex function", return 0);
+	r = (*func)(x);
+	PyFPE_END_PROTECT(r);
+	if (errno == EDOM) {
+		PyErr_SetString(PyExc_ValueError, "math domain error");
+		return NULL;
+	}
+	else if (errno == ERANGE) {
+		PyErr_SetString(PyExc_OverflowError, "math range error");
+		return NULL;
+	}
+	else {
+		return PyComplex_FromCComplex(r);
+	}
+}
+
+#define FUNC1(stubname, func) \
+	static PyObject * stubname(PyObject *self, PyObject *args) { \
+		return math_1(args, func); \
+	}
+
+FUNC1(cmath_acos, c_acos)
+FUNC1(cmath_acosh, c_acosh)
+FUNC1(cmath_asin, c_asin)
+FUNC1(cmath_asinh, c_asinh)
+FUNC1(cmath_atan, c_atan)
+FUNC1(cmath_atanh, c_atanh)
+FUNC1(cmath_cos, c_cos)
+FUNC1(cmath_cosh, c_cosh)
+FUNC1(cmath_exp, c_exp)
+FUNC1(cmath_log10, c_log10)
+FUNC1(cmath_sin, c_sin)
+FUNC1(cmath_sinh, c_sinh)
+FUNC1(cmath_sqrt, c_sqrt)
+FUNC1(cmath_tan, c_tan)
+FUNC1(cmath_tanh, c_tanh)
+
+static PyObject *
+cmath_phase(PyObject *self, PyObject *args)
+{
+	Py_complex z;
+	double phi;
+	if (!PyArg_ParseTuple(args, "D:phase", &z))
+		return NULL;
+	errno = 0;
+	PyFPE_START_PROTECT("arg function", return 0)
+	phi = c_atan2(z);
+	PyFPE_END_PROTECT(phi)
+	if (errno != 0)
+		return math_error();
+	else
+		return PyFloat_FromDouble(phi);
+}
+
+PyDoc_STRVAR(cmath_phase_doc,
+"phase(z) -> float\n\n\
+Return argument, also known as the phase angle, of a complex.");
+
+static PyObject *
+cmath_polar(PyObject *self, PyObject *args)
+{
+	Py_complex z;
+	double r, phi;
+	if (!PyArg_ParseTuple(args, "D:polar", &z))
+		return NULL;
+	PyFPE_START_PROTECT("polar function", return 0)
+	phi = c_atan2(z); /* should not cause any exception */
+	r = c_abs(z); /* sets errno to ERANGE on overflow;  otherwise 0 */
+	PyFPE_END_PROTECT(r)
+	if (errno != 0)
+		return math_error();
+	else
+		return Py_BuildValue("dd", r, phi);
+}
+
+PyDoc_STRVAR(cmath_polar_doc,
+"polar(z) -> r: float, phi: float\n\n\
+Convert a complex from rectangular coordinates to polar coordinates. r is\n\
+the distance from 0 and phi the phase angle.");
+
+/*
+  rect() isn't covered by the C99 standard, but it's not too hard to
+  figure out 'spirit of C99' rules for special value handing:
+
+    rect(x, t) should behave like exp(log(x) + it) for positive-signed x
+    rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
+    rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
+      gives nan +- i0 with the sign of the imaginary part unspecified.
+
+*/
+
+static Py_complex rect_special_values[7][7];
+
+static PyObject *
+cmath_rect(PyObject *self, PyObject *args)
+{
+	Py_complex z;
+	double r, phi;
+	if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
+		return NULL;
+	errno = 0;
+	PyFPE_START_PROTECT("rect function", return 0)
+
+	/* deal with special values */
+	if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
+		/* if r is +/-infinity and phi is finite but nonzero then
+		   result is (+-INF +-INF i), but we need to compute cos(phi)
+		   and sin(phi) to figure out the signs. */
+		if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
+					  && (phi != 0.))) {
+			if (r > 0) {
+				z.real = copysign(INF, cos(phi));
+				z.imag = copysign(INF, sin(phi));
+			}
+			else {
+				z.real = -copysign(INF, cos(phi));
+				z.imag = -copysign(INF, sin(phi));
+			}
+		}
+		else {
+			z = rect_special_values[special_type(r)]
+				               [special_type(phi)];
+		}
+		/* need to set errno = EDOM if r is a nonzero number and phi
+		   is infinite */
+		if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
+			errno = EDOM;
+		else
+			errno = 0;
+	}
+	else {
+		z.real = r * cos(phi);
+		z.imag = r * sin(phi);
+		errno = 0;
+	}
+
+	PyFPE_END_PROTECT(z)
+	if (errno != 0)
+		return math_error();
+	else
+		return PyComplex_FromCComplex(z);
+}
+
+PyDoc_STRVAR(cmath_rect_doc,
+"rect(r, phi) -> z: complex\n\n\
+Convert from polar coordinates to rectangular coordinates.");
+
+static PyObject *
+cmath_isnan(PyObject *self, PyObject *args)
+{
+	Py_complex z;
+	if (!PyArg_ParseTuple(args, "D:isnan", &z))
+		return NULL;
+	return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
+}
+
+PyDoc_STRVAR(cmath_isnan_doc,
+"isnan(z) -> bool\n\
+Checks if the real or imaginary part of z not a number (NaN)");
+
+static PyObject *
+cmath_isinf(PyObject *self, PyObject *args)
+{
+	Py_complex z;
+	if (!PyArg_ParseTuple(args, "D:isnan", &z))
+		return NULL;
+	return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
+			       Py_IS_INFINITY(z.imag));
+}
+
+PyDoc_STRVAR(cmath_isinf_doc,
+"isinf(z) -> bool\n\
+Checks if the real or imaginary part of z is infinite.");
+
+
+PyDoc_STRVAR(module_doc,
+"This module is always available. It provides access to mathematical\n"
+"functions for complex numbers.");
+
+static PyMethodDef cmath_methods[] = {
+	{"acos",   cmath_acos,  METH_VARARGS, c_acos_doc},
+	{"acosh",  cmath_acosh, METH_VARARGS, c_acosh_doc},
+	{"asin",   cmath_asin,  METH_VARARGS, c_asin_doc},
+	{"asinh",  cmath_asinh, METH_VARARGS, c_asinh_doc},
+	{"atan",   cmath_atan,  METH_VARARGS, c_atan_doc},
+	{"atanh",  cmath_atanh, METH_VARARGS, c_atanh_doc},
+	{"cos",    cmath_cos,   METH_VARARGS, c_cos_doc},
+	{"cosh",   cmath_cosh,  METH_VARARGS, c_cosh_doc},
+	{"exp",    cmath_exp,   METH_VARARGS, c_exp_doc},
+	{"isinf",  cmath_isinf, METH_VARARGS, cmath_isinf_doc},
+	{"isnan",  cmath_isnan, METH_VARARGS, cmath_isnan_doc},
+	{"log",    cmath_log,   METH_VARARGS, cmath_log_doc},
+	{"log10",  cmath_log10, METH_VARARGS, c_log10_doc},
+	{"phase",  cmath_phase, METH_VARARGS, cmath_phase_doc},
+	{"polar",  cmath_polar, METH_VARARGS, cmath_polar_doc},
+	{"rect",   cmath_rect,  METH_VARARGS, cmath_rect_doc},
+	{"sin",    cmath_sin,   METH_VARARGS, c_sin_doc},
+	{"sinh",   cmath_sinh,  METH_VARARGS, c_sinh_doc},
+	{"sqrt",   cmath_sqrt,  METH_VARARGS, c_sqrt_doc},
+	{"tan",    cmath_tan,   METH_VARARGS, c_tan_doc},
+	{"tanh",   cmath_tanh,  METH_VARARGS, c_tanh_doc},
+	{NULL,		NULL}		/* sentinel */
+};
+
+PyMODINIT_FUNC
+initcmath(void)
+{
+	PyObject *m;
+
+	m = Py_InitModule3("cmath", cmath_methods, module_doc);
+	if (m == NULL)
+		return;
+
+	PyModule_AddObject(m, "pi",
+                           PyFloat_FromDouble(Py_MATH_PI));
+	PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
+
+	/* initialize special value tables */
+
+#define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
+#define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
+
+	INIT_SPECIAL_VALUES(acos_special_values, {
+	  C(P34,INF) C(P,INF)  C(P,INF)  C(P,-INF)  C(P,-INF)  C(P34,-INF) C(N,INF)
+	  C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
+	  C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
+	  C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
+	  C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
+	  C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
+	  C(N,INF)   C(N,N)    C(N,N)    C(N,N)     C(N,N)     C(N,-INF)   C(N,N)
+	})
+
+	INIT_SPECIAL_VALUES(acosh_special_values, {
+	  C(INF,-P34) C(INF,-P)  C(INF,-P)  C(INF,P)  C(INF,P)  C(INF,P34) C(INF,N)
+	  C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
+	  C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
+	  C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
+	  C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
+	  C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
+	  C(INF,N)    C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,N)   C(N,N)
+	})
+
+	INIT_SPECIAL_VALUES(asinh_special_values, {
+	  C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
+	  C(-INF,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-INF,P12) C(N,N)
+	  C(-INF,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-INF,P12) C(N,N)
+	  C(INF,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(INF,P12)  C(N,N)
+	  C(INF,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(INF,P12)  C(N,N)
+	  C(INF,-P14)  C(INF,-0.)  C(INF,-0.)  C(INF,0.)  C(INF,0.)  C(INF,P14)  C(INF,N)
+	  C(INF,N)     C(N,N)      C(N,-0.)    C(N,0.)    C(N,N)     C(INF,N)    C(N,N)
+	})
+
+	INIT_SPECIAL_VALUES(atanh_special_values, {
+	  C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
+	  C(-0.,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-0.,P12) C(N,N)
+	  C(-0.,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-0.,P12) C(-0.,N)
+	  C(0.,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(0.,P12)  C(0.,N)
+	  C(0.,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(0.,P12)  C(N,N)
+	  C(0.,-P12)  C(0.,-P12)  C(0.,-P12)  C(0.,P12)  C(0.,P12)  C(0.,P12)  C(0.,N)
+	  C(0.,-P12)  C(N,N)      C(N,N)      C(N,N)     C(N,N)     C(0.,P12)  C(N,N)
+	})
+
+	INIT_SPECIAL_VALUES(cosh_special_values, {
+	  C(INF,N) C(U,U) C(INF,0.)  C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
+	  C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
+	  C(N,0.)  C(U,U) C(1.,0.)   C(1.,-0.)  C(U,U) C(N,0.)  C(N,0.)
+	  C(N,0.)  C(U,U) C(1.,-0.)  C(1.,0.)   C(U,U) C(N,0.)  C(N,0.)
+	  C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
+	  C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
+	  C(N,N)   C(N,N) C(N,0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
+	})
+
+	INIT_SPECIAL_VALUES(exp_special_values, {
+	  C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(0.,0.) C(0.,0.)
+	  C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
+	  C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
+	  C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
+	  C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
+	  C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
+	  C(N,N)   C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)   C(N,N)
+	})
+
+	INIT_SPECIAL_VALUES(log_special_values, {
+	  C(INF,-P34) C(INF,-P)  C(INF,-P)   C(INF,P)   C(INF,P)  C(INF,P34)  C(INF,N)
+	  C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
+	  C(INF,-P12) C(U,U)     C(-INF,-P)  C(-INF,P)  C(U,U)    C(INF,P12)  C(N,N)
+	  C(INF,-P12) C(U,U)     C(-INF,-0.) C(-INF,0.) C(U,U)    C(INF,P12)  C(N,N)
+	  C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
+	  C(INF,-P14) C(INF,-0.) C(INF,-0.)  C(INF,0.)  C(INF,0.) C(INF,P14)  C(INF,N)
+	  C(INF,N)    C(N,N)     C(N,N)      C(N,N)     C(N,N)    C(INF,N)    C(N,N)
+	})
+
+	INIT_SPECIAL_VALUES(sinh_special_values, {
+	  C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
+	  C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
+	  C(0.,N)  C(U,U) C(-0.,-0.)  C(-0.,0.)  C(U,U) C(0.,N)  C(0.,N)
+	  C(0.,N)  C(U,U) C(0.,-0.)   C(0.,0.)   C(U,U) C(0.,N)  C(0.,N)
+	  C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
+	  C(INF,N) C(U,U) C(INF,-0.)  C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
+	  C(N,N)   C(N,N) C(N,-0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
+	})
+
+	INIT_SPECIAL_VALUES(sqrt_special_values, {
+	  C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
+	  C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
+	  C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
+	  C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
+	  C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
+	  C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
+	  C(INF,-INF) C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,INF) C(N,N)
+	})
+
+	INIT_SPECIAL_VALUES(tanh_special_values, {
+	  C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
+	  C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
+	  C(N,N)    C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N)    C(N,N)
+	  C(N,N)    C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(N,N)    C(N,N)
+	  C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
+	  C(1.,0.)  C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(1.,0.)  C(1.,0.)
+	  C(N,N)    C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)    C(N,N)
+	})
+
+	INIT_SPECIAL_VALUES(rect_special_values, {
+	  C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
+	  C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
+	  C(0.,0.) C(U,U) C(-0.,0.)  C(-0.,-0.)  C(U,U) C(0.,0.) C(0.,0.)
+	  C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)    C(U,U) C(0.,0.) C(0.,0.)
+	  C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
+	  C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)   C(U,U) C(INF,N) C(INF,N)
+	  C(N,N)   C(N,N) C(N,0.)    C(N,0.)     C(N,N) C(N,N)   C(N,N)
+	})
+}