--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-win32-2.6.1/lib/fractions.py Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,539 @@
+# Originally contributed by Sjoerd Mullender.
+# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
+
+"""Rational, infinite-precision, real numbers."""
+
+from __future__ import division
+import math
+import numbers
+import operator
+import re
+
+__all__ = ['Fraction', 'gcd']
+
+Rational = numbers.Rational
+
+
+def gcd(a, b):
+ """Calculate the Greatest Common Divisor of a and b.
+
+ Unless b==0, the result will have the same sign as b (so that when
+ b is divided by it, the result comes out positive).
+ """
+ while b:
+ a, b = b, a%b
+ return a
+
+
+_RATIONAL_FORMAT = re.compile(r"""
+ \A\s* # optional whitespace at the start, then
+ (?P<sign>[-+]?) # an optional sign, then
+ (?=\d|\.\d) # lookahead for digit or .digit
+ (?P<num>\d*) # numerator (possibly empty)
+ (?: # followed by an optional
+ /(?P<denom>\d+) # / and denominator
+ | # or
+ \.(?P<decimal>\d*) # decimal point and fractional part
+ )?
+ \s*\Z # and optional whitespace to finish
+""", re.VERBOSE)
+
+
+class Fraction(Rational):
+ """This class implements rational numbers.
+
+ Fraction(8, 6) will produce a rational number equivalent to
+ 4/3. Both arguments must be Integral. The numerator defaults to 0
+ and the denominator defaults to 1 so that Fraction(3) == 3 and
+ Fraction() == 0.
+
+ Fractions can also be constructed from strings of the form
+ '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
+
+ """
+
+ __slots__ = ('_numerator', '_denominator')
+
+ # We're immutable, so use __new__ not __init__
+ def __new__(cls, numerator=0, denominator=1):
+ """Constructs a Fraction.
+
+ Takes a string like '3/2' or '1.5', another Fraction, or a
+ numerator/denominator pair.
+
+ """
+ self = super(Fraction, cls).__new__(cls)
+
+ if type(numerator) not in (int, long) and denominator == 1:
+ if isinstance(numerator, basestring):
+ # Handle construction from strings.
+ input = numerator
+ m = _RATIONAL_FORMAT.match(input)
+ if m is None:
+ raise ValueError('Invalid literal for Fraction: %r' % input)
+ numerator = m.group('num')
+ decimal = m.group('decimal')
+ if decimal:
+ # The literal is a decimal number.
+ numerator = int(numerator + decimal)
+ denominator = 10**len(decimal)
+ else:
+ # The literal is an integer or fraction.
+ numerator = int(numerator)
+ # Default denominator to 1.
+ denominator = int(m.group('denom') or 1)
+
+ if m.group('sign') == '-':
+ numerator = -numerator
+
+ elif isinstance(numerator, Rational):
+ # Handle copies from other rationals. Integrals get
+ # caught here too, but it doesn't matter because
+ # denominator is already 1.
+ other_rational = numerator
+ numerator = other_rational.numerator
+ denominator = other_rational.denominator
+
+ if denominator == 0:
+ raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
+ numerator = operator.index(numerator)
+ denominator = operator.index(denominator)
+ g = gcd(numerator, denominator)
+ self._numerator = numerator // g
+ self._denominator = denominator // g
+ return self
+
+ @classmethod
+ def from_float(cls, f):
+ """Converts a finite float to a rational number, exactly.
+
+ Beware that Fraction.from_float(0.3) != Fraction(3, 10).
+
+ """
+ if isinstance(f, numbers.Integral):
+ f = float(f)
+ elif not isinstance(f, float):
+ raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
+ (cls.__name__, f, type(f).__name__))
+ if math.isnan(f) or math.isinf(f):
+ raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
+ return cls(*f.as_integer_ratio())
+
+ @classmethod
+ def from_decimal(cls, dec):
+ """Converts a finite Decimal instance to a rational number, exactly."""
+ from decimal import Decimal
+ if isinstance(dec, numbers.Integral):
+ dec = Decimal(int(dec))
+ elif not isinstance(dec, Decimal):
+ raise TypeError(
+ "%s.from_decimal() only takes Decimals, not %r (%s)" %
+ (cls.__name__, dec, type(dec).__name__))
+ if not dec.is_finite():
+ # Catches infinities and nans.
+ raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
+ sign, digits, exp = dec.as_tuple()
+ digits = int(''.join(map(str, digits)))
+ if sign:
+ digits = -digits
+ if exp >= 0:
+ return cls(digits * 10 ** exp)
+ else:
+ return cls(digits, 10 ** -exp)
+
+ def limit_denominator(self, max_denominator=1000000):
+ """Closest Fraction to self with denominator at most max_denominator.
+
+ >>> Fraction('3.141592653589793').limit_denominator(10)
+ Fraction(22, 7)
+ >>> Fraction('3.141592653589793').limit_denominator(100)
+ Fraction(311, 99)
+ >>> Fraction(1234, 5678).limit_denominator(10000)
+ Fraction(1234, 5678)
+
+ """
+ # Algorithm notes: For any real number x, define a *best upper
+ # approximation* to x to be a rational number p/q such that:
+ #
+ # (1) p/q >= x, and
+ # (2) if p/q > r/s >= x then s > q, for any rational r/s.
+ #
+ # Define *best lower approximation* similarly. Then it can be
+ # proved that a rational number is a best upper or lower
+ # approximation to x if, and only if, it is a convergent or
+ # semiconvergent of the (unique shortest) continued fraction
+ # associated to x.
+ #
+ # To find a best rational approximation with denominator <= M,
+ # we find the best upper and lower approximations with
+ # denominator <= M and take whichever of these is closer to x.
+ # In the event of a tie, the bound with smaller denominator is
+ # chosen. If both denominators are equal (which can happen
+ # only when max_denominator == 1 and self is midway between
+ # two integers) the lower bound---i.e., the floor of self, is
+ # taken.
+
+ if max_denominator < 1:
+ raise ValueError("max_denominator should be at least 1")
+ if self._denominator <= max_denominator:
+ return Fraction(self)
+
+ p0, q0, p1, q1 = 0, 1, 1, 0
+ n, d = self._numerator, self._denominator
+ while True:
+ a = n//d
+ q2 = q0+a*q1
+ if q2 > max_denominator:
+ break
+ p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
+ n, d = d, n-a*d
+
+ k = (max_denominator-q0)//q1
+ bound1 = Fraction(p0+k*p1, q0+k*q1)
+ bound2 = Fraction(p1, q1)
+ if abs(bound2 - self) <= abs(bound1-self):
+ return bound2
+ else:
+ return bound1
+
+ @property
+ def numerator(a):
+ return a._numerator
+
+ @property
+ def denominator(a):
+ return a._denominator
+
+ def __repr__(self):
+ """repr(self)"""
+ return ('Fraction(%s, %s)' % (self._numerator, self._denominator))
+
+ def __str__(self):
+ """str(self)"""
+ if self._denominator == 1:
+ return str(self._numerator)
+ else:
+ return '%s/%s' % (self._numerator, self._denominator)
+
+ def _operator_fallbacks(monomorphic_operator, fallback_operator):
+ """Generates forward and reverse operators given a purely-rational
+ operator and a function from the operator module.
+
+ Use this like:
+ __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
+
+ In general, we want to implement the arithmetic operations so
+ that mixed-mode operations either call an implementation whose
+ author knew about the types of both arguments, or convert both
+ to the nearest built in type and do the operation there. In
+ Fraction, that means that we define __add__ and __radd__ as:
+
+ def __add__(self, other):
+ # Both types have numerators/denominator attributes,
+ # so do the operation directly
+ if isinstance(other, (int, long, Fraction)):
+ return Fraction(self.numerator * other.denominator +
+ other.numerator * self.denominator,
+ self.denominator * other.denominator)
+ # float and complex don't have those operations, but we
+ # know about those types, so special case them.
+ elif isinstance(other, float):
+ return float(self) + other
+ elif isinstance(other, complex):
+ return complex(self) + other
+ # Let the other type take over.
+ return NotImplemented
+
+ def __radd__(self, other):
+ # radd handles more types than add because there's
+ # nothing left to fall back to.
+ if isinstance(other, Rational):
+ return Fraction(self.numerator * other.denominator +
+ other.numerator * self.denominator,
+ self.denominator * other.denominator)
+ elif isinstance(other, Real):
+ return float(other) + float(self)
+ elif isinstance(other, Complex):
+ return complex(other) + complex(self)
+ return NotImplemented
+
+
+ There are 5 different cases for a mixed-type addition on
+ Fraction. I'll refer to all of the above code that doesn't
+ refer to Fraction, float, or complex as "boilerplate". 'r'
+ will be an instance of Fraction, which is a subtype of
+ Rational (r : Fraction <: Rational), and b : B <:
+ Complex. The first three involve 'r + b':
+
+ 1. If B <: Fraction, int, float, or complex, we handle
+ that specially, and all is well.
+ 2. If Fraction falls back to the boilerplate code, and it
+ were to return a value from __add__, we'd miss the
+ possibility that B defines a more intelligent __radd__,
+ so the boilerplate should return NotImplemented from
+ __add__. In particular, we don't handle Rational
+ here, even though we could get an exact answer, in case
+ the other type wants to do something special.
+ 3. If B <: Fraction, Python tries B.__radd__ before
+ Fraction.__add__. This is ok, because it was
+ implemented with knowledge of Fraction, so it can
+ handle those instances before delegating to Real or
+ Complex.
+
+ The next two situations describe 'b + r'. We assume that b
+ didn't know about Fraction in its implementation, and that it
+ uses similar boilerplate code:
+
+ 4. If B <: Rational, then __radd_ converts both to the
+ builtin rational type (hey look, that's us) and
+ proceeds.
+ 5. Otherwise, __radd__ tries to find the nearest common
+ base ABC, and fall back to its builtin type. Since this
+ class doesn't subclass a concrete type, there's no
+ implementation to fall back to, so we need to try as
+ hard as possible to return an actual value, or the user
+ will get a TypeError.
+
+ """
+ def forward(a, b):
+ if isinstance(b, (int, long, Fraction)):
+ return monomorphic_operator(a, b)
+ elif isinstance(b, float):
+ return fallback_operator(float(a), b)
+ elif isinstance(b, complex):
+ return fallback_operator(complex(a), b)
+ else:
+ return NotImplemented
+ forward.__name__ = '__' + fallback_operator.__name__ + '__'
+ forward.__doc__ = monomorphic_operator.__doc__
+
+ def reverse(b, a):
+ if isinstance(a, Rational):
+ # Includes ints.
+ return monomorphic_operator(a, b)
+ elif isinstance(a, numbers.Real):
+ return fallback_operator(float(a), float(b))
+ elif isinstance(a, numbers.Complex):
+ return fallback_operator(complex(a), complex(b))
+ else:
+ return NotImplemented
+ reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
+ reverse.__doc__ = monomorphic_operator.__doc__
+
+ return forward, reverse
+
+ def _add(a, b):
+ """a + b"""
+ return Fraction(a.numerator * b.denominator +
+ b.numerator * a.denominator,
+ a.denominator * b.denominator)
+
+ __add__, __radd__ = _operator_fallbacks(_add, operator.add)
+
+ def _sub(a, b):
+ """a - b"""
+ return Fraction(a.numerator * b.denominator -
+ b.numerator * a.denominator,
+ a.denominator * b.denominator)
+
+ __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
+
+ def _mul(a, b):
+ """a * b"""
+ return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
+
+ __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
+
+ def _div(a, b):
+ """a / b"""
+ return Fraction(a.numerator * b.denominator,
+ a.denominator * b.numerator)
+
+ __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
+ __div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
+
+ def __floordiv__(a, b):
+ """a // b"""
+ # Will be math.floor(a / b) in 3.0.
+ div = a / b
+ if isinstance(div, Rational):
+ # trunc(math.floor(div)) doesn't work if the rational is
+ # more precise than a float because the intermediate
+ # rounding may cross an integer boundary.
+ return div.numerator // div.denominator
+ else:
+ return math.floor(div)
+
+ def __rfloordiv__(b, a):
+ """a // b"""
+ # Will be math.floor(a / b) in 3.0.
+ div = a / b
+ if isinstance(div, Rational):
+ # trunc(math.floor(div)) doesn't work if the rational is
+ # more precise than a float because the intermediate
+ # rounding may cross an integer boundary.
+ return div.numerator // div.denominator
+ else:
+ return math.floor(div)
+
+ def __mod__(a, b):
+ """a % b"""
+ div = a // b
+ return a - b * div
+
+ def __rmod__(b, a):
+ """a % b"""
+ div = a // b
+ return a - b * div
+
+ def __pow__(a, b):
+ """a ** b
+
+ If b is not an integer, the result will be a float or complex
+ since roots are generally irrational. If b is an integer, the
+ result will be rational.
+
+ """
+ if isinstance(b, Rational):
+ if b.denominator == 1:
+ power = b.numerator
+ if power >= 0:
+ return Fraction(a._numerator ** power,
+ a._denominator ** power)
+ else:
+ return Fraction(a._denominator ** -power,
+ a._numerator ** -power)
+ else:
+ # A fractional power will generally produce an
+ # irrational number.
+ return float(a) ** float(b)
+ else:
+ return float(a) ** b
+
+ def __rpow__(b, a):
+ """a ** b"""
+ if b._denominator == 1 and b._numerator >= 0:
+ # If a is an int, keep it that way if possible.
+ return a ** b._numerator
+
+ if isinstance(a, Rational):
+ return Fraction(a.numerator, a.denominator) ** b
+
+ if b._denominator == 1:
+ return a ** b._numerator
+
+ return a ** float(b)
+
+ def __pos__(a):
+ """+a: Coerces a subclass instance to Fraction"""
+ return Fraction(a._numerator, a._denominator)
+
+ def __neg__(a):
+ """-a"""
+ return Fraction(-a._numerator, a._denominator)
+
+ def __abs__(a):
+ """abs(a)"""
+ return Fraction(abs(a._numerator), a._denominator)
+
+ def __trunc__(a):
+ """trunc(a)"""
+ if a._numerator < 0:
+ return -(-a._numerator // a._denominator)
+ else:
+ return a._numerator // a._denominator
+
+ def __hash__(self):
+ """hash(self)
+
+ Tricky because values that are exactly representable as a
+ float must have the same hash as that float.
+
+ """
+ # XXX since this method is expensive, consider caching the result
+ if self._denominator == 1:
+ # Get integers right.
+ return hash(self._numerator)
+ # Expensive check, but definitely correct.
+ if self == float(self):
+ return hash(float(self))
+ else:
+ # Use tuple's hash to avoid a high collision rate on
+ # simple fractions.
+ return hash((self._numerator, self._denominator))
+
+ def __eq__(a, b):
+ """a == b"""
+ if isinstance(b, Rational):
+ return (a._numerator == b.numerator and
+ a._denominator == b.denominator)
+ if isinstance(b, numbers.Complex) and b.imag == 0:
+ b = b.real
+ if isinstance(b, float):
+ return a == a.from_float(b)
+ else:
+ # XXX: If b.__eq__ is implemented like this method, it may
+ # give the wrong answer after float(a) changes a's
+ # value. Better ways of doing this are welcome.
+ return float(a) == b
+
+ def _subtractAndCompareToZero(a, b, op):
+ """Helper function for comparison operators.
+
+ Subtracts b from a, exactly if possible, and compares the
+ result with 0 using op, in such a way that the comparison
+ won't recurse. If the difference raises a TypeError, returns
+ NotImplemented instead.
+
+ """
+ if isinstance(b, numbers.Complex) and b.imag == 0:
+ b = b.real
+ if isinstance(b, float):
+ b = a.from_float(b)
+ try:
+ # XXX: If b <: Real but not <: Rational, this is likely
+ # to fall back to a float. If the actual values differ by
+ # less than MIN_FLOAT, this could falsely call them equal,
+ # which would make <= inconsistent with ==. Better ways of
+ # doing this are welcome.
+ diff = a - b
+ except TypeError:
+ return NotImplemented
+ if isinstance(diff, Rational):
+ return op(diff.numerator, 0)
+ return op(diff, 0)
+
+ def __lt__(a, b):
+ """a < b"""
+ return a._subtractAndCompareToZero(b, operator.lt)
+
+ def __gt__(a, b):
+ """a > b"""
+ return a._subtractAndCompareToZero(b, operator.gt)
+
+ def __le__(a, b):
+ """a <= b"""
+ return a._subtractAndCompareToZero(b, operator.le)
+
+ def __ge__(a, b):
+ """a >= b"""
+ return a._subtractAndCompareToZero(b, operator.ge)
+
+ def __nonzero__(a):
+ """a != 0"""
+ return a._numerator != 0
+
+ # support for pickling, copy, and deepcopy
+
+ def __reduce__(self):
+ return (self.__class__, (str(self),))
+
+ def __copy__(self):
+ if type(self) == Fraction:
+ return self # I'm immutable; therefore I am my own clone
+ return self.__class__(self._numerator, self._denominator)
+
+ def __deepcopy__(self, memo):
+ if type(self) == Fraction:
+ return self # My components are also immutable
+ return self.__class__(self._numerator, self._denominator)