symbian-qemu-0.9.1-12/python-2.6.1/Modules/shamodule.c
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Modules/shamodule.c	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,592 @@
+/* SHA module */
+
+/* This module provides an interface to NIST's Secure Hash Algorithm */
+
+/* See below for information about the original code this module was
+   based upon. Additional work performed by:
+
+   Andrew Kuchling (amk@amk.ca)
+   Greg Stein (gstein@lyra.org)
+
+   Copyright (C) 2005   Gregory P. Smith (greg@krypto.org)
+   Licensed to PSF under a Contributor Agreement.
+
+*/
+
+/* SHA objects */
+
+#include "Python.h"
+#include "structmember.h"
+
+
+/* Endianness testing and definitions */
+#define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
+	if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
+
+#define PCT_LITTLE_ENDIAN 1
+#define PCT_BIG_ENDIAN 0
+
+/* Some useful types */
+
+typedef unsigned char SHA_BYTE;
+
+#if SIZEOF_INT == 4
+typedef unsigned int SHA_INT32;	/* 32-bit integer */
+#else
+/* not defined. compilation will die. */
+#endif
+
+/* The SHA block size and message digest sizes, in bytes */
+
+#define SHA_BLOCKSIZE    64
+#define SHA_DIGESTSIZE  20
+
+/* The structure for storing SHS info */
+
+typedef struct {
+    PyObject_HEAD
+    SHA_INT32 digest[5];		/* Message digest */
+    SHA_INT32 count_lo, count_hi;	/* 64-bit bit count */
+    SHA_BYTE data[SHA_BLOCKSIZE];	/* SHA data buffer */
+    int Endianness;
+    int local;				/* unprocessed amount in data */
+} SHAobject;
+
+/* When run on a little-endian CPU we need to perform byte reversal on an
+   array of longwords. */
+
+static void longReverse(SHA_INT32 *buffer, int byteCount, int Endianness)
+{
+    SHA_INT32 value;
+
+    if ( Endianness == PCT_BIG_ENDIAN )
+	return;
+
+    byteCount /= sizeof(*buffer);
+    while (byteCount--) {
+        value = *buffer;
+        value = ( ( value & 0xFF00FF00L ) >> 8  ) | \
+                ( ( value & 0x00FF00FFL ) << 8 );
+        *buffer++ = ( value << 16 ) | ( value >> 16 );
+    }
+}
+
+static void SHAcopy(SHAobject *src, SHAobject *dest)
+{
+    dest->Endianness = src->Endianness;
+    dest->local = src->local;
+    dest->count_lo = src->count_lo;
+    dest->count_hi = src->count_hi;
+    memcpy(dest->digest, src->digest, sizeof(src->digest));
+    memcpy(dest->data, src->data, sizeof(src->data));
+}
+
+
+/* ------------------------------------------------------------------------
+ *
+ * This code for the SHA algorithm was noted as public domain. The original
+ * headers are pasted below.
+ *
+ * Several changes have been made to make it more compatible with the
+ * Python environment and desired interface.
+ *
+ */
+
+/* NIST Secure Hash Algorithm */
+/* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu> */
+/* from Peter C. Gutmann's implementation as found in */
+/* Applied Cryptography by Bruce Schneier */
+/* Further modifications to include the "UNRAVEL" stuff, below */
+
+/* This code is in the public domain */
+
+/* UNRAVEL should be fastest & biggest */
+/* UNROLL_LOOPS should be just as big, but slightly slower */
+/* both undefined should be smallest and slowest */
+
+#define UNRAVEL
+/* #define UNROLL_LOOPS */
+
+/* The SHA f()-functions.  The f1 and f3 functions can be optimized to
+   save one boolean operation each - thanks to Rich Schroeppel,
+   rcs@cs.arizona.edu for discovering this */
+
+/*#define f1(x,y,z)	((x & y) | (~x & z))		// Rounds  0-19 */
+#define f1(x,y,z)	(z ^ (x & (y ^ z)))		/* Rounds  0-19 */
+#define f2(x,y,z)	(x ^ y ^ z)			/* Rounds 20-39 */
+/*#define f3(x,y,z)	((x & y) | (x & z) | (y & z))	// Rounds 40-59 */
+#define f3(x,y,z)	((x & y) | (z & (x | y)))	/* Rounds 40-59 */
+#define f4(x,y,z)	(x ^ y ^ z)			/* Rounds 60-79 */
+
+/* SHA constants */
+
+#define CONST1		0x5a827999L			/* Rounds  0-19 */
+#define CONST2		0x6ed9eba1L			/* Rounds 20-39 */
+#define CONST3		0x8f1bbcdcL			/* Rounds 40-59 */
+#define CONST4		0xca62c1d6L			/* Rounds 60-79 */
+
+/* 32-bit rotate */
+
+#define R32(x,n)	((x << n) | (x >> (32 - n)))
+
+/* the generic case, for when the overall rotation is not unraveled */
+
+#define FG(n)	\
+    T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n;	\
+    E = D; D = C; C = R32(B,30); B = A; A = T
+
+/* specific cases, for when the overall rotation is unraveled */
+
+#define FA(n)	\
+    T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; B = R32(B,30)
+
+#define FB(n)	\
+    E = R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n; A = R32(A,30)
+
+#define FC(n)	\
+    D = R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n; T = R32(T,30)
+
+#define FD(n)	\
+    C = R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n; E = R32(E,30)
+
+#define FE(n)	\
+    B = R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n; D = R32(D,30)
+
+#define FT(n)	\
+    A = R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n; C = R32(C,30)
+
+/* do SHA transformation */
+
+static void
+sha_transform(SHAobject *sha_info)
+{
+    int i;
+    SHA_INT32 T, A, B, C, D, E, W[80], *WP;
+
+    memcpy(W, sha_info->data, sizeof(sha_info->data));
+    longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness);
+
+    for (i = 16; i < 80; ++i) {
+	W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
+
+	/* extra rotation fix */
+	W[i] = R32(W[i], 1);
+    }
+    A = sha_info->digest[0];
+    B = sha_info->digest[1];
+    C = sha_info->digest[2];
+    D = sha_info->digest[3];
+    E = sha_info->digest[4];
+    WP = W;
+#ifdef UNRAVEL
+    FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
+    FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
+    FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
+    FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
+    FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
+    FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
+    FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
+    FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
+    sha_info->digest[0] += E;
+    sha_info->digest[1] += T;
+    sha_info->digest[2] += A;
+    sha_info->digest[3] += B;
+    sha_info->digest[4] += C;
+#else /* !UNRAVEL */
+#ifdef UNROLL_LOOPS
+    FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
+    FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
+    FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
+    FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
+    FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
+    FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
+    FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
+    FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
+#else /* !UNROLL_LOOPS */
+    for (i =  0; i < 20; ++i) { FG(1); }
+    for (i = 20; i < 40; ++i) { FG(2); }
+    for (i = 40; i < 60; ++i) { FG(3); }
+    for (i = 60; i < 80; ++i) { FG(4); }
+#endif /* !UNROLL_LOOPS */
+    sha_info->digest[0] += A;
+    sha_info->digest[1] += B;
+    sha_info->digest[2] += C;
+    sha_info->digest[3] += D;
+    sha_info->digest[4] += E;
+#endif /* !UNRAVEL */
+}
+
+/* initialize the SHA digest */
+
+static void
+sha_init(SHAobject *sha_info)
+{
+    TestEndianness(sha_info->Endianness)
+
+    sha_info->digest[0] = 0x67452301L;
+    sha_info->digest[1] = 0xefcdab89L;
+    sha_info->digest[2] = 0x98badcfeL;
+    sha_info->digest[3] = 0x10325476L;
+    sha_info->digest[4] = 0xc3d2e1f0L;
+    sha_info->count_lo = 0L;
+    sha_info->count_hi = 0L;
+    sha_info->local = 0;
+}
+
+/* update the SHA digest */
+
+static void
+sha_update(SHAobject *sha_info, SHA_BYTE *buffer, int count)
+{
+    int i;
+    SHA_INT32 clo;
+
+    clo = sha_info->count_lo + ((SHA_INT32) count << 3);
+    if (clo < sha_info->count_lo) {
+        ++sha_info->count_hi;
+    }
+    sha_info->count_lo = clo;
+    sha_info->count_hi += (SHA_INT32) count >> 29;
+    if (sha_info->local) {
+        i = SHA_BLOCKSIZE - sha_info->local;
+        if (i > count) {
+            i = count;
+        }
+        memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
+        count -= i;
+        buffer += i;
+        sha_info->local += i;
+        if (sha_info->local == SHA_BLOCKSIZE) {
+            sha_transform(sha_info);
+        }
+        else {
+            return;
+        }
+    }
+    while (count >= SHA_BLOCKSIZE) {
+        memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
+        buffer += SHA_BLOCKSIZE;
+        count -= SHA_BLOCKSIZE;
+        sha_transform(sha_info);
+    }
+    memcpy(sha_info->data, buffer, count);
+    sha_info->local = count;
+}
+
+/* finish computing the SHA digest */
+
+static void
+sha_final(unsigned char digest[20], SHAobject *sha_info)
+{
+    int count;
+    SHA_INT32 lo_bit_count, hi_bit_count;
+
+    lo_bit_count = sha_info->count_lo;
+    hi_bit_count = sha_info->count_hi;
+    count = (int) ((lo_bit_count >> 3) & 0x3f);
+    ((SHA_BYTE *) sha_info->data)[count++] = 0x80;
+    if (count > SHA_BLOCKSIZE - 8) {
+	memset(((SHA_BYTE *) sha_info->data) + count, 0,
+	       SHA_BLOCKSIZE - count);
+	sha_transform(sha_info);
+	memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
+    }
+    else {
+	memset(((SHA_BYTE *) sha_info->data) + count, 0,
+	       SHA_BLOCKSIZE - 8 - count);
+    }
+
+    /* GJS: note that we add the hi/lo in big-endian. sha_transform will
+       swap these values into host-order. */
+    sha_info->data[56] = (hi_bit_count >> 24) & 0xff;
+    sha_info->data[57] = (hi_bit_count >> 16) & 0xff;
+    sha_info->data[58] = (hi_bit_count >>  8) & 0xff;
+    sha_info->data[59] = (hi_bit_count >>  0) & 0xff;
+    sha_info->data[60] = (lo_bit_count >> 24) & 0xff;
+    sha_info->data[61] = (lo_bit_count >> 16) & 0xff;
+    sha_info->data[62] = (lo_bit_count >>  8) & 0xff;
+    sha_info->data[63] = (lo_bit_count >>  0) & 0xff;
+    sha_transform(sha_info);
+    digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
+    digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
+    digest[ 2] = (unsigned char) ((sha_info->digest[0] >>  8) & 0xff);
+    digest[ 3] = (unsigned char) ((sha_info->digest[0]      ) & 0xff);
+    digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
+    digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
+    digest[ 6] = (unsigned char) ((sha_info->digest[1] >>  8) & 0xff);
+    digest[ 7] = (unsigned char) ((sha_info->digest[1]      ) & 0xff);
+    digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
+    digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
+    digest[10] = (unsigned char) ((sha_info->digest[2] >>  8) & 0xff);
+    digest[11] = (unsigned char) ((sha_info->digest[2]      ) & 0xff);
+    digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
+    digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
+    digest[14] = (unsigned char) ((sha_info->digest[3] >>  8) & 0xff);
+    digest[15] = (unsigned char) ((sha_info->digest[3]      ) & 0xff);
+    digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
+    digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
+    digest[18] = (unsigned char) ((sha_info->digest[4] >>  8) & 0xff);
+    digest[19] = (unsigned char) ((sha_info->digest[4]      ) & 0xff);
+}
+
+/*
+ * End of copied SHA code.
+ *
+ * ------------------------------------------------------------------------
+ */
+
+static PyTypeObject SHAtype;
+
+
+static SHAobject *
+newSHAobject(void)
+{
+    return (SHAobject *)PyObject_New(SHAobject, &SHAtype);
+}
+
+/* Internal methods for a hashing object */
+
+static void
+SHA_dealloc(PyObject *ptr)
+{
+    PyObject_Del(ptr);
+}
+
+
+/* External methods for a hashing object */
+
+PyDoc_STRVAR(SHA_copy__doc__, "Return a copy of the hashing object.");
+
+static PyObject *
+SHA_copy(SHAobject *self, PyObject *unused)
+{
+    SHAobject *newobj;
+
+    if ( (newobj = newSHAobject())==NULL)
+        return NULL;
+
+    SHAcopy(self, newobj);
+    return (PyObject *)newobj;
+}
+
+PyDoc_STRVAR(SHA_digest__doc__,
+"Return the digest value as a string of binary data.");
+
+static PyObject *
+SHA_digest(SHAobject *self, PyObject *unused)
+{
+    unsigned char digest[SHA_DIGESTSIZE];
+    SHAobject temp;
+
+    SHAcopy(self, &temp);
+    sha_final(digest, &temp);
+    return PyString_FromStringAndSize((const char *)digest, sizeof(digest));
+}
+
+PyDoc_STRVAR(SHA_hexdigest__doc__,
+"Return the digest value as a string of hexadecimal digits.");
+
+static PyObject *
+SHA_hexdigest(SHAobject *self, PyObject *unused)
+{
+    unsigned char digest[SHA_DIGESTSIZE];
+    SHAobject temp;
+    PyObject *retval;
+    char *hex_digest;
+    int i, j;
+
+    /* Get the raw (binary) digest value */
+    SHAcopy(self, &temp);
+    sha_final(digest, &temp);
+
+    /* Create a new string */
+    retval = PyString_FromStringAndSize(NULL, sizeof(digest) * 2);
+    if (!retval)
+	    return NULL;
+    hex_digest = PyString_AsString(retval);
+    if (!hex_digest) {
+	    Py_DECREF(retval);
+	    return NULL;
+    }
+
+    /* Make hex version of the digest */
+    for(i=j=0; i<sizeof(digest); i++) {
+        char c;
+        c = (digest[i] >> 4) & 0xf;
+	c = (c>9) ? c+'a'-10 : c + '0';
+        hex_digest[j++] = c;
+        c = (digest[i] & 0xf);
+	c = (c>9) ? c+'a'-10 : c + '0';
+        hex_digest[j++] = c;
+    }
+    return retval;
+}
+
+PyDoc_STRVAR(SHA_update__doc__,
+"Update this hashing object's state with the provided string.");
+
+static PyObject *
+SHA_update(SHAobject *self, PyObject *args)
+{
+    unsigned char *cp;
+    int len;
+
+    if (!PyArg_ParseTuple(args, "s#:update", &cp, &len))
+        return NULL;
+
+    sha_update(self, cp, len);
+
+    Py_INCREF(Py_None);
+    return Py_None;
+}
+
+static PyMethodDef SHA_methods[] = {
+    {"copy",	  (PyCFunction)SHA_copy,      METH_NOARGS,  SHA_copy__doc__},
+    {"digest",	  (PyCFunction)SHA_digest,    METH_NOARGS,  SHA_digest__doc__},
+    {"hexdigest", (PyCFunction)SHA_hexdigest, METH_NOARGS,  SHA_hexdigest__doc__},
+    {"update",	  (PyCFunction)SHA_update,    METH_VARARGS, SHA_update__doc__},
+    {NULL,	  NULL}		/* sentinel */
+};
+
+static PyObject *
+SHA_get_block_size(PyObject *self, void *closure)
+{
+    return PyInt_FromLong(SHA_BLOCKSIZE);
+}
+
+static PyObject *
+SHA_get_digest_size(PyObject *self, void *closure)
+{
+    return PyInt_FromLong(SHA_DIGESTSIZE);
+}
+
+static PyObject *
+SHA_get_name(PyObject *self, void *closure)
+{
+    return PyString_FromStringAndSize("SHA1", 4);
+}
+
+static PyGetSetDef SHA_getseters[] = {
+    {"digest_size",
+     (getter)SHA_get_digest_size, NULL,
+     NULL,
+     NULL},
+    {"block_size",
+     (getter)SHA_get_block_size, NULL,
+     NULL,
+     NULL},
+    {"name",
+     (getter)SHA_get_name, NULL,
+     NULL,
+     NULL},
+    /* the old md5 and sha modules support 'digest_size' as in PEP 247.
+     * the old sha module also supported 'digestsize'.  ugh. */
+    {"digestsize",
+     (getter)SHA_get_digest_size, NULL,
+     NULL,
+     NULL},
+    {NULL}  /* Sentinel */
+};
+
+static PyTypeObject SHAtype = {
+    PyVarObject_HEAD_INIT(NULL, 0)
+    "_sha.sha",		/*tp_name*/
+    sizeof(SHAobject),	/*tp_size*/
+    0,			/*tp_itemsize*/
+    /* methods */
+    SHA_dealloc,	/*tp_dealloc*/
+    0,			/*tp_print*/
+    0,                  /*tp_getattr*/
+    0,                  /*tp_setattr*/
+    0,                  /*tp_compare*/
+    0,                  /*tp_repr*/
+    0,                  /*tp_as_number*/
+    0,                  /*tp_as_sequence*/
+    0,                  /*tp_as_mapping*/
+    0,                  /*tp_hash*/
+    0,                  /*tp_call*/
+    0,                  /*tp_str*/
+    0,                  /*tp_getattro*/
+    0,                  /*tp_setattro*/
+    0,                  /*tp_as_buffer*/
+    Py_TPFLAGS_DEFAULT, /*tp_flags*/
+    0,                  /*tp_doc*/
+    0,                  /*tp_traverse*/
+    0,			/*tp_clear*/
+    0,			/*tp_richcompare*/
+    0,			/*tp_weaklistoffset*/
+    0,			/*tp_iter*/
+    0,			/*tp_iternext*/
+    SHA_methods,	/* tp_methods */
+    0,                  /* tp_members */
+    SHA_getseters,      /* tp_getset */
+};
+
+
+/* The single module-level function: new() */
+
+PyDoc_STRVAR(SHA_new__doc__,
+"Return a new SHA hashing object.  An optional string argument\n\
+may be provided; if present, this string will be automatically\n\
+hashed.");
+
+static PyObject *
+SHA_new(PyObject *self, PyObject *args, PyObject *kwdict)
+{
+    static char *kwlist[] = {"string", NULL};
+    SHAobject *new;
+    unsigned char *cp = NULL;
+    int len;
+
+    if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist,
+                                     &cp, &len)) {
+        return NULL;
+    }
+
+    if ((new = newSHAobject()) == NULL)
+        return NULL;
+
+    sha_init(new);
+
+    if (PyErr_Occurred()) {
+        Py_DECREF(new);
+        return NULL;
+    }
+    if (cp)
+        sha_update(new, cp, len);
+
+    return (PyObject *)new;
+}
+
+
+/* List of functions exported by this module */
+
+static struct PyMethodDef SHA_functions[] = {
+    {"new", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__},
+    {NULL,	NULL}		 /* Sentinel */
+};
+
+
+/* Initialize this module. */
+
+#define insint(n,v) { PyModule_AddIntConstant(m,n,v); }
+
+PyMODINIT_FUNC
+init_sha(void)
+{
+    PyObject *m;
+
+    Py_TYPE(&SHAtype) = &PyType_Type;
+    if (PyType_Ready(&SHAtype) < 0)
+        return;
+    m = Py_InitModule("_sha", SHA_functions);
+    if (m == NULL)
+	return;
+
+    /* Add some symbolic constants to the module */
+    insint("blocksize", 1);  /* For future use, in case some hash
+                                functions require an integral number of
+                                blocks */ 
+    insint("digestsize", 20);
+    insint("digest_size", 20);
+}