symbian-qemu-0.9.1-12/python-win32-2.6.1/lib/pickle.py
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-win32-2.6.1/lib/pickle.py	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,1383 @@
+"""Create portable serialized representations of Python objects.
+
+See module cPickle for a (much) faster implementation.
+See module copy_reg for a mechanism for registering custom picklers.
+See module pickletools source for extensive comments.
+
+Classes:
+
+    Pickler
+    Unpickler
+
+Functions:
+
+    dump(object, file)
+    dumps(object) -> string
+    load(file) -> object
+    loads(string) -> object
+
+Misc variables:
+
+    __version__
+    format_version
+    compatible_formats
+
+"""
+
+__version__ = "$Revision: 65524 $"       # Code version
+
+from types import *
+from copy_reg import dispatch_table
+from copy_reg import _extension_registry, _inverted_registry, _extension_cache
+import marshal
+import sys
+import struct
+import re
+
+__all__ = ["PickleError", "PicklingError", "UnpicklingError", "Pickler",
+           "Unpickler", "dump", "dumps", "load", "loads"]
+
+# These are purely informational; no code uses these.
+format_version = "2.0"                  # File format version we write
+compatible_formats = ["1.0",            # Original protocol 0
+                      "1.1",            # Protocol 0 with INST added
+                      "1.2",            # Original protocol 1
+                      "1.3",            # Protocol 1 with BINFLOAT added
+                      "2.0",            # Protocol 2
+                      ]                 # Old format versions we can read
+
+# Keep in synch with cPickle.  This is the highest protocol number we
+# know how to read.
+HIGHEST_PROTOCOL = 2
+
+# Why use struct.pack() for pickling but marshal.loads() for
+# unpickling?  struct.pack() is 40% faster than marshal.dumps(), but
+# marshal.loads() is twice as fast as struct.unpack()!
+mloads = marshal.loads
+
+class PickleError(Exception):
+    """A common base class for the other pickling exceptions."""
+    pass
+
+class PicklingError(PickleError):
+    """This exception is raised when an unpicklable object is passed to the
+    dump() method.
+
+    """
+    pass
+
+class UnpicklingError(PickleError):
+    """This exception is raised when there is a problem unpickling an object,
+    such as a security violation.
+
+    Note that other exceptions may also be raised during unpickling, including
+    (but not necessarily limited to) AttributeError, EOFError, ImportError,
+    and IndexError.
+
+    """
+    pass
+
+# An instance of _Stop is raised by Unpickler.load_stop() in response to
+# the STOP opcode, passing the object that is the result of unpickling.
+class _Stop(Exception):
+    def __init__(self, value):
+        self.value = value
+
+# Jython has PyStringMap; it's a dict subclass with string keys
+try:
+    from org.python.core import PyStringMap
+except ImportError:
+    PyStringMap = None
+
+# UnicodeType may or may not be exported (normally imported from types)
+try:
+    UnicodeType
+except NameError:
+    UnicodeType = None
+
+# Pickle opcodes.  See pickletools.py for extensive docs.  The listing
+# here is in kind-of alphabetical order of 1-character pickle code.
+# pickletools groups them by purpose.
+
+MARK            = '('   # push special markobject on stack
+STOP            = '.'   # every pickle ends with STOP
+POP             = '0'   # discard topmost stack item
+POP_MARK        = '1'   # discard stack top through topmost markobject
+DUP             = '2'   # duplicate top stack item
+FLOAT           = 'F'   # push float object; decimal string argument
+INT             = 'I'   # push integer or bool; decimal string argument
+BININT          = 'J'   # push four-byte signed int
+BININT1         = 'K'   # push 1-byte unsigned int
+LONG            = 'L'   # push long; decimal string argument
+BININT2         = 'M'   # push 2-byte unsigned int
+NONE            = 'N'   # push None
+PERSID          = 'P'   # push persistent object; id is taken from string arg
+BINPERSID       = 'Q'   #  "       "         "  ;  "  "   "     "  stack
+REDUCE          = 'R'   # apply callable to argtuple, both on stack
+STRING          = 'S'   # push string; NL-terminated string argument
+BINSTRING       = 'T'   # push string; counted binary string argument
+SHORT_BINSTRING = 'U'   #  "     "   ;    "      "       "      " < 256 bytes
+UNICODE         = 'V'   # push Unicode string; raw-unicode-escaped'd argument
+BINUNICODE      = 'X'   #   "     "       "  ; counted UTF-8 string argument
+APPEND          = 'a'   # append stack top to list below it
+BUILD           = 'b'   # call __setstate__ or __dict__.update()
+GLOBAL          = 'c'   # push self.find_class(modname, name); 2 string args
+DICT            = 'd'   # build a dict from stack items
+EMPTY_DICT      = '}'   # push empty dict
+APPENDS         = 'e'   # extend list on stack by topmost stack slice
+GET             = 'g'   # push item from memo on stack; index is string arg
+BINGET          = 'h'   #   "    "    "    "   "   "  ;   "    " 1-byte arg
+INST            = 'i'   # build & push class instance
+LONG_BINGET     = 'j'   # push item from memo on stack; index is 4-byte arg
+LIST            = 'l'   # build list from topmost stack items
+EMPTY_LIST      = ']'   # push empty list
+OBJ             = 'o'   # build & push class instance
+PUT             = 'p'   # store stack top in memo; index is string arg
+BINPUT          = 'q'   #   "     "    "   "   " ;   "    " 1-byte arg
+LONG_BINPUT     = 'r'   #   "     "    "   "   " ;   "    " 4-byte arg
+SETITEM         = 's'   # add key+value pair to dict
+TUPLE           = 't'   # build tuple from topmost stack items
+EMPTY_TUPLE     = ')'   # push empty tuple
+SETITEMS        = 'u'   # modify dict by adding topmost key+value pairs
+BINFLOAT        = 'G'   # push float; arg is 8-byte float encoding
+
+TRUE            = 'I01\n'  # not an opcode; see INT docs in pickletools.py
+FALSE           = 'I00\n'  # not an opcode; see INT docs in pickletools.py
+
+# Protocol 2
+
+PROTO           = '\x80'  # identify pickle protocol
+NEWOBJ          = '\x81'  # build object by applying cls.__new__ to argtuple
+EXT1            = '\x82'  # push object from extension registry; 1-byte index
+EXT2            = '\x83'  # ditto, but 2-byte index
+EXT4            = '\x84'  # ditto, but 4-byte index
+TUPLE1          = '\x85'  # build 1-tuple from stack top
+TUPLE2          = '\x86'  # build 2-tuple from two topmost stack items
+TUPLE3          = '\x87'  # build 3-tuple from three topmost stack items
+NEWTRUE         = '\x88'  # push True
+NEWFALSE        = '\x89'  # push False
+LONG1           = '\x8a'  # push long from < 256 bytes
+LONG4           = '\x8b'  # push really big long
+
+_tuplesize2code = [EMPTY_TUPLE, TUPLE1, TUPLE2, TUPLE3]
+
+
+__all__.extend([x for x in dir() if re.match("[A-Z][A-Z0-9_]+$",x)])
+del x
+
+
+# Pickling machinery
+
+class Pickler:
+
+    def __init__(self, file, protocol=None):
+        """This takes a file-like object for writing a pickle data stream.
+
+        The optional protocol argument tells the pickler to use the
+        given protocol; supported protocols are 0, 1, 2.  The default
+        protocol is 0, to be backwards compatible.  (Protocol 0 is the
+        only protocol that can be written to a file opened in text
+        mode and read back successfully.  When using a protocol higher
+        than 0, make sure the file is opened in binary mode, both when
+        pickling and unpickling.)
+
+        Protocol 1 is more efficient than protocol 0; protocol 2 is
+        more efficient than protocol 1.
+
+        Specifying a negative protocol version selects the highest
+        protocol version supported.  The higher the protocol used, the
+        more recent the version of Python needed to read the pickle
+        produced.
+
+        The file parameter must have a write() method that accepts a single
+        string argument.  It can thus be an open file object, a StringIO
+        object, or any other custom object that meets this interface.
+
+        """
+        if protocol is None:
+            protocol = 0
+        if protocol < 0:
+            protocol = HIGHEST_PROTOCOL
+        elif not 0 <= protocol <= HIGHEST_PROTOCOL:
+            raise ValueError("pickle protocol must be <= %d" % HIGHEST_PROTOCOL)
+        self.write = file.write
+        self.memo = {}
+        self.proto = int(protocol)
+        self.bin = protocol >= 1
+        self.fast = 0
+
+    def clear_memo(self):
+        """Clears the pickler's "memo".
+
+        The memo is the data structure that remembers which objects the
+        pickler has already seen, so that shared or recursive objects are
+        pickled by reference and not by value.  This method is useful when
+        re-using picklers.
+
+        """
+        self.memo.clear()
+
+    def dump(self, obj):
+        """Write a pickled representation of obj to the open file."""
+        if self.proto >= 2:
+            self.write(PROTO + chr(self.proto))
+        self.save(obj)
+        self.write(STOP)
+
+    def memoize(self, obj):
+        """Store an object in the memo."""
+
+        # The Pickler memo is a dictionary mapping object ids to 2-tuples
+        # that contain the Unpickler memo key and the object being memoized.
+        # The memo key is written to the pickle and will become
+        # the key in the Unpickler's memo.  The object is stored in the
+        # Pickler memo so that transient objects are kept alive during
+        # pickling.
+
+        # The use of the Unpickler memo length as the memo key is just a
+        # convention.  The only requirement is that the memo values be unique.
+        # But there appears no advantage to any other scheme, and this
+        # scheme allows the Unpickler memo to be implemented as a plain (but
+        # growable) array, indexed by memo key.
+        if self.fast:
+            return
+        assert id(obj) not in self.memo
+        memo_len = len(self.memo)
+        self.write(self.put(memo_len))
+        self.memo[id(obj)] = memo_len, obj
+
+    # Return a PUT (BINPUT, LONG_BINPUT) opcode string, with argument i.
+    def put(self, i, pack=struct.pack):
+        if self.bin:
+            if i < 256:
+                return BINPUT + chr(i)
+            else:
+                return LONG_BINPUT + pack("<i", i)
+
+        return PUT + repr(i) + '\n'
+
+    # Return a GET (BINGET, LONG_BINGET) opcode string, with argument i.
+    def get(self, i, pack=struct.pack):
+        if self.bin:
+            if i < 256:
+                return BINGET + chr(i)
+            else:
+                return LONG_BINGET + pack("<i", i)
+
+        return GET + repr(i) + '\n'
+
+    def save(self, obj):
+        # Check for persistent id (defined by a subclass)
+        pid = self.persistent_id(obj)
+        if pid:
+            self.save_pers(pid)
+            return
+
+        # Check the memo
+        x = self.memo.get(id(obj))
+        if x:
+            self.write(self.get(x[0]))
+            return
+
+        # Check the type dispatch table
+        t = type(obj)
+        f = self.dispatch.get(t)
+        if f:
+            f(self, obj) # Call unbound method with explicit self
+            return
+
+        # Check for a class with a custom metaclass; treat as regular class
+        try:
+            issc = issubclass(t, TypeType)
+        except TypeError: # t is not a class (old Boost; see SF #502085)
+            issc = 0
+        if issc:
+            self.save_global(obj)
+            return
+
+        # Check copy_reg.dispatch_table
+        reduce = dispatch_table.get(t)
+        if reduce:
+            rv = reduce(obj)
+        else:
+            # Check for a __reduce_ex__ method, fall back to __reduce__
+            reduce = getattr(obj, "__reduce_ex__", None)
+            if reduce:
+                rv = reduce(self.proto)
+            else:
+                reduce = getattr(obj, "__reduce__", None)
+                if reduce:
+                    rv = reduce()
+                else:
+                    raise PicklingError("Can't pickle %r object: %r" %
+                                        (t.__name__, obj))
+
+        # Check for string returned by reduce(), meaning "save as global"
+        if type(rv) is StringType:
+            self.save_global(obj, rv)
+            return
+
+        # Assert that reduce() returned a tuple
+        if type(rv) is not TupleType:
+            raise PicklingError("%s must return string or tuple" % reduce)
+
+        # Assert that it returned an appropriately sized tuple
+        l = len(rv)
+        if not (2 <= l <= 5):
+            raise PicklingError("Tuple returned by %s must have "
+                                "two to five elements" % reduce)
+
+        # Save the reduce() output and finally memoize the object
+        self.save_reduce(obj=obj, *rv)
+
+    def persistent_id(self, obj):
+        # This exists so a subclass can override it
+        return None
+
+    def save_pers(self, pid):
+        # Save a persistent id reference
+        if self.bin:
+            self.save(pid)
+            self.write(BINPERSID)
+        else:
+            self.write(PERSID + str(pid) + '\n')
+
+    def save_reduce(self, func, args, state=None,
+                    listitems=None, dictitems=None, obj=None):
+        # This API is called by some subclasses
+
+        # Assert that args is a tuple or None
+        if not isinstance(args, TupleType):
+            raise PicklingError("args from reduce() should be a tuple")
+
+        # Assert that func is callable
+        if not hasattr(func, '__call__'):
+            raise PicklingError("func from reduce should be callable")
+
+        save = self.save
+        write = self.write
+
+        # Protocol 2 special case: if func's name is __newobj__, use NEWOBJ
+        if self.proto >= 2 and getattr(func, "__name__", "") == "__newobj__":
+            # A __reduce__ implementation can direct protocol 2 to
+            # use the more efficient NEWOBJ opcode, while still
+            # allowing protocol 0 and 1 to work normally.  For this to
+            # work, the function returned by __reduce__ should be
+            # called __newobj__, and its first argument should be a
+            # new-style class.  The implementation for __newobj__
+            # should be as follows, although pickle has no way to
+            # verify this:
+            #
+            # def __newobj__(cls, *args):
+            #     return cls.__new__(cls, *args)
+            #
+            # Protocols 0 and 1 will pickle a reference to __newobj__,
+            # while protocol 2 (and above) will pickle a reference to
+            # cls, the remaining args tuple, and the NEWOBJ code,
+            # which calls cls.__new__(cls, *args) at unpickling time
+            # (see load_newobj below).  If __reduce__ returns a
+            # three-tuple, the state from the third tuple item will be
+            # pickled regardless of the protocol, calling __setstate__
+            # at unpickling time (see load_build below).
+            #
+            # Note that no standard __newobj__ implementation exists;
+            # you have to provide your own.  This is to enforce
+            # compatibility with Python 2.2 (pickles written using
+            # protocol 0 or 1 in Python 2.3 should be unpicklable by
+            # Python 2.2).
+            cls = args[0]
+            if not hasattr(cls, "__new__"):
+                raise PicklingError(
+                    "args[0] from __newobj__ args has no __new__")
+            if obj is not None and cls is not obj.__class__:
+                raise PicklingError(
+                    "args[0] from __newobj__ args has the wrong class")
+            args = args[1:]
+            save(cls)
+            save(args)
+            write(NEWOBJ)
+        else:
+            save(func)
+            save(args)
+            write(REDUCE)
+
+        if obj is not None:
+            self.memoize(obj)
+
+        # More new special cases (that work with older protocols as
+        # well): when __reduce__ returns a tuple with 4 or 5 items,
+        # the 4th and 5th item should be iterators that provide list
+        # items and dict items (as (key, value) tuples), or None.
+
+        if listitems is not None:
+            self._batch_appends(listitems)
+
+        if dictitems is not None:
+            self._batch_setitems(dictitems)
+
+        if state is not None:
+            save(state)
+            write(BUILD)
+
+    # Methods below this point are dispatched through the dispatch table
+
+    dispatch = {}
+
+    def save_none(self, obj):
+        self.write(NONE)
+    dispatch[NoneType] = save_none
+
+    def save_bool(self, obj):
+        if self.proto >= 2:
+            self.write(obj and NEWTRUE or NEWFALSE)
+        else:
+            self.write(obj and TRUE or FALSE)
+    dispatch[bool] = save_bool
+
+    def save_int(self, obj, pack=struct.pack):
+        if self.bin:
+            # If the int is small enough to fit in a signed 4-byte 2's-comp
+            # format, we can store it more efficiently than the general
+            # case.
+            # First one- and two-byte unsigned ints:
+            if obj >= 0:
+                if obj <= 0xff:
+                    self.write(BININT1 + chr(obj))
+                    return
+                if obj <= 0xffff:
+                    self.write("%c%c%c" % (BININT2, obj&0xff, obj>>8))
+                    return
+            # Next check for 4-byte signed ints:
+            high_bits = obj >> 31  # note that Python shift sign-extends
+            if high_bits == 0 or high_bits == -1:
+                # All high bits are copies of bit 2**31, so the value
+                # fits in a 4-byte signed int.
+                self.write(BININT + pack("<i", obj))
+                return
+        # Text pickle, or int too big to fit in signed 4-byte format.
+        self.write(INT + repr(obj) + '\n')
+    dispatch[IntType] = save_int
+
+    def save_long(self, obj, pack=struct.pack):
+        if self.proto >= 2:
+            bytes = encode_long(obj)
+            n = len(bytes)
+            if n < 256:
+                self.write(LONG1 + chr(n) + bytes)
+            else:
+                self.write(LONG4 + pack("<i", n) + bytes)
+            return
+        self.write(LONG + repr(obj) + '\n')
+    dispatch[LongType] = save_long
+
+    def save_float(self, obj, pack=struct.pack):
+        if self.bin:
+            self.write(BINFLOAT + pack('>d', obj))
+        else:
+            self.write(FLOAT + repr(obj) + '\n')
+    dispatch[FloatType] = save_float
+
+    def save_string(self, obj, pack=struct.pack):
+        if self.bin:
+            n = len(obj)
+            if n < 256:
+                self.write(SHORT_BINSTRING + chr(n) + obj)
+            else:
+                self.write(BINSTRING + pack("<i", n) + obj)
+        else:
+            self.write(STRING + repr(obj) + '\n')
+        self.memoize(obj)
+    dispatch[StringType] = save_string
+
+    def save_unicode(self, obj, pack=struct.pack):
+        if self.bin:
+            encoding = obj.encode('utf-8')
+            n = len(encoding)
+            self.write(BINUNICODE + pack("<i", n) + encoding)
+        else:
+            obj = obj.replace("\\", "\\u005c")
+            obj = obj.replace("\n", "\\u000a")
+            self.write(UNICODE + obj.encode('raw-unicode-escape') + '\n')
+        self.memoize(obj)
+    dispatch[UnicodeType] = save_unicode
+
+    if StringType == UnicodeType:
+        # This is true for Jython
+        def save_string(self, obj, pack=struct.pack):
+            unicode = obj.isunicode()
+
+            if self.bin:
+                if unicode:
+                    obj = obj.encode("utf-8")
+                l = len(obj)
+                if l < 256 and not unicode:
+                    self.write(SHORT_BINSTRING + chr(l) + obj)
+                else:
+                    s = pack("<i", l)
+                    if unicode:
+                        self.write(BINUNICODE + s + obj)
+                    else:
+                        self.write(BINSTRING + s + obj)
+            else:
+                if unicode:
+                    obj = obj.replace("\\", "\\u005c")
+                    obj = obj.replace("\n", "\\u000a")
+                    obj = obj.encode('raw-unicode-escape')
+                    self.write(UNICODE + obj + '\n')
+                else:
+                    self.write(STRING + repr(obj) + '\n')
+            self.memoize(obj)
+        dispatch[StringType] = save_string
+
+    def save_tuple(self, obj):
+        write = self.write
+        proto = self.proto
+
+        n = len(obj)
+        if n == 0:
+            if proto:
+                write(EMPTY_TUPLE)
+            else:
+                write(MARK + TUPLE)
+            return
+
+        save = self.save
+        memo = self.memo
+        if n <= 3 and proto >= 2:
+            for element in obj:
+                save(element)
+            # Subtle.  Same as in the big comment below.
+            if id(obj) in memo:
+                get = self.get(memo[id(obj)][0])
+                write(POP * n + get)
+            else:
+                write(_tuplesize2code[n])
+                self.memoize(obj)
+            return
+
+        # proto 0 or proto 1 and tuple isn't empty, or proto > 1 and tuple
+        # has more than 3 elements.
+        write(MARK)
+        for element in obj:
+            save(element)
+
+        if id(obj) in memo:
+            # Subtle.  d was not in memo when we entered save_tuple(), so
+            # the process of saving the tuple's elements must have saved
+            # the tuple itself:  the tuple is recursive.  The proper action
+            # now is to throw away everything we put on the stack, and
+            # simply GET the tuple (it's already constructed).  This check
+            # could have been done in the "for element" loop instead, but
+            # recursive tuples are a rare thing.
+            get = self.get(memo[id(obj)][0])
+            if proto:
+                write(POP_MARK + get)
+            else:   # proto 0 -- POP_MARK not available
+                write(POP * (n+1) + get)
+            return
+
+        # No recursion.
+        self.write(TUPLE)
+        self.memoize(obj)
+
+    dispatch[TupleType] = save_tuple
+
+    # save_empty_tuple() isn't used by anything in Python 2.3.  However, I
+    # found a Pickler subclass in Zope3 that calls it, so it's not harmless
+    # to remove it.
+    def save_empty_tuple(self, obj):
+        self.write(EMPTY_TUPLE)
+
+    def save_list(self, obj):
+        write = self.write
+
+        if self.bin:
+            write(EMPTY_LIST)
+        else:   # proto 0 -- can't use EMPTY_LIST
+            write(MARK + LIST)
+
+        self.memoize(obj)
+        self._batch_appends(iter(obj))
+
+    dispatch[ListType] = save_list
+
+    # Keep in synch with cPickle's BATCHSIZE.  Nothing will break if it gets
+    # out of synch, though.
+    _BATCHSIZE = 1000
+
+    def _batch_appends(self, items):
+        # Helper to batch up APPENDS sequences
+        save = self.save
+        write = self.write
+
+        if not self.bin:
+            for x in items:
+                save(x)
+                write(APPEND)
+            return
+
+        r = xrange(self._BATCHSIZE)
+        while items is not None:
+            tmp = []
+            for i in r:
+                try:
+                    x = items.next()
+                    tmp.append(x)
+                except StopIteration:
+                    items = None
+                    break
+            n = len(tmp)
+            if n > 1:
+                write(MARK)
+                for x in tmp:
+                    save(x)
+                write(APPENDS)
+            elif n:
+                save(tmp[0])
+                write(APPEND)
+            # else tmp is empty, and we're done
+
+    def save_dict(self, obj):
+        write = self.write
+
+        if self.bin:
+            write(EMPTY_DICT)
+        else:   # proto 0 -- can't use EMPTY_DICT
+            write(MARK + DICT)
+
+        self.memoize(obj)
+        self._batch_setitems(obj.iteritems())
+
+    dispatch[DictionaryType] = save_dict
+    if not PyStringMap is None:
+        dispatch[PyStringMap] = save_dict
+
+    def _batch_setitems(self, items):
+        # Helper to batch up SETITEMS sequences; proto >= 1 only
+        save = self.save
+        write = self.write
+
+        if not self.bin:
+            for k, v in items:
+                save(k)
+                save(v)
+                write(SETITEM)
+            return
+
+        r = xrange(self._BATCHSIZE)
+        while items is not None:
+            tmp = []
+            for i in r:
+                try:
+                    tmp.append(items.next())
+                except StopIteration:
+                    items = None
+                    break
+            n = len(tmp)
+            if n > 1:
+                write(MARK)
+                for k, v in tmp:
+                    save(k)
+                    save(v)
+                write(SETITEMS)
+            elif n:
+                k, v = tmp[0]
+                save(k)
+                save(v)
+                write(SETITEM)
+            # else tmp is empty, and we're done
+
+    def save_inst(self, obj):
+        cls = obj.__class__
+
+        memo  = self.memo
+        write = self.write
+        save  = self.save
+
+        if hasattr(obj, '__getinitargs__'):
+            args = obj.__getinitargs__()
+            len(args) # XXX Assert it's a sequence
+            _keep_alive(args, memo)
+        else:
+            args = ()
+
+        write(MARK)
+
+        if self.bin:
+            save(cls)
+            for arg in args:
+                save(arg)
+            write(OBJ)
+        else:
+            for arg in args:
+                save(arg)
+            write(INST + cls.__module__ + '\n' + cls.__name__ + '\n')
+
+        self.memoize(obj)
+
+        try:
+            getstate = obj.__getstate__
+        except AttributeError:
+            stuff = obj.__dict__
+        else:
+            stuff = getstate()
+            _keep_alive(stuff, memo)
+        save(stuff)
+        write(BUILD)
+
+    dispatch[InstanceType] = save_inst
+
+    def save_global(self, obj, name=None, pack=struct.pack):
+        write = self.write
+        memo = self.memo
+
+        if name is None:
+            name = obj.__name__
+
+        module = getattr(obj, "__module__", None)
+        if module is None:
+            module = whichmodule(obj, name)
+
+        try:
+            __import__(module)
+            mod = sys.modules[module]
+            klass = getattr(mod, name)
+        except (ImportError, KeyError, AttributeError):
+            raise PicklingError(
+                "Can't pickle %r: it's not found as %s.%s" %
+                (obj, module, name))
+        else:
+            if klass is not obj:
+                raise PicklingError(
+                    "Can't pickle %r: it's not the same object as %s.%s" %
+                    (obj, module, name))
+
+        if self.proto >= 2:
+            code = _extension_registry.get((module, name))
+            if code:
+                assert code > 0
+                if code <= 0xff:
+                    write(EXT1 + chr(code))
+                elif code <= 0xffff:
+                    write("%c%c%c" % (EXT2, code&0xff, code>>8))
+                else:
+                    write(EXT4 + pack("<i", code))
+                return
+
+        write(GLOBAL + module + '\n' + name + '\n')
+        self.memoize(obj)
+
+    dispatch[ClassType] = save_global
+    dispatch[FunctionType] = save_global
+    dispatch[BuiltinFunctionType] = save_global
+    dispatch[TypeType] = save_global
+
+# Pickling helpers
+
+def _keep_alive(x, memo):
+    """Keeps a reference to the object x in the memo.
+
+    Because we remember objects by their id, we have
+    to assure that possibly temporary objects are kept
+    alive by referencing them.
+    We store a reference at the id of the memo, which should
+    normally not be used unless someone tries to deepcopy
+    the memo itself...
+    """
+    try:
+        memo[id(memo)].append(x)
+    except KeyError:
+        # aha, this is the first one :-)
+        memo[id(memo)]=[x]
+
+
+# A cache for whichmodule(), mapping a function object to the name of
+# the module in which the function was found.
+
+classmap = {} # called classmap for backwards compatibility
+
+def whichmodule(func, funcname):
+    """Figure out the module in which a function occurs.
+
+    Search sys.modules for the module.
+    Cache in classmap.
+    Return a module name.
+    If the function cannot be found, return "__main__".
+    """
+    # Python functions should always get an __module__ from their globals.
+    mod = getattr(func, "__module__", None)
+    if mod is not None:
+        return mod
+    if func in classmap:
+        return classmap[func]
+
+    for name, module in sys.modules.items():
+        if module is None:
+            continue # skip dummy package entries
+        if name != '__main__' and getattr(module, funcname, None) is func:
+            break
+    else:
+        name = '__main__'
+    classmap[func] = name
+    return name
+
+
+# Unpickling machinery
+
+class Unpickler:
+
+    def __init__(self, file):
+        """This takes a file-like object for reading a pickle data stream.
+
+        The protocol version of the pickle is detected automatically, so no
+        proto argument is needed.
+
+        The file-like object must have two methods, a read() method that
+        takes an integer argument, and a readline() method that requires no
+        arguments.  Both methods should return a string.  Thus file-like
+        object can be a file object opened for reading, a StringIO object,
+        or any other custom object that meets this interface.
+        """
+        self.readline = file.readline
+        self.read = file.read
+        self.memo = {}
+
+    def load(self):
+        """Read a pickled object representation from the open file.
+
+        Return the reconstituted object hierarchy specified in the file.
+        """
+        self.mark = object() # any new unique object
+        self.stack = []
+        self.append = self.stack.append
+        read = self.read
+        dispatch = self.dispatch
+        try:
+            while 1:
+                key = read(1)
+                dispatch[key](self)
+        except _Stop, stopinst:
+            return stopinst.value
+
+    # Return largest index k such that self.stack[k] is self.mark.
+    # If the stack doesn't contain a mark, eventually raises IndexError.
+    # This could be sped by maintaining another stack, of indices at which
+    # the mark appears.  For that matter, the latter stack would suffice,
+    # and we wouldn't need to push mark objects on self.stack at all.
+    # Doing so is probably a good thing, though, since if the pickle is
+    # corrupt (or hostile) we may get a clue from finding self.mark embedded
+    # in unpickled objects.
+    def marker(self):
+        stack = self.stack
+        mark = self.mark
+        k = len(stack)-1
+        while stack[k] is not mark: k = k-1
+        return k
+
+    dispatch = {}
+
+    def load_eof(self):
+        raise EOFError
+    dispatch[''] = load_eof
+
+    def load_proto(self):
+        proto = ord(self.read(1))
+        if not 0 <= proto <= 2:
+            raise ValueError, "unsupported pickle protocol: %d" % proto
+    dispatch[PROTO] = load_proto
+
+    def load_persid(self):
+        pid = self.readline()[:-1]
+        self.append(self.persistent_load(pid))
+    dispatch[PERSID] = load_persid
+
+    def load_binpersid(self):
+        pid = self.stack.pop()
+        self.append(self.persistent_load(pid))
+    dispatch[BINPERSID] = load_binpersid
+
+    def load_none(self):
+        self.append(None)
+    dispatch[NONE] = load_none
+
+    def load_false(self):
+        self.append(False)
+    dispatch[NEWFALSE] = load_false
+
+    def load_true(self):
+        self.append(True)
+    dispatch[NEWTRUE] = load_true
+
+    def load_int(self):
+        data = self.readline()
+        if data == FALSE[1:]:
+            val = False
+        elif data == TRUE[1:]:
+            val = True
+        else:
+            try:
+                val = int(data)
+            except ValueError:
+                val = long(data)
+        self.append(val)
+    dispatch[INT] = load_int
+
+    def load_binint(self):
+        self.append(mloads('i' + self.read(4)))
+    dispatch[BININT] = load_binint
+
+    def load_binint1(self):
+        self.append(ord(self.read(1)))
+    dispatch[BININT1] = load_binint1
+
+    def load_binint2(self):
+        self.append(mloads('i' + self.read(2) + '\000\000'))
+    dispatch[BININT2] = load_binint2
+
+    def load_long(self):
+        self.append(long(self.readline()[:-1], 0))
+    dispatch[LONG] = load_long
+
+    def load_long1(self):
+        n = ord(self.read(1))
+        bytes = self.read(n)
+        self.append(decode_long(bytes))
+    dispatch[LONG1] = load_long1
+
+    def load_long4(self):
+        n = mloads('i' + self.read(4))
+        bytes = self.read(n)
+        self.append(decode_long(bytes))
+    dispatch[LONG4] = load_long4
+
+    def load_float(self):
+        self.append(float(self.readline()[:-1]))
+    dispatch[FLOAT] = load_float
+
+    def load_binfloat(self, unpack=struct.unpack):
+        self.append(unpack('>d', self.read(8))[0])
+    dispatch[BINFLOAT] = load_binfloat
+
+    def load_string(self):
+        rep = self.readline()[:-1]
+        for q in "\"'": # double or single quote
+            if rep.startswith(q):
+                if not rep.endswith(q):
+                    raise ValueError, "insecure string pickle"
+                rep = rep[len(q):-len(q)]
+                break
+        else:
+            raise ValueError, "insecure string pickle"
+        self.append(rep.decode("string-escape"))
+    dispatch[STRING] = load_string
+
+    def load_binstring(self):
+        len = mloads('i' + self.read(4))
+        self.append(self.read(len))
+    dispatch[BINSTRING] = load_binstring
+
+    def load_unicode(self):
+        self.append(unicode(self.readline()[:-1],'raw-unicode-escape'))
+    dispatch[UNICODE] = load_unicode
+
+    def load_binunicode(self):
+        len = mloads('i' + self.read(4))
+        self.append(unicode(self.read(len),'utf-8'))
+    dispatch[BINUNICODE] = load_binunicode
+
+    def load_short_binstring(self):
+        len = ord(self.read(1))
+        self.append(self.read(len))
+    dispatch[SHORT_BINSTRING] = load_short_binstring
+
+    def load_tuple(self):
+        k = self.marker()
+        self.stack[k:] = [tuple(self.stack[k+1:])]
+    dispatch[TUPLE] = load_tuple
+
+    def load_empty_tuple(self):
+        self.stack.append(())
+    dispatch[EMPTY_TUPLE] = load_empty_tuple
+
+    def load_tuple1(self):
+        self.stack[-1] = (self.stack[-1],)
+    dispatch[TUPLE1] = load_tuple1
+
+    def load_tuple2(self):
+        self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
+    dispatch[TUPLE2] = load_tuple2
+
+    def load_tuple3(self):
+        self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
+    dispatch[TUPLE3] = load_tuple3
+
+    def load_empty_list(self):
+        self.stack.append([])
+    dispatch[EMPTY_LIST] = load_empty_list
+
+    def load_empty_dictionary(self):
+        self.stack.append({})
+    dispatch[EMPTY_DICT] = load_empty_dictionary
+
+    def load_list(self):
+        k = self.marker()
+        self.stack[k:] = [self.stack[k+1:]]
+    dispatch[LIST] = load_list
+
+    def load_dict(self):
+        k = self.marker()
+        d = {}
+        items = self.stack[k+1:]
+        for i in range(0, len(items), 2):
+            key = items[i]
+            value = items[i+1]
+            d[key] = value
+        self.stack[k:] = [d]
+    dispatch[DICT] = load_dict
+
+    # INST and OBJ differ only in how they get a class object.  It's not
+    # only sensible to do the rest in a common routine, the two routines
+    # previously diverged and grew different bugs.
+    # klass is the class to instantiate, and k points to the topmost mark
+    # object, following which are the arguments for klass.__init__.
+    def _instantiate(self, klass, k):
+        args = tuple(self.stack[k+1:])
+        del self.stack[k:]
+        instantiated = 0
+        if (not args and
+                type(klass) is ClassType and
+                not hasattr(klass, "__getinitargs__")):
+            try:
+                value = _EmptyClass()
+                value.__class__ = klass
+                instantiated = 1
+            except RuntimeError:
+                # In restricted execution, assignment to inst.__class__ is
+                # prohibited
+                pass
+        if not instantiated:
+            try:
+                value = klass(*args)
+            except TypeError, err:
+                raise TypeError, "in constructor for %s: %s" % (
+                    klass.__name__, str(err)), sys.exc_info()[2]
+        self.append(value)
+
+    def load_inst(self):
+        module = self.readline()[:-1]
+        name = self.readline()[:-1]
+        klass = self.find_class(module, name)
+        self._instantiate(klass, self.marker())
+    dispatch[INST] = load_inst
+
+    def load_obj(self):
+        # Stack is ... markobject classobject arg1 arg2 ...
+        k = self.marker()
+        klass = self.stack.pop(k+1)
+        self._instantiate(klass, k)
+    dispatch[OBJ] = load_obj
+
+    def load_newobj(self):
+        args = self.stack.pop()
+        cls = self.stack[-1]
+        obj = cls.__new__(cls, *args)
+        self.stack[-1] = obj
+    dispatch[NEWOBJ] = load_newobj
+
+    def load_global(self):
+        module = self.readline()[:-1]
+        name = self.readline()[:-1]
+        klass = self.find_class(module, name)
+        self.append(klass)
+    dispatch[GLOBAL] = load_global
+
+    def load_ext1(self):
+        code = ord(self.read(1))
+        self.get_extension(code)
+    dispatch[EXT1] = load_ext1
+
+    def load_ext2(self):
+        code = mloads('i' + self.read(2) + '\000\000')
+        self.get_extension(code)
+    dispatch[EXT2] = load_ext2
+
+    def load_ext4(self):
+        code = mloads('i' + self.read(4))
+        self.get_extension(code)
+    dispatch[EXT4] = load_ext4
+
+    def get_extension(self, code):
+        nil = []
+        obj = _extension_cache.get(code, nil)
+        if obj is not nil:
+            self.append(obj)
+            return
+        key = _inverted_registry.get(code)
+        if not key:
+            raise ValueError("unregistered extension code %d" % code)
+        obj = self.find_class(*key)
+        _extension_cache[code] = obj
+        self.append(obj)
+
+    def find_class(self, module, name):
+        # Subclasses may override this
+        __import__(module)
+        mod = sys.modules[module]
+        klass = getattr(mod, name)
+        return klass
+
+    def load_reduce(self):
+        stack = self.stack
+        args = stack.pop()
+        func = stack[-1]
+        value = func(*args)
+        stack[-1] = value
+    dispatch[REDUCE] = load_reduce
+
+    def load_pop(self):
+        del self.stack[-1]
+    dispatch[POP] = load_pop
+
+    def load_pop_mark(self):
+        k = self.marker()
+        del self.stack[k:]
+    dispatch[POP_MARK] = load_pop_mark
+
+    def load_dup(self):
+        self.append(self.stack[-1])
+    dispatch[DUP] = load_dup
+
+    def load_get(self):
+        self.append(self.memo[self.readline()[:-1]])
+    dispatch[GET] = load_get
+
+    def load_binget(self):
+        i = ord(self.read(1))
+        self.append(self.memo[repr(i)])
+    dispatch[BINGET] = load_binget
+
+    def load_long_binget(self):
+        i = mloads('i' + self.read(4))
+        self.append(self.memo[repr(i)])
+    dispatch[LONG_BINGET] = load_long_binget
+
+    def load_put(self):
+        self.memo[self.readline()[:-1]] = self.stack[-1]
+    dispatch[PUT] = load_put
+
+    def load_binput(self):
+        i = ord(self.read(1))
+        self.memo[repr(i)] = self.stack[-1]
+    dispatch[BINPUT] = load_binput
+
+    def load_long_binput(self):
+        i = mloads('i' + self.read(4))
+        self.memo[repr(i)] = self.stack[-1]
+    dispatch[LONG_BINPUT] = load_long_binput
+
+    def load_append(self):
+        stack = self.stack
+        value = stack.pop()
+        list = stack[-1]
+        list.append(value)
+    dispatch[APPEND] = load_append
+
+    def load_appends(self):
+        stack = self.stack
+        mark = self.marker()
+        list = stack[mark - 1]
+        list.extend(stack[mark + 1:])
+        del stack[mark:]
+    dispatch[APPENDS] = load_appends
+
+    def load_setitem(self):
+        stack = self.stack
+        value = stack.pop()
+        key = stack.pop()
+        dict = stack[-1]
+        dict[key] = value
+    dispatch[SETITEM] = load_setitem
+
+    def load_setitems(self):
+        stack = self.stack
+        mark = self.marker()
+        dict = stack[mark - 1]
+        for i in range(mark + 1, len(stack), 2):
+            dict[stack[i]] = stack[i + 1]
+
+        del stack[mark:]
+    dispatch[SETITEMS] = load_setitems
+
+    def load_build(self):
+        stack = self.stack
+        state = stack.pop()
+        inst = stack[-1]
+        setstate = getattr(inst, "__setstate__", None)
+        if setstate:
+            setstate(state)
+            return
+        slotstate = None
+        if isinstance(state, tuple) and len(state) == 2:
+            state, slotstate = state
+        if state:
+            try:
+                inst.__dict__.update(state)
+            except RuntimeError:
+                # XXX In restricted execution, the instance's __dict__
+                # is not accessible.  Use the old way of unpickling
+                # the instance variables.  This is a semantic
+                # difference when unpickling in restricted
+                # vs. unrestricted modes.
+                # Note, however, that cPickle has never tried to do the
+                # .update() business, and always uses
+                #     PyObject_SetItem(inst.__dict__, key, value) in a
+                # loop over state.items().
+                for k, v in state.items():
+                    setattr(inst, k, v)
+        if slotstate:
+            for k, v in slotstate.items():
+                setattr(inst, k, v)
+    dispatch[BUILD] = load_build
+
+    def load_mark(self):
+        self.append(self.mark)
+    dispatch[MARK] = load_mark
+
+    def load_stop(self):
+        value = self.stack.pop()
+        raise _Stop(value)
+    dispatch[STOP] = load_stop
+
+# Helper class for load_inst/load_obj
+
+class _EmptyClass:
+    pass
+
+# Encode/decode longs in linear time.
+
+import binascii as _binascii
+
+def encode_long(x):
+    r"""Encode a long to a two's complement little-endian binary string.
+    Note that 0L is a special case, returning an empty string, to save a
+    byte in the LONG1 pickling context.
+
+    >>> encode_long(0L)
+    ''
+    >>> encode_long(255L)
+    '\xff\x00'
+    >>> encode_long(32767L)
+    '\xff\x7f'
+    >>> encode_long(-256L)
+    '\x00\xff'
+    >>> encode_long(-32768L)
+    '\x00\x80'
+    >>> encode_long(-128L)
+    '\x80'
+    >>> encode_long(127L)
+    '\x7f'
+    >>>
+    """
+
+    if x == 0:
+        return ''
+    if x > 0:
+        ashex = hex(x)
+        assert ashex.startswith("0x")
+        njunkchars = 2 + ashex.endswith('L')
+        nibbles = len(ashex) - njunkchars
+        if nibbles & 1:
+            # need an even # of nibbles for unhexlify
+            ashex = "0x0" + ashex[2:]
+        elif int(ashex[2], 16) >= 8:
+            # "looks negative", so need a byte of sign bits
+            ashex = "0x00" + ashex[2:]
+    else:
+        # Build the 256's-complement:  (1L << nbytes) + x.  The trick is
+        # to find the number of bytes in linear time (although that should
+        # really be a constant-time task).
+        ashex = hex(-x)
+        assert ashex.startswith("0x")
+        njunkchars = 2 + ashex.endswith('L')
+        nibbles = len(ashex) - njunkchars
+        if nibbles & 1:
+            # Extend to a full byte.
+            nibbles += 1
+        nbits = nibbles * 4
+        x += 1L << nbits
+        assert x > 0
+        ashex = hex(x)
+        njunkchars = 2 + ashex.endswith('L')
+        newnibbles = len(ashex) - njunkchars
+        if newnibbles < nibbles:
+            ashex = "0x" + "0" * (nibbles - newnibbles) + ashex[2:]
+        if int(ashex[2], 16) < 8:
+            # "looks positive", so need a byte of sign bits
+            ashex = "0xff" + ashex[2:]
+
+    if ashex.endswith('L'):
+        ashex = ashex[2:-1]
+    else:
+        ashex = ashex[2:]
+    assert len(ashex) & 1 == 0, (x, ashex)
+    binary = _binascii.unhexlify(ashex)
+    return binary[::-1]
+
+def decode_long(data):
+    r"""Decode a long from a two's complement little-endian binary string.
+
+    >>> decode_long('')
+    0L
+    >>> decode_long("\xff\x00")
+    255L
+    >>> decode_long("\xff\x7f")
+    32767L
+    >>> decode_long("\x00\xff")
+    -256L
+    >>> decode_long("\x00\x80")
+    -32768L
+    >>> decode_long("\x80")
+    -128L
+    >>> decode_long("\x7f")
+    127L
+    """
+
+    nbytes = len(data)
+    if nbytes == 0:
+        return 0L
+    ashex = _binascii.hexlify(data[::-1])
+    n = long(ashex, 16) # quadratic time before Python 2.3; linear now
+    if data[-1] >= '\x80':
+        n -= 1L << (nbytes * 8)
+    return n
+
+# Shorthands
+
+try:
+    from cStringIO import StringIO
+except ImportError:
+    from StringIO import StringIO
+
+def dump(obj, file, protocol=None):
+    Pickler(file, protocol).dump(obj)
+
+def dumps(obj, protocol=None):
+    file = StringIO()
+    Pickler(file, protocol).dump(obj)
+    return file.getvalue()
+
+def load(file):
+    return Unpickler(file).load()
+
+def loads(str):
+    file = StringIO(str)
+    return Unpickler(file).load()
+
+# Doctest
+
+def _test():
+    import doctest
+    return doctest.testmod()
+
+if __name__ == "__main__":
+    _test()