--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/qemu-symbian-svp/kqemu.c Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,1025 @@
+/*
+ * KQEMU support
+ *
+ * Copyright (c) 2005-2008 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+#include "config.h"
+#ifdef _WIN32
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#include <winioctl.h>
+#else
+#include <sys/types.h>
+#include <sys/mman.h>
+#include <sys/ioctl.h>
+#endif
+#ifdef HOST_SOLARIS
+#include <sys/ioccom.h>
+#endif
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <errno.h>
+#include <unistd.h>
+#include <inttypes.h>
+
+#include "cpu.h"
+#include "exec-all.h"
+#include "qemu-common.h"
+
+#ifdef USE_KQEMU
+
+#define DEBUG
+//#define PROFILE
+
+#include <unistd.h>
+#include <fcntl.h>
+#include "kqemu.h"
+
+#ifdef _WIN32
+#define KQEMU_DEVICE "\\\\.\\kqemu"
+#else
+#define KQEMU_DEVICE "/dev/kqemu"
+#endif
+
+static void qpi_init(void);
+
+#ifdef _WIN32
+#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
+HANDLE kqemu_fd = KQEMU_INVALID_FD;
+#define kqemu_closefd(x) CloseHandle(x)
+#else
+#define KQEMU_INVALID_FD -1
+int kqemu_fd = KQEMU_INVALID_FD;
+#define kqemu_closefd(x) close(x)
+#endif
+
+/* 0 = not allowed
+ 1 = user kqemu
+ 2 = kernel kqemu
+*/
+int kqemu_allowed = 1;
+uint64_t *pages_to_flush;
+unsigned int nb_pages_to_flush;
+uint64_t *ram_pages_to_update;
+unsigned int nb_ram_pages_to_update;
+uint64_t *modified_ram_pages;
+unsigned int nb_modified_ram_pages;
+uint8_t *modified_ram_pages_table;
+int qpi_io_memory;
+uint32_t kqemu_comm_base; /* physical address of the QPI communication page */
+
+#define cpuid(index, eax, ebx, ecx, edx) \
+ asm volatile ("cpuid" \
+ : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
+ : "0" (index))
+
+#ifdef __x86_64__
+static int is_cpuid_supported(void)
+{
+ return 1;
+}
+#else
+static int is_cpuid_supported(void)
+{
+ int v0, v1;
+ asm volatile ("pushf\n"
+ "popl %0\n"
+ "movl %0, %1\n"
+ "xorl $0x00200000, %0\n"
+ "pushl %0\n"
+ "popf\n"
+ "pushf\n"
+ "popl %0\n"
+ : "=a" (v0), "=d" (v1)
+ :
+ : "cc");
+ return (v0 != v1);
+}
+#endif
+
+static void kqemu_update_cpuid(CPUState *env)
+{
+ int critical_features_mask, features, ext_features, ext_features_mask;
+ uint32_t eax, ebx, ecx, edx;
+
+ /* the following features are kept identical on the host and
+ target cpus because they are important for user code. Strictly
+ speaking, only SSE really matters because the OS must support
+ it if the user code uses it. */
+ critical_features_mask =
+ CPUID_CMOV | CPUID_CX8 |
+ CPUID_FXSR | CPUID_MMX | CPUID_SSE |
+ CPUID_SSE2 | CPUID_SEP;
+ ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
+ if (!is_cpuid_supported()) {
+ features = 0;
+ ext_features = 0;
+ } else {
+ cpuid(1, eax, ebx, ecx, edx);
+ features = edx;
+ ext_features = ecx;
+ }
+#ifdef __x86_64__
+ /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
+ compatibility mode, so in order to have the best performances
+ it is better not to use it */
+ features &= ~CPUID_SEP;
+#endif
+ env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
+ (features & critical_features_mask);
+ env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
+ (ext_features & ext_features_mask);
+ /* XXX: we could update more of the target CPUID state so that the
+ non accelerated code sees exactly the same CPU features as the
+ accelerated code */
+}
+
+int kqemu_init(CPUState *env)
+{
+ struct kqemu_init kinit;
+ int ret, version;
+#ifdef _WIN32
+ DWORD temp;
+#endif
+
+ if (!kqemu_allowed)
+ return -1;
+
+#ifdef _WIN32
+ kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
+ FILE_SHARE_READ | FILE_SHARE_WRITE,
+ NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
+ NULL);
+ if (kqemu_fd == KQEMU_INVALID_FD) {
+ fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %lu\n",
+ KQEMU_DEVICE, GetLastError());
+ return -1;
+ }
+#else
+ kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
+ if (kqemu_fd == KQEMU_INVALID_FD) {
+ fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
+ KQEMU_DEVICE, strerror(errno));
+ return -1;
+ }
+#endif
+ version = 0;
+#ifdef _WIN32
+ DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
+ &version, sizeof(version), &temp, NULL);
+#else
+ ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
+#endif
+ if (version != KQEMU_VERSION) {
+ fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
+ version, KQEMU_VERSION);
+ goto fail;
+ }
+
+ pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
+ sizeof(uint64_t));
+ if (!pages_to_flush)
+ goto fail;
+
+ ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
+ sizeof(uint64_t));
+ if (!ram_pages_to_update)
+ goto fail;
+
+ modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
+ sizeof(uint64_t));
+ if (!modified_ram_pages)
+ goto fail;
+ modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS);
+ if (!modified_ram_pages_table)
+ goto fail;
+
+ memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */
+ kinit.ram_base = kqemu_phys_ram_base;
+ kinit.ram_size = phys_ram_size;
+ kinit.ram_dirty = phys_ram_dirty;
+ kinit.pages_to_flush = pages_to_flush;
+ kinit.ram_pages_to_update = ram_pages_to_update;
+ kinit.modified_ram_pages = modified_ram_pages;
+#ifdef _WIN32
+ ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &kinit, sizeof(kinit),
+ NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
+#else
+ ret = ioctl(kqemu_fd, KQEMU_INIT, &kinit);
+#endif
+ if (ret < 0) {
+ fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
+ fail:
+ kqemu_closefd(kqemu_fd);
+ kqemu_fd = KQEMU_INVALID_FD;
+ return -1;
+ }
+ kqemu_update_cpuid(env);
+ env->kqemu_enabled = kqemu_allowed;
+ nb_pages_to_flush = 0;
+ nb_ram_pages_to_update = 0;
+
+ qpi_init();
+ return 0;
+}
+
+void kqemu_flush_page(CPUState *env, target_ulong addr)
+{
+#if defined(DEBUG)
+ if (loglevel & CPU_LOG_INT) {
+ fprintf(logfile, "kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
+ }
+#endif
+ if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
+ nb_pages_to_flush = KQEMU_FLUSH_ALL;
+ else
+ pages_to_flush[nb_pages_to_flush++] = addr;
+}
+
+void kqemu_flush(CPUState *env, int global)
+{
+#ifdef DEBUG
+ if (loglevel & CPU_LOG_INT) {
+ fprintf(logfile, "kqemu_flush:\n");
+ }
+#endif
+ nb_pages_to_flush = KQEMU_FLUSH_ALL;
+}
+
+void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
+{
+#ifdef DEBUG
+ if (loglevel & CPU_LOG_INT) {
+ fprintf(logfile, "kqemu_set_notdirty: addr=%08lx\n",
+ (unsigned long)ram_addr);
+ }
+#endif
+ /* we only track transitions to dirty state */
+ if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
+ return;
+ if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
+ nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
+ else
+ ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
+}
+
+static void kqemu_reset_modified_ram_pages(void)
+{
+ int i;
+ unsigned long page_index;
+
+ for(i = 0; i < nb_modified_ram_pages; i++) {
+ page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
+ modified_ram_pages_table[page_index] = 0;
+ }
+ nb_modified_ram_pages = 0;
+}
+
+void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
+{
+ unsigned long page_index;
+ int ret;
+#ifdef _WIN32
+ DWORD temp;
+#endif
+
+ page_index = ram_addr >> TARGET_PAGE_BITS;
+ if (!modified_ram_pages_table[page_index]) {
+#if 0
+ printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
+#endif
+ modified_ram_pages_table[page_index] = 1;
+ modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
+ if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
+ /* flush */
+#ifdef _WIN32
+ ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
+ &nb_modified_ram_pages,
+ sizeof(nb_modified_ram_pages),
+ NULL, 0, &temp, NULL);
+#else
+ ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
+ &nb_modified_ram_pages);
+#endif
+ kqemu_reset_modified_ram_pages();
+ }
+ }
+}
+
+void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size,
+ ram_addr_t phys_offset)
+{
+ struct kqemu_phys_mem kphys_mem1, *kphys_mem = &kphys_mem1;
+ uint64_t end;
+ int ret, io_index;
+
+ end = (start_addr + size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
+ start_addr &= TARGET_PAGE_MASK;
+ kphys_mem->phys_addr = start_addr;
+ kphys_mem->size = end - start_addr;
+ kphys_mem->ram_addr = phys_offset & TARGET_PAGE_MASK;
+ io_index = phys_offset & ~TARGET_PAGE_MASK;
+ switch(io_index) {
+ case IO_MEM_RAM:
+ kphys_mem->io_index = KQEMU_IO_MEM_RAM;
+ break;
+ case IO_MEM_ROM:
+ kphys_mem->io_index = KQEMU_IO_MEM_ROM;
+ break;
+ default:
+ if (qpi_io_memory == io_index) {
+ kphys_mem->io_index = KQEMU_IO_MEM_COMM;
+ } else {
+ kphys_mem->io_index = KQEMU_IO_MEM_UNASSIGNED;
+ }
+ break;
+ }
+#ifdef _WIN32
+ {
+ DWORD temp;
+ ret = DeviceIoControl(kqemu_fd, KQEMU_SET_PHYS_MEM,
+ kphys_mem, sizeof(*kphys_mem),
+ NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
+ }
+#else
+ ret = ioctl(kqemu_fd, KQEMU_SET_PHYS_MEM, kphys_mem);
+#endif
+ if (ret < 0) {
+ fprintf(stderr, "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx\n",
+ ret, start_addr,
+ (unsigned long)size, (unsigned long)phys_offset);
+ }
+}
+
+struct fpstate {
+ uint16_t fpuc;
+ uint16_t dummy1;
+ uint16_t fpus;
+ uint16_t dummy2;
+ uint16_t fptag;
+ uint16_t dummy3;
+
+ uint32_t fpip;
+ uint32_t fpcs;
+ uint32_t fpoo;
+ uint32_t fpos;
+ uint8_t fpregs1[8 * 10];
+};
+
+struct fpxstate {
+ uint16_t fpuc;
+ uint16_t fpus;
+ uint16_t fptag;
+ uint16_t fop;
+ uint32_t fpuip;
+ uint16_t cs_sel;
+ uint16_t dummy0;
+ uint32_t fpudp;
+ uint16_t ds_sel;
+ uint16_t dummy1;
+ uint32_t mxcsr;
+ uint32_t mxcsr_mask;
+ uint8_t fpregs1[8 * 16];
+ uint8_t xmm_regs[16 * 16];
+ uint8_t dummy2[96];
+};
+
+static struct fpxstate fpx1 __attribute__((aligned(16)));
+
+static void restore_native_fp_frstor(CPUState *env)
+{
+ int fptag, i, j;
+ struct fpstate fp1, *fp = &fp1;
+
+ fp->fpuc = env->fpuc;
+ fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
+ fptag = 0;
+ for (i=7; i>=0; i--) {
+ fptag <<= 2;
+ if (env->fptags[i]) {
+ fptag |= 3;
+ } else {
+ /* the FPU automatically computes it */
+ }
+ }
+ fp->fptag = fptag;
+ j = env->fpstt;
+ for(i = 0;i < 8; i++) {
+ memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
+ j = (j + 1) & 7;
+ }
+ asm volatile ("frstor %0" : "=m" (*fp));
+}
+
+static void save_native_fp_fsave(CPUState *env)
+{
+ int fptag, i, j;
+ uint16_t fpuc;
+ struct fpstate fp1, *fp = &fp1;
+
+ asm volatile ("fsave %0" : : "m" (*fp));
+ env->fpuc = fp->fpuc;
+ env->fpstt = (fp->fpus >> 11) & 7;
+ env->fpus = fp->fpus & ~0x3800;
+ fptag = fp->fptag;
+ for(i = 0;i < 8; i++) {
+ env->fptags[i] = ((fptag & 3) == 3);
+ fptag >>= 2;
+ }
+ j = env->fpstt;
+ for(i = 0;i < 8; i++) {
+ memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
+ j = (j + 1) & 7;
+ }
+ /* we must restore the default rounding state */
+ fpuc = 0x037f | (env->fpuc & (3 << 10));
+ asm volatile("fldcw %0" : : "m" (fpuc));
+}
+
+static void restore_native_fp_fxrstor(CPUState *env)
+{
+ struct fpxstate *fp = &fpx1;
+ int i, j, fptag;
+
+ fp->fpuc = env->fpuc;
+ fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
+ fptag = 0;
+ for(i = 0; i < 8; i++)
+ fptag |= (env->fptags[i] << i);
+ fp->fptag = fptag ^ 0xff;
+
+ j = env->fpstt;
+ for(i = 0;i < 8; i++) {
+ memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
+ j = (j + 1) & 7;
+ }
+ if (env->cpuid_features & CPUID_SSE) {
+ fp->mxcsr = env->mxcsr;
+ /* XXX: check if DAZ is not available */
+ fp->mxcsr_mask = 0xffff;
+ memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
+ }
+ asm volatile ("fxrstor %0" : "=m" (*fp));
+}
+
+static void save_native_fp_fxsave(CPUState *env)
+{
+ struct fpxstate *fp = &fpx1;
+ int fptag, i, j;
+ uint16_t fpuc;
+
+ asm volatile ("fxsave %0" : : "m" (*fp));
+ env->fpuc = fp->fpuc;
+ env->fpstt = (fp->fpus >> 11) & 7;
+ env->fpus = fp->fpus & ~0x3800;
+ fptag = fp->fptag ^ 0xff;
+ for(i = 0;i < 8; i++) {
+ env->fptags[i] = (fptag >> i) & 1;
+ }
+ j = env->fpstt;
+ for(i = 0;i < 8; i++) {
+ memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
+ j = (j + 1) & 7;
+ }
+ if (env->cpuid_features & CPUID_SSE) {
+ env->mxcsr = fp->mxcsr;
+ memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
+ }
+
+ /* we must restore the default rounding state */
+ asm volatile ("fninit");
+ fpuc = 0x037f | (env->fpuc & (3 << 10));
+ asm volatile("fldcw %0" : : "m" (fpuc));
+}
+
+static int do_syscall(CPUState *env,
+ struct kqemu_cpu_state *kenv)
+{
+ int selector;
+
+ selector = (env->star >> 32) & 0xffff;
+#ifdef TARGET_X86_64
+ if (env->hflags & HF_LMA_MASK) {
+ int code64;
+
+ env->regs[R_ECX] = kenv->next_eip;
+ env->regs[11] = env->eflags;
+
+ code64 = env->hflags & HF_CS64_MASK;
+
+ cpu_x86_set_cpl(env, 0);
+ cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
+ 0, 0xffffffff,
+ DESC_G_MASK | DESC_P_MASK |
+ DESC_S_MASK |
+ DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
+ cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
+ 0, 0xffffffff,
+ DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
+ DESC_S_MASK |
+ DESC_W_MASK | DESC_A_MASK);
+ env->eflags &= ~env->fmask;
+ if (code64)
+ env->eip = env->lstar;
+ else
+ env->eip = env->cstar;
+ } else
+#endif
+ {
+ env->regs[R_ECX] = (uint32_t)kenv->next_eip;
+
+ cpu_x86_set_cpl(env, 0);
+ cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
+ 0, 0xffffffff,
+ DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
+ DESC_S_MASK |
+ DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
+ cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
+ 0, 0xffffffff,
+ DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
+ DESC_S_MASK |
+ DESC_W_MASK | DESC_A_MASK);
+ env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
+ env->eip = (uint32_t)env->star;
+ }
+ return 2;
+}
+
+#ifdef CONFIG_PROFILER
+
+#define PC_REC_SIZE 1
+#define PC_REC_HASH_BITS 16
+#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)
+
+typedef struct PCRecord {
+ unsigned long pc;
+ int64_t count;
+ struct PCRecord *next;
+} PCRecord;
+
+static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
+static int nb_pc_records;
+
+static void kqemu_record_pc(unsigned long pc)
+{
+ unsigned long h;
+ PCRecord **pr, *r;
+
+ h = pc / PC_REC_SIZE;
+ h = h ^ (h >> PC_REC_HASH_BITS);
+ h &= (PC_REC_HASH_SIZE - 1);
+ pr = &pc_rec_hash[h];
+ for(;;) {
+ r = *pr;
+ if (r == NULL)
+ break;
+ if (r->pc == pc) {
+ r->count++;
+ return;
+ }
+ pr = &r->next;
+ }
+ r = malloc(sizeof(PCRecord));
+ r->count = 1;
+ r->pc = pc;
+ r->next = NULL;
+ *pr = r;
+ nb_pc_records++;
+}
+
+static int pc_rec_cmp(const void *p1, const void *p2)
+{
+ PCRecord *r1 = *(PCRecord **)p1;
+ PCRecord *r2 = *(PCRecord **)p2;
+ if (r1->count < r2->count)
+ return 1;
+ else if (r1->count == r2->count)
+ return 0;
+ else
+ return -1;
+}
+
+static void kqemu_record_flush(void)
+{
+ PCRecord *r, *r_next;
+ int h;
+
+ for(h = 0; h < PC_REC_HASH_SIZE; h++) {
+ for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
+ r_next = r->next;
+ free(r);
+ }
+ pc_rec_hash[h] = NULL;
+ }
+ nb_pc_records = 0;
+}
+
+void kqemu_record_dump(void)
+{
+ PCRecord **pr, *r;
+ int i, h;
+ FILE *f;
+ int64_t total, sum;
+
+ pr = malloc(sizeof(PCRecord *) * nb_pc_records);
+ i = 0;
+ total = 0;
+ for(h = 0; h < PC_REC_HASH_SIZE; h++) {
+ for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
+ pr[i++] = r;
+ total += r->count;
+ }
+ }
+ qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
+
+ f = fopen("/tmp/kqemu.stats", "w");
+ if (!f) {
+ perror("/tmp/kqemu.stats");
+ exit(1);
+ }
+ fprintf(f, "total: %" PRId64 "\n", total);
+ sum = 0;
+ for(i = 0; i < nb_pc_records; i++) {
+ r = pr[i];
+ sum += r->count;
+ fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
+ r->pc,
+ r->count,
+ (double)r->count / (double)total * 100.0,
+ (double)sum / (double)total * 100.0);
+ }
+ fclose(f);
+ free(pr);
+
+ kqemu_record_flush();
+}
+#endif
+
+static inline void kqemu_load_seg(struct kqemu_segment_cache *ksc,
+ const SegmentCache *sc)
+{
+ ksc->selector = sc->selector;
+ ksc->flags = sc->flags;
+ ksc->limit = sc->limit;
+ ksc->base = sc->base;
+}
+
+static inline void kqemu_save_seg(SegmentCache *sc,
+ const struct kqemu_segment_cache *ksc)
+{
+ sc->selector = ksc->selector;
+ sc->flags = ksc->flags;
+ sc->limit = ksc->limit;
+ sc->base = ksc->base;
+}
+
+int kqemu_cpu_exec(CPUState *env)
+{
+ struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
+ int ret, cpl, i;
+#ifdef CONFIG_PROFILER
+ int64_t ti;
+#endif
+#ifdef _WIN32
+ DWORD temp;
+#endif
+
+#ifdef CONFIG_PROFILER
+ ti = profile_getclock();
+#endif
+#ifdef DEBUG
+ if (loglevel & CPU_LOG_INT) {
+ fprintf(logfile, "kqemu: cpu_exec: enter\n");
+ cpu_dump_state(env, logfile, fprintf, 0);
+ }
+#endif
+ for(i = 0; i < CPU_NB_REGS; i++)
+ kenv->regs[i] = env->regs[i];
+ kenv->eip = env->eip;
+ kenv->eflags = env->eflags;
+ for(i = 0; i < 6; i++)
+ kqemu_load_seg(&kenv->segs[i], &env->segs[i]);
+ kqemu_load_seg(&kenv->ldt, &env->ldt);
+ kqemu_load_seg(&kenv->tr, &env->tr);
+ kqemu_load_seg(&kenv->gdt, &env->gdt);
+ kqemu_load_seg(&kenv->idt, &env->idt);
+ kenv->cr0 = env->cr[0];
+ kenv->cr2 = env->cr[2];
+ kenv->cr3 = env->cr[3];
+ kenv->cr4 = env->cr[4];
+ kenv->a20_mask = env->a20_mask;
+ kenv->efer = env->efer;
+ kenv->tsc_offset = 0;
+ kenv->star = env->star;
+ kenv->sysenter_cs = env->sysenter_cs;
+ kenv->sysenter_esp = env->sysenter_esp;
+ kenv->sysenter_eip = env->sysenter_eip;
+#ifdef TARGET_X86_64
+ kenv->lstar = env->lstar;
+ kenv->cstar = env->cstar;
+ kenv->fmask = env->fmask;
+ kenv->kernelgsbase = env->kernelgsbase;
+#endif
+ if (env->dr[7] & 0xff) {
+ kenv->dr7 = env->dr[7];
+ kenv->dr0 = env->dr[0];
+ kenv->dr1 = env->dr[1];
+ kenv->dr2 = env->dr[2];
+ kenv->dr3 = env->dr[3];
+ } else {
+ kenv->dr7 = 0;
+ }
+ kenv->dr6 = env->dr[6];
+ cpl = (env->hflags & HF_CPL_MASK);
+ kenv->cpl = cpl;
+ kenv->nb_pages_to_flush = nb_pages_to_flush;
+ kenv->user_only = (env->kqemu_enabled == 1);
+ kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
+ nb_ram_pages_to_update = 0;
+ kenv->nb_modified_ram_pages = nb_modified_ram_pages;
+
+ kqemu_reset_modified_ram_pages();
+
+ if (env->cpuid_features & CPUID_FXSR)
+ restore_native_fp_fxrstor(env);
+ else
+ restore_native_fp_frstor(env);
+
+#ifdef _WIN32
+ if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
+ kenv, sizeof(struct kqemu_cpu_state),
+ kenv, sizeof(struct kqemu_cpu_state),
+ &temp, NULL)) {
+ ret = kenv->retval;
+ } else {
+ ret = -1;
+ }
+#else
+ ioctl(kqemu_fd, KQEMU_EXEC, kenv);
+ ret = kenv->retval;
+#endif
+ if (env->cpuid_features & CPUID_FXSR)
+ save_native_fp_fxsave(env);
+ else
+ save_native_fp_fsave(env);
+
+ for(i = 0; i < CPU_NB_REGS; i++)
+ env->regs[i] = kenv->regs[i];
+ env->eip = kenv->eip;
+ env->eflags = kenv->eflags;
+ for(i = 0; i < 6; i++)
+ kqemu_save_seg(&env->segs[i], &kenv->segs[i]);
+ cpu_x86_set_cpl(env, kenv->cpl);
+ kqemu_save_seg(&env->ldt, &kenv->ldt);
+ env->cr[0] = kenv->cr0;
+ env->cr[4] = kenv->cr4;
+ env->cr[3] = kenv->cr3;
+ env->cr[2] = kenv->cr2;
+ env->dr[6] = kenv->dr6;
+#ifdef TARGET_X86_64
+ env->kernelgsbase = kenv->kernelgsbase;
+#endif
+
+ /* flush pages as indicated by kqemu */
+ if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
+ tlb_flush(env, 1);
+ } else {
+ for(i = 0; i < kenv->nb_pages_to_flush; i++) {
+ tlb_flush_page(env, pages_to_flush[i]);
+ }
+ }
+ nb_pages_to_flush = 0;
+
+#ifdef CONFIG_PROFILER
+ kqemu_time += profile_getclock() - ti;
+ kqemu_exec_count++;
+#endif
+
+ if (kenv->nb_ram_pages_to_update > 0) {
+ cpu_tlb_update_dirty(env);
+ }
+
+ if (kenv->nb_modified_ram_pages > 0) {
+ for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
+ unsigned long addr;
+ addr = modified_ram_pages[i];
+ tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
+ }
+ }
+
+ /* restore the hidden flags */
+ {
+ unsigned int new_hflags;
+#ifdef TARGET_X86_64
+ if ((env->hflags & HF_LMA_MASK) &&
+ (env->segs[R_CS].flags & DESC_L_MASK)) {
+ /* long mode */
+ new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
+ } else
+#endif
+ {
+ /* legacy / compatibility case */
+ new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
+ >> (DESC_B_SHIFT - HF_CS32_SHIFT);
+ new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
+ >> (DESC_B_SHIFT - HF_SS32_SHIFT);
+ if (!(env->cr[0] & CR0_PE_MASK) ||
+ (env->eflags & VM_MASK) ||
+ !(env->hflags & HF_CS32_MASK)) {
+ /* XXX: try to avoid this test. The problem comes from the
+ fact that is real mode or vm86 mode we only modify the
+ 'base' and 'selector' fields of the segment cache to go
+ faster. A solution may be to force addseg to one in
+ translate-i386.c. */
+ new_hflags |= HF_ADDSEG_MASK;
+ } else {
+ new_hflags |= ((env->segs[R_DS].base |
+ env->segs[R_ES].base |
+ env->segs[R_SS].base) != 0) <<
+ HF_ADDSEG_SHIFT;
+ }
+ }
+ env->hflags = (env->hflags &
+ ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
+ new_hflags;
+ }
+ /* update FPU flags */
+ env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
+ ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
+ if (env->cr[4] & CR4_OSFXSR_MASK)
+ env->hflags |= HF_OSFXSR_MASK;
+ else
+ env->hflags &= ~HF_OSFXSR_MASK;
+
+#ifdef DEBUG
+ if (loglevel & CPU_LOG_INT) {
+ fprintf(logfile, "kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
+ }
+#endif
+ if (ret == KQEMU_RET_SYSCALL) {
+ /* syscall instruction */
+ return do_syscall(env, kenv);
+ } else
+ if ((ret & 0xff00) == KQEMU_RET_INT) {
+ env->exception_index = ret & 0xff;
+ env->error_code = 0;
+ env->exception_is_int = 1;
+ env->exception_next_eip = kenv->next_eip;
+#ifdef CONFIG_PROFILER
+ kqemu_ret_int_count++;
+#endif
+#ifdef DEBUG
+ if (loglevel & CPU_LOG_INT) {
+ fprintf(logfile, "kqemu: interrupt v=%02x:\n",
+ env->exception_index);
+ cpu_dump_state(env, logfile, fprintf, 0);
+ }
+#endif
+ return 1;
+ } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
+ env->exception_index = ret & 0xff;
+ env->error_code = kenv->error_code;
+ env->exception_is_int = 0;
+ env->exception_next_eip = 0;
+#ifdef CONFIG_PROFILER
+ kqemu_ret_excp_count++;
+#endif
+#ifdef DEBUG
+ if (loglevel & CPU_LOG_INT) {
+ fprintf(logfile, "kqemu: exception v=%02x e=%04x:\n",
+ env->exception_index, env->error_code);
+ cpu_dump_state(env, logfile, fprintf, 0);
+ }
+#endif
+ return 1;
+ } else if (ret == KQEMU_RET_INTR) {
+#ifdef CONFIG_PROFILER
+ kqemu_ret_intr_count++;
+#endif
+#ifdef DEBUG
+ if (loglevel & CPU_LOG_INT) {
+ cpu_dump_state(env, logfile, fprintf, 0);
+ }
+#endif
+ return 0;
+ } else if (ret == KQEMU_RET_SOFTMMU) {
+#ifdef CONFIG_PROFILER
+ {
+ unsigned long pc = env->eip + env->segs[R_CS].base;
+ kqemu_record_pc(pc);
+ }
+#endif
+#ifdef DEBUG
+ if (loglevel & CPU_LOG_INT) {
+ cpu_dump_state(env, logfile, fprintf, 0);
+ }
+#endif
+ return 2;
+ } else {
+ cpu_dump_state(env, stderr, fprintf, 0);
+ fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
+ exit(1);
+ }
+ return 0;
+}
+
+void kqemu_cpu_interrupt(CPUState *env)
+{
+#if defined(_WIN32)
+ /* cancelling the I/O request causes KQEMU to finish executing the
+ current block and successfully returning. */
+ CancelIo(kqemu_fd);
+#endif
+}
+
+/*
+ QEMU paravirtualization interface. The current interface only
+ allows to modify the IF and IOPL flags when running in
+ kqemu.
+
+ At this point it is not very satisfactory. I leave it for reference
+ as it adds little complexity.
+*/
+
+#define QPI_COMM_PAGE_PHYS_ADDR 0xff000000
+
+static uint32_t qpi_mem_readb(void *opaque, target_phys_addr_t addr)
+{
+ return 0;
+}
+
+static uint32_t qpi_mem_readw(void *opaque, target_phys_addr_t addr)
+{
+ return 0;
+}
+
+static void qpi_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+}
+
+static void qpi_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+}
+
+static uint32_t qpi_mem_readl(void *opaque, target_phys_addr_t addr)
+{
+ CPUState *env;
+
+ env = cpu_single_env;
+ if (!env)
+ return 0;
+ return env->eflags & (IF_MASK | IOPL_MASK);
+}
+
+/* Note: after writing to this address, the guest code must make sure
+ it is exiting the current TB. pushf/popf can be used for that
+ purpose. */
+static void qpi_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+ CPUState *env;
+
+ env = cpu_single_env;
+ if (!env)
+ return;
+ env->eflags = (env->eflags & ~(IF_MASK | IOPL_MASK)) |
+ (val & (IF_MASK | IOPL_MASK));
+}
+
+static CPUReadMemoryFunc *qpi_mem_read[3] = {
+ qpi_mem_readb,
+ qpi_mem_readw,
+ qpi_mem_readl,
+};
+
+static CPUWriteMemoryFunc *qpi_mem_write[3] = {
+ qpi_mem_writeb,
+ qpi_mem_writew,
+ qpi_mem_writel,
+};
+
+static void qpi_init(void)
+{
+ kqemu_comm_base = 0xff000000 | 1;
+ qpi_io_memory = cpu_register_io_memory(0,
+ qpi_mem_read,
+ qpi_mem_write, NULL);
+ cpu_register_physical_memory(kqemu_comm_base & ~0xfff,
+ 0x1000, qpi_io_memory);
+}
+#endif