symbian-qemu-0.9.1-12/python-2.6.1/Objects/frameobject.c
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Objects/frameobject.c	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,939 @@
+/* Frame object implementation */
+
+#include "Python.h"
+
+#include "code.h"
+#include "frameobject.h"
+#include "opcode.h"
+#include "structmember.h"
+
+#undef MIN
+#undef MAX
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+#define OFF(x) offsetof(PyFrameObject, x)
+
+static PyMemberDef frame_memberlist[] = {
+	{"f_back",	T_OBJECT,	OFF(f_back),	RO},
+	{"f_code",	T_OBJECT,	OFF(f_code),	RO},
+	{"f_builtins",	T_OBJECT,	OFF(f_builtins),RO},
+	{"f_globals",	T_OBJECT,	OFF(f_globals),	RO},
+	{"f_lasti",	T_INT,		OFF(f_lasti),	RO},
+	{"f_exc_type",	T_OBJECT,	OFF(f_exc_type)},
+	{"f_exc_value",	T_OBJECT,	OFF(f_exc_value)},
+	{"f_exc_traceback", T_OBJECT,	OFF(f_exc_traceback)},
+	{NULL}	/* Sentinel */
+};
+
+static PyObject *
+frame_getlocals(PyFrameObject *f, void *closure)
+{
+	PyFrame_FastToLocals(f);
+	Py_INCREF(f->f_locals);
+	return f->f_locals;
+}
+
+static PyObject *
+frame_getlineno(PyFrameObject *f, void *closure)
+{
+	int lineno;
+
+	if (f->f_trace)
+		lineno = f->f_lineno;
+	else
+		lineno = PyCode_Addr2Line(f->f_code, f->f_lasti);
+
+	return PyInt_FromLong(lineno);
+}
+
+/* Setter for f_lineno - you can set f_lineno from within a trace function in
+ * order to jump to a given line of code, subject to some restrictions.	 Most
+ * lines are OK to jump to because they don't make any assumptions about the
+ * state of the stack (obvious because you could remove the line and the code
+ * would still work without any stack errors), but there are some constructs
+ * that limit jumping:
+ *
+ *  o Lines with an 'except' statement on them can't be jumped to, because
+ *    they expect an exception to be on the top of the stack.
+ *  o Lines that live in a 'finally' block can't be jumped from or to, since
+ *    the END_FINALLY expects to clean up the stack after the 'try' block.
+ *  o 'try'/'for'/'while' blocks can't be jumped into because the blockstack
+ *    needs to be set up before their code runs, and for 'for' loops the
+ *    iterator needs to be on the stack.
+ */
+static int
+frame_setlineno(PyFrameObject *f, PyObject* p_new_lineno)
+{
+	int new_lineno = 0;		/* The new value of f_lineno */
+	int new_lasti = 0;		/* The new value of f_lasti */
+	int new_iblock = 0;		/* The new value of f_iblock */
+	unsigned char *code = NULL;	/* The bytecode for the frame... */
+	Py_ssize_t code_len = 0;	/* ...and its length */
+	char *lnotab = NULL;		/* Iterating over co_lnotab */
+	Py_ssize_t lnotab_len = 0;	/* (ditto) */
+	int offset = 0;			/* (ditto) */
+	int line = 0;			/* (ditto) */
+	int addr = 0;			/* (ditto) */
+	int min_addr = 0;		/* Scanning the SETUPs and POPs */
+	int max_addr = 0;		/* (ditto) */
+	int delta_iblock = 0;		/* (ditto) */
+	int min_delta_iblock = 0;	/* (ditto) */
+	int min_iblock = 0;		/* (ditto) */
+	int f_lasti_setup_addr = 0;	/* Policing no-jump-into-finally */
+	int new_lasti_setup_addr = 0;	/* (ditto) */
+	int blockstack[CO_MAXBLOCKS];	/* Walking the 'finally' blocks */
+	int in_finally[CO_MAXBLOCKS];	/* (ditto) */
+	int blockstack_top = 0;		/* (ditto) */
+	unsigned char setup_op = 0;	/* (ditto) */
+
+	/* f_lineno must be an integer. */
+	if (!PyInt_Check(p_new_lineno)) {
+		PyErr_SetString(PyExc_ValueError,
+				"lineno must be an integer");
+		return -1;
+	}
+
+	/* You can only do this from within a trace function, not via
+	 * _getframe or similar hackery. */
+	if (!f->f_trace)
+	{
+		PyErr_Format(PyExc_ValueError,
+			     "f_lineno can only be set by a trace function");
+		return -1;
+	}
+
+	/* Fail if the line comes before the start of the code block. */
+	new_lineno = (int) PyInt_AsLong(p_new_lineno);
+	if (new_lineno < f->f_code->co_firstlineno) {
+		PyErr_Format(PyExc_ValueError,
+			     "line %d comes before the current code block",
+			     new_lineno);
+		return -1;
+	}
+
+	/* Find the bytecode offset for the start of the given line, or the
+	 * first code-owning line after it. */
+	PyString_AsStringAndSize(f->f_code->co_lnotab, &lnotab, &lnotab_len);
+	addr = 0;
+	line = f->f_code->co_firstlineno;
+	new_lasti = -1;
+	for (offset = 0; offset < lnotab_len; offset += 2) {
+		addr += lnotab[offset];
+		line += lnotab[offset+1];
+		if (line >= new_lineno) {
+			new_lasti = addr;
+			new_lineno = line;
+			break;
+		}
+	}
+
+	/* If we didn't reach the requested line, return an error. */
+	if (new_lasti == -1) {
+		PyErr_Format(PyExc_ValueError,
+			     "line %d comes after the current code block",
+			     new_lineno);
+		return -1;
+	}
+
+	/* We're now ready to look at the bytecode. */
+	PyString_AsStringAndSize(f->f_code->co_code, (char **)&code, &code_len);
+	min_addr = MIN(new_lasti, f->f_lasti);
+	max_addr = MAX(new_lasti, f->f_lasti);
+
+	/* You can't jump onto a line with an 'except' statement on it -
+	 * they expect to have an exception on the top of the stack, which
+	 * won't be true if you jump to them.  They always start with code
+	 * that either pops the exception using POP_TOP (plain 'except:'
+	 * lines do this) or duplicates the exception on the stack using
+	 * DUP_TOP (if there's an exception type specified).  See compile.c,
+	 * 'com_try_except' for the full details.  There aren't any other
+	 * cases (AFAIK) where a line's code can start with DUP_TOP or
+	 * POP_TOP, but if any ever appear, they'll be subject to the same
+	 * restriction (but with a different error message). */
+	if (code[new_lasti] == DUP_TOP || code[new_lasti] == POP_TOP) {
+		PyErr_SetString(PyExc_ValueError,
+		    "can't jump to 'except' line as there's no exception");
+		return -1;
+	}
+
+	/* You can't jump into or out of a 'finally' block because the 'try'
+	 * block leaves something on the stack for the END_FINALLY to clean
+	 * up.	So we walk the bytecode, maintaining a simulated blockstack.
+	 * When we reach the old or new address and it's in a 'finally' block
+	 * we note the address of the corresponding SETUP_FINALLY.  The jump
+	 * is only legal if neither address is in a 'finally' block or
+	 * they're both in the same one.  'blockstack' is a stack of the
+	 * bytecode addresses of the SETUP_X opcodes, and 'in_finally' tracks
+	 * whether we're in a 'finally' block at each blockstack level. */
+	f_lasti_setup_addr = -1;
+	new_lasti_setup_addr = -1;
+	memset(blockstack, '\0', sizeof(blockstack));
+	memset(in_finally, '\0', sizeof(in_finally));
+	blockstack_top = 0;
+	for (addr = 0; addr < code_len; addr++) {
+		unsigned char op = code[addr];
+		switch (op) {
+		case SETUP_LOOP:
+		case SETUP_EXCEPT:
+		case SETUP_FINALLY:
+			blockstack[blockstack_top++] = addr;
+			in_finally[blockstack_top-1] = 0;
+			break;
+
+		case POP_BLOCK:
+			assert(blockstack_top > 0);
+			setup_op = code[blockstack[blockstack_top-1]];
+			if (setup_op == SETUP_FINALLY) {
+				in_finally[blockstack_top-1] = 1;
+			}
+			else {
+				blockstack_top--;
+			}
+			break;
+
+		case END_FINALLY:
+			/* Ignore END_FINALLYs for SETUP_EXCEPTs - they exist
+			 * in the bytecode but don't correspond to an actual
+			 * 'finally' block.  (If blockstack_top is 0, we must
+			 * be seeing such an END_FINALLY.) */
+			if (blockstack_top > 0) {
+				setup_op = code[blockstack[blockstack_top-1]];
+				if (setup_op == SETUP_FINALLY) {
+					blockstack_top--;
+				}
+			}
+			break;
+		}
+
+		/* For the addresses we're interested in, see whether they're
+		 * within a 'finally' block and if so, remember the address
+		 * of the SETUP_FINALLY. */
+		if (addr == new_lasti || addr == f->f_lasti) {
+			int i = 0;
+			int setup_addr = -1;
+			for (i = blockstack_top-1; i >= 0; i--) {
+				if (in_finally[i]) {
+					setup_addr = blockstack[i];
+					break;
+				}
+			}
+
+			if (setup_addr != -1) {
+				if (addr == new_lasti) {
+					new_lasti_setup_addr = setup_addr;
+				}
+
+				if (addr == f->f_lasti) {
+					f_lasti_setup_addr = setup_addr;
+				}
+			}
+		}
+
+		if (op >= HAVE_ARGUMENT) {
+			addr += 2;
+		}
+	}
+
+	/* Verify that the blockstack tracking code didn't get lost. */
+	assert(blockstack_top == 0);
+
+	/* After all that, are we jumping into / out of a 'finally' block? */
+	if (new_lasti_setup_addr != f_lasti_setup_addr) {
+		PyErr_SetString(PyExc_ValueError,
+			    "can't jump into or out of a 'finally' block");
+		return -1;
+	}
+
+
+	/* Police block-jumping (you can't jump into the middle of a block)
+	 * and ensure that the blockstack finishes up in a sensible state (by
+	 * popping any blocks we're jumping out of).  We look at all the
+	 * blockstack operations between the current position and the new
+	 * one, and keep track of how many blocks we drop out of on the way.
+	 * By also keeping track of the lowest blockstack position we see, we
+	 * can tell whether the jump goes into any blocks without coming out
+	 * again - in that case we raise an exception below. */
+	delta_iblock = 0;
+	for (addr = min_addr; addr < max_addr; addr++) {
+		unsigned char op = code[addr];
+		switch (op) {
+		case SETUP_LOOP:
+		case SETUP_EXCEPT:
+		case SETUP_FINALLY:
+			delta_iblock++;
+			break;
+
+		case POP_BLOCK:
+			delta_iblock--;
+			break;
+		}
+
+		min_delta_iblock = MIN(min_delta_iblock, delta_iblock);
+
+		if (op >= HAVE_ARGUMENT) {
+			addr += 2;
+		}
+	}
+
+	/* Derive the absolute iblock values from the deltas. */
+	min_iblock = f->f_iblock + min_delta_iblock;
+	if (new_lasti > f->f_lasti) {
+		/* Forwards jump. */
+		new_iblock = f->f_iblock + delta_iblock;
+	}
+	else {
+		/* Backwards jump. */
+		new_iblock = f->f_iblock - delta_iblock;
+	}
+
+	/* Are we jumping into a block? */
+	if (new_iblock > min_iblock) {
+		PyErr_SetString(PyExc_ValueError,
+				"can't jump into the middle of a block");
+		return -1;
+	}
+
+	/* Pop any blocks that we're jumping out of. */
+	while (f->f_iblock > new_iblock) {
+		PyTryBlock *b = &f->f_blockstack[--f->f_iblock];
+		while ((f->f_stacktop - f->f_valuestack) > b->b_level) {
+			PyObject *v = (*--f->f_stacktop);
+			Py_DECREF(v);
+		}
+	}
+
+	/* Finally set the new f_lineno and f_lasti and return OK. */
+	f->f_lineno = new_lineno;
+	f->f_lasti = new_lasti;
+	return 0;
+}
+
+static PyObject *
+frame_gettrace(PyFrameObject *f, void *closure)
+{
+	PyObject* trace = f->f_trace;
+
+	if (trace == NULL)
+		trace = Py_None;
+
+	Py_INCREF(trace);
+
+	return trace;
+}
+
+static int
+frame_settrace(PyFrameObject *f, PyObject* v, void *closure)
+{
+	/* We rely on f_lineno being accurate when f_trace is set. */
+
+	PyObject* old_value = f->f_trace;
+
+	Py_XINCREF(v);
+	f->f_trace = v;
+
+	if (v != NULL)
+		f->f_lineno = PyCode_Addr2Line(f->f_code, f->f_lasti);
+
+	Py_XDECREF(old_value);
+
+	return 0;
+}
+
+static PyObject *
+frame_getrestricted(PyFrameObject *f, void *closure)
+{
+	return PyBool_FromLong(PyFrame_IsRestricted(f));
+}
+
+static PyGetSetDef frame_getsetlist[] = {
+	{"f_locals",	(getter)frame_getlocals, NULL, NULL},
+	{"f_lineno",	(getter)frame_getlineno,
+			(setter)frame_setlineno, NULL},
+	{"f_trace",	(getter)frame_gettrace, (setter)frame_settrace, NULL},
+	{"f_restricted",(getter)frame_getrestricted,NULL, NULL},
+	{0}
+};
+
+/* Stack frames are allocated and deallocated at a considerable rate.
+   In an attempt to improve the speed of function calls, we:
+
+   1. Hold a single "zombie" frame on each code object. This retains
+   the allocated and initialised frame object from an invocation of
+   the code object. The zombie is reanimated the next time we need a
+   frame object for that code object. Doing this saves the malloc/
+   realloc required when using a free_list frame that isn't the
+   correct size. It also saves some field initialisation.
+
+   In zombie mode, no field of PyFrameObject holds a reference, but
+   the following fields are still valid:
+
+     * ob_type, ob_size, f_code, f_valuestack;
+       
+     * f_locals, f_trace,
+       f_exc_type, f_exc_value, f_exc_traceback are NULL;
+
+     * f_localsplus does not require re-allocation and
+       the local variables in f_localsplus are NULL.
+
+   2. We also maintain a separate free list of stack frames (just like
+   integers are allocated in a special way -- see intobject.c).  When
+   a stack frame is on the free list, only the following members have
+   a meaning:
+	ob_type		== &Frametype
+	f_back		next item on free list, or NULL
+	f_stacksize	size of value stack
+	ob_size		size of localsplus
+   Note that the value and block stacks are preserved -- this can save
+   another malloc() call or two (and two free() calls as well!).
+   Also note that, unlike for integers, each frame object is a
+   malloc'ed object in its own right -- it is only the actual calls to
+   malloc() that we are trying to save here, not the administration.
+   After all, while a typical program may make millions of calls, a
+   call depth of more than 20 or 30 is probably already exceptional
+   unless the program contains run-away recursion.  I hope.
+
+   Later, PyFrame_MAXFREELIST was added to bound the # of frames saved on
+   free_list.  Else programs creating lots of cyclic trash involving
+   frames could provoke free_list into growing without bound.
+*/
+
+static PyFrameObject *free_list = NULL;
+static int numfree = 0;		/* number of frames currently in free_list */
+/* max value for numfree */
+#define PyFrame_MAXFREELIST 200	
+
+static void
+frame_dealloc(PyFrameObject *f)
+{
+	PyObject **p, **valuestack;
+	PyCodeObject *co;
+
+	PyObject_GC_UnTrack(f);
+	Py_TRASHCAN_SAFE_BEGIN(f)
+	/* Kill all local variables */
+	valuestack = f->f_valuestack;
+	for (p = f->f_localsplus; p < valuestack; p++)
+		Py_CLEAR(*p);
+
+	/* Free stack */
+	if (f->f_stacktop != NULL) {
+		for (p = valuestack; p < f->f_stacktop; p++)
+			Py_XDECREF(*p);
+	}
+
+	Py_XDECREF(f->f_back);
+	Py_DECREF(f->f_builtins);
+	Py_DECREF(f->f_globals);
+	Py_CLEAR(f->f_locals);
+	Py_CLEAR(f->f_trace);
+	Py_CLEAR(f->f_exc_type);
+	Py_CLEAR(f->f_exc_value);
+	Py_CLEAR(f->f_exc_traceback);
+
+	co = f->f_code;
+	if (co->co_zombieframe == NULL)
+		co->co_zombieframe = f;
+	else if (numfree < PyFrame_MAXFREELIST) {
+		++numfree;
+		f->f_back = free_list;
+		free_list = f;
+	}
+	else 
+		PyObject_GC_Del(f);
+
+	Py_DECREF(co);
+	Py_TRASHCAN_SAFE_END(f)
+}
+
+static int
+frame_traverse(PyFrameObject *f, visitproc visit, void *arg)
+{
+	PyObject **fastlocals, **p;
+	int i, slots;
+
+	Py_VISIT(f->f_back);
+	Py_VISIT(f->f_code);
+	Py_VISIT(f->f_builtins);
+	Py_VISIT(f->f_globals);
+	Py_VISIT(f->f_locals);
+	Py_VISIT(f->f_trace);
+	Py_VISIT(f->f_exc_type);
+	Py_VISIT(f->f_exc_value);
+	Py_VISIT(f->f_exc_traceback);
+
+	/* locals */
+	slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
+	fastlocals = f->f_localsplus;
+	for (i = slots; --i >= 0; ++fastlocals)
+		Py_VISIT(*fastlocals);
+
+	/* stack */
+	if (f->f_stacktop != NULL) {
+		for (p = f->f_valuestack; p < f->f_stacktop; p++)
+			Py_VISIT(*p);
+	}
+	return 0;
+}
+
+static void
+frame_clear(PyFrameObject *f)
+{
+	PyObject **fastlocals, **p, **oldtop;
+	int i, slots;
+
+	/* Before anything else, make sure that this frame is clearly marked
+	 * as being defunct!  Else, e.g., a generator reachable from this
+	 * frame may also point to this frame, believe itself to still be
+	 * active, and try cleaning up this frame again.
+	 */
+	oldtop = f->f_stacktop;
+	f->f_stacktop = NULL;
+
+	Py_CLEAR(f->f_exc_type);
+	Py_CLEAR(f->f_exc_value);
+	Py_CLEAR(f->f_exc_traceback);
+	Py_CLEAR(f->f_trace);
+
+	/* locals */
+	slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
+	fastlocals = f->f_localsplus;
+	for (i = slots; --i >= 0; ++fastlocals)
+		Py_CLEAR(*fastlocals);
+
+	/* stack */
+	if (oldtop != NULL) {
+		for (p = f->f_valuestack; p < oldtop; p++)
+			Py_CLEAR(*p);
+	}
+}
+
+static PyObject *
+frame_sizeof(PyFrameObject *f)
+{
+	Py_ssize_t res, extras, ncells, nfrees;
+
+	ncells = PyTuple_GET_SIZE(f->f_code->co_cellvars);
+	nfrees = PyTuple_GET_SIZE(f->f_code->co_freevars);
+	extras = f->f_code->co_stacksize + f->f_code->co_nlocals +
+		 ncells + nfrees;
+	/* subtract one as it is already included in PyFrameObject */
+	res = sizeof(PyFrameObject) + (extras-1) * sizeof(PyObject *);
+
+	return PyInt_FromSsize_t(res);
+}
+
+PyDoc_STRVAR(sizeof__doc__,
+"F.__sizeof__() -> size of F in memory, in bytes");
+
+static PyMethodDef frame_methods[] = {
+	{"__sizeof__",	(PyCFunction)frame_sizeof,	METH_NOARGS,
+	 sizeof__doc__},
+	{NULL,		NULL}	/* sentinel */
+};
+
+PyTypeObject PyFrame_Type = {
+	PyVarObject_HEAD_INIT(&PyType_Type, 0)
+	"frame",
+	sizeof(PyFrameObject),
+	sizeof(PyObject *),
+	(destructor)frame_dealloc,		/* tp_dealloc */
+	0,					/* tp_print */
+	0,					/* tp_getattr */
+	0,					/* tp_setattr */
+	0,					/* tp_compare */
+	0,					/* tp_repr */
+	0,					/* tp_as_number */
+	0,					/* tp_as_sequence */
+	0,					/* tp_as_mapping */
+	0,					/* tp_hash */
+	0,					/* tp_call */
+	0,					/* tp_str */
+	PyObject_GenericGetAttr,		/* tp_getattro */
+	PyObject_GenericSetAttr,		/* tp_setattro */
+	0,					/* tp_as_buffer */
+	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
+	0,					/* tp_doc */
+	(traverseproc)frame_traverse,		/* tp_traverse */
+	(inquiry)frame_clear,			/* tp_clear */
+	0,					/* tp_richcompare */
+	0,					/* tp_weaklistoffset */
+	0,					/* tp_iter */
+	0,					/* tp_iternext */
+	frame_methods,				/* tp_methods */
+	frame_memberlist,			/* tp_members */
+	frame_getsetlist,			/* tp_getset */
+	0,					/* tp_base */
+	0,					/* tp_dict */
+};
+
+static PyObject *builtin_object;
+
+int _PyFrame_Init()
+{
+	builtin_object = PyString_InternFromString("__builtins__");
+	return (builtin_object != NULL);
+}
+
+PyFrameObject *
+PyFrame_New(PyThreadState *tstate, PyCodeObject *code, PyObject *globals,
+	    PyObject *locals)
+{
+	PyFrameObject *back = tstate->frame;
+	PyFrameObject *f;
+	PyObject *builtins;
+	Py_ssize_t i;
+
+#ifdef Py_DEBUG
+	if (code == NULL || globals == NULL || !PyDict_Check(globals) ||
+	    (locals != NULL && !PyMapping_Check(locals))) {
+		PyErr_BadInternalCall();
+		return NULL;
+	}
+#endif
+	if (back == NULL || back->f_globals != globals) {
+		builtins = PyDict_GetItem(globals, builtin_object);
+		if (builtins) {
+			if (PyModule_Check(builtins)) {
+				builtins = PyModule_GetDict(builtins);
+				assert(!builtins || PyDict_Check(builtins));
+			}
+			else if (!PyDict_Check(builtins))
+				builtins = NULL;
+		}
+		if (builtins == NULL) {
+			/* No builtins!	 Make up a minimal one
+			   Give them 'None', at least. */
+			builtins = PyDict_New();
+			if (builtins == NULL ||
+			    PyDict_SetItemString(
+				    builtins, "None", Py_None) < 0)
+				return NULL;
+		}
+		else
+			Py_INCREF(builtins);
+
+	}
+	else {
+		/* If we share the globals, we share the builtins.
+		   Save a lookup and a call. */
+		builtins = back->f_builtins;
+		assert(builtins != NULL && PyDict_Check(builtins));
+		Py_INCREF(builtins);
+	}
+	if (code->co_zombieframe != NULL) {
+		f = code->co_zombieframe;
+		code->co_zombieframe = NULL;
+		_Py_NewReference((PyObject *)f);
+		assert(f->f_code == code);
+	}
+	else {
+		Py_ssize_t extras, ncells, nfrees;
+		ncells = PyTuple_GET_SIZE(code->co_cellvars);
+		nfrees = PyTuple_GET_SIZE(code->co_freevars);
+		extras = code->co_stacksize + code->co_nlocals + ncells +
+		    nfrees;
+		if (free_list == NULL) {
+		    f = PyObject_GC_NewVar(PyFrameObject, &PyFrame_Type,
+			extras);
+		    if (f == NULL) {
+			    Py_DECREF(builtins);
+			    return NULL;
+		    }
+		}
+		else {
+		    assert(numfree > 0);
+		    --numfree;
+		    f = free_list;
+		    free_list = free_list->f_back;
+		    if (Py_SIZE(f) < extras) {
+			    f = PyObject_GC_Resize(PyFrameObject, f, extras);
+			    if (f == NULL) {
+				    Py_DECREF(builtins);
+				    return NULL;
+			    }
+		    }
+		    _Py_NewReference((PyObject *)f);
+		}
+
+		f->f_code = code;
+		extras = code->co_nlocals + ncells + nfrees;
+		f->f_valuestack = f->f_localsplus + extras;
+		for (i=0; i<extras; i++)
+			f->f_localsplus[i] = NULL;
+		f->f_locals = NULL;
+		f->f_trace = NULL;
+		f->f_exc_type = f->f_exc_value = f->f_exc_traceback = NULL;
+	}
+	f->f_stacktop = f->f_valuestack;
+	f->f_builtins = builtins;
+	Py_XINCREF(back);
+	f->f_back = back;
+	Py_INCREF(code);
+	Py_INCREF(globals);
+	f->f_globals = globals;
+	/* Most functions have CO_NEWLOCALS and CO_OPTIMIZED set. */
+	if ((code->co_flags & (CO_NEWLOCALS | CO_OPTIMIZED)) ==
+		(CO_NEWLOCALS | CO_OPTIMIZED))
+		; /* f_locals = NULL; will be set by PyFrame_FastToLocals() */
+	else if (code->co_flags & CO_NEWLOCALS) {
+		locals = PyDict_New();
+		if (locals == NULL) {
+			Py_DECREF(f);
+			return NULL;
+		}
+		f->f_locals = locals;
+	}
+	else {
+		if (locals == NULL)
+			locals = globals;
+		Py_INCREF(locals);
+		f->f_locals = locals;
+	}
+	f->f_tstate = tstate;
+
+	f->f_lasti = -1;
+	f->f_lineno = code->co_firstlineno;
+	f->f_iblock = 0;
+
+	_PyObject_GC_TRACK(f);
+	return f;
+}
+
+/* Block management */
+
+void
+PyFrame_BlockSetup(PyFrameObject *f, int type, int handler, int level)
+{
+	PyTryBlock *b;
+	if (f->f_iblock >= CO_MAXBLOCKS)
+		Py_FatalError("XXX block stack overflow");
+	b = &f->f_blockstack[f->f_iblock++];
+	b->b_type = type;
+	b->b_level = level;
+	b->b_handler = handler;
+}
+
+PyTryBlock *
+PyFrame_BlockPop(PyFrameObject *f)
+{
+	PyTryBlock *b;
+	if (f->f_iblock <= 0)
+		Py_FatalError("XXX block stack underflow");
+	b = &f->f_blockstack[--f->f_iblock];
+	return b;
+}
+
+/* Convert between "fast" version of locals and dictionary version.
+   
+   map and values are input arguments.	map is a tuple of strings.
+   values is an array of PyObject*.  At index i, map[i] is the name of
+   the variable with value values[i].  The function copies the first
+   nmap variable from map/values into dict.  If values[i] is NULL,
+   the variable is deleted from dict.
+
+   If deref is true, then the values being copied are cell variables
+   and the value is extracted from the cell variable before being put
+   in dict.
+
+   Exceptions raised while modifying the dict are silently ignored,
+   because there is no good way to report them.
+ */
+
+static void
+map_to_dict(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
+	    int deref)
+{
+	Py_ssize_t j;
+	assert(PyTuple_Check(map));
+	assert(PyDict_Check(dict));
+	assert(PyTuple_Size(map) >= nmap);
+	for (j = nmap; --j >= 0; ) {
+		PyObject *key = PyTuple_GET_ITEM(map, j);
+		PyObject *value = values[j];
+		assert(PyString_Check(key));
+		if (deref) {
+			assert(PyCell_Check(value));
+			value = PyCell_GET(value);
+		}
+		if (value == NULL) {
+			if (PyObject_DelItem(dict, key) != 0)
+				PyErr_Clear();
+		}
+		else {
+			if (PyObject_SetItem(dict, key, value) != 0)
+				PyErr_Clear();
+		}
+	}
+}
+
+/* Copy values from the "locals" dict into the fast locals.
+
+   dict is an input argument containing string keys representing
+   variables names and arbitrary PyObject* as values.
+
+   map and values are input arguments.	map is a tuple of strings.
+   values is an array of PyObject*.  At index i, map[i] is the name of
+   the variable with value values[i].  The function copies the first
+   nmap variable from map/values into dict.  If values[i] is NULL,
+   the variable is deleted from dict.
+
+   If deref is true, then the values being copied are cell variables
+   and the value is extracted from the cell variable before being put
+   in dict.  If clear is true, then variables in map but not in dict
+   are set to NULL in map; if clear is false, variables missing in
+   dict are ignored.
+
+   Exceptions raised while modifying the dict are silently ignored,
+   because there is no good way to report them.
+*/
+
+static void
+dict_to_map(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
+	    int deref, int clear)
+{
+	Py_ssize_t j;
+	assert(PyTuple_Check(map));
+	assert(PyDict_Check(dict));
+	assert(PyTuple_Size(map) >= nmap);
+	for (j = nmap; --j >= 0; ) {
+		PyObject *key = PyTuple_GET_ITEM(map, j);
+		PyObject *value = PyObject_GetItem(dict, key);
+		assert(PyString_Check(key));
+		/* We only care about NULLs if clear is true. */
+		if (value == NULL) {
+			PyErr_Clear();
+			if (!clear)
+				continue;
+		}
+		if (deref) {
+			assert(PyCell_Check(values[j]));
+			if (PyCell_GET(values[j]) != value) {
+				if (PyCell_Set(values[j], value) < 0)
+					PyErr_Clear();
+			}
+		} else if (values[j] != value) {
+			Py_XINCREF(value);
+			Py_XDECREF(values[j]);
+			values[j] = value;
+		}
+		Py_XDECREF(value);
+	}
+}
+
+void
+PyFrame_FastToLocals(PyFrameObject *f)
+{
+	/* Merge fast locals into f->f_locals */
+	PyObject *locals, *map;
+	PyObject **fast;
+	PyObject *error_type, *error_value, *error_traceback;
+	PyCodeObject *co;
+	Py_ssize_t j;
+	int ncells, nfreevars;
+	if (f == NULL)
+		return;
+	locals = f->f_locals;
+	if (locals == NULL) {
+		locals = f->f_locals = PyDict_New();
+		if (locals == NULL) {
+			PyErr_Clear(); /* Can't report it :-( */
+			return;
+		}
+	}
+	co = f->f_code;
+	map = co->co_varnames;
+	if (!PyTuple_Check(map))
+		return;
+	PyErr_Fetch(&error_type, &error_value, &error_traceback);
+	fast = f->f_localsplus;
+	j = PyTuple_GET_SIZE(map);
+	if (j > co->co_nlocals)
+		j = co->co_nlocals;
+	if (co->co_nlocals)
+		map_to_dict(map, j, locals, fast, 0);
+	ncells = PyTuple_GET_SIZE(co->co_cellvars);
+	nfreevars = PyTuple_GET_SIZE(co->co_freevars);
+	if (ncells || nfreevars) {
+		map_to_dict(co->co_cellvars, ncells,
+			    locals, fast + co->co_nlocals, 1);
+		/* If the namespace is unoptimized, then one of the 
+		   following cases applies:
+		   1. It does not contain free variables, because it
+		      uses import * or is a top-level namespace.
+		   2. It is a class namespace.
+		   We don't want to accidentally copy free variables
+		   into the locals dict used by the class.
+		*/
+		if (co->co_flags & CO_OPTIMIZED) {
+			map_to_dict(co->co_freevars, nfreevars,
+				    locals, fast + co->co_nlocals + ncells, 1);
+		}
+	}
+	PyErr_Restore(error_type, error_value, error_traceback);
+}
+
+void
+PyFrame_LocalsToFast(PyFrameObject *f, int clear)
+{
+	/* Merge f->f_locals into fast locals */
+	PyObject *locals, *map;
+	PyObject **fast;
+	PyObject *error_type, *error_value, *error_traceback;
+	PyCodeObject *co;
+	Py_ssize_t j;
+	int ncells, nfreevars;
+	if (f == NULL)
+		return;
+	locals = f->f_locals;
+	co = f->f_code;
+	map = co->co_varnames;
+	if (locals == NULL)
+		return;
+	if (!PyTuple_Check(map))
+		return;
+	PyErr_Fetch(&error_type, &error_value, &error_traceback);
+	fast = f->f_localsplus;
+	j = PyTuple_GET_SIZE(map);
+	if (j > co->co_nlocals)
+		j = co->co_nlocals;
+	if (co->co_nlocals)
+	    dict_to_map(co->co_varnames, j, locals, fast, 0, clear);
+	ncells = PyTuple_GET_SIZE(co->co_cellvars);
+	nfreevars = PyTuple_GET_SIZE(co->co_freevars);
+	if (ncells || nfreevars) {
+		dict_to_map(co->co_cellvars, ncells,
+			    locals, fast + co->co_nlocals, 1, clear);
+		/* Same test as in PyFrame_FastToLocals() above. */
+		if (co->co_flags & CO_OPTIMIZED) {
+			dict_to_map(co->co_freevars, nfreevars,
+			        locals, fast + co->co_nlocals + ncells, 1, 
+			        clear);
+		}
+	}
+	PyErr_Restore(error_type, error_value, error_traceback);
+}
+
+/* Clear out the free list */
+int
+PyFrame_ClearFreeList(void)
+{
+	int freelist_size = numfree;
+	
+	while (free_list != NULL) {
+		PyFrameObject *f = free_list;
+		free_list = free_list->f_back;
+		PyObject_GC_Del(f);
+		--numfree;
+	}
+	assert(numfree == 0);
+	return freelist_size;
+}
+
+void
+PyFrame_Fini(void)
+{
+	(void)PyFrame_ClearFreeList();
+	Py_XDECREF(builtin_object);
+	builtin_object = NULL;
+}