omap3530/omap3530_drivers/spi/master.cpp
branchBeagle_BSP_dev
changeset 77 e5fd00cbb70a
child 82 65b40f262685
equal deleted inserted replaced
76:29b14275133a 77:e5fd00cbb70a
       
     1 // Copyright (c) 2010 Nokia Corporation and/or its subsidiary(-ies).
       
     2 // All rights reserved.
       
     3 // This component and the accompanying materials are made available
       
     4 // under the terms of the License "Eclipse Public License v1.0"
       
     5 // which accompanies this distribution, and is available
       
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     7 //
       
     8 // Initial Contributors:
       
     9 // Nokia Corporation - initial contribution.
       
    10 //
       
    11 // Contributors:
       
    12 // lukasz.forynski@gmail.com
       
    13 //
       
    14 // Description:
       
    15 // Implementation of IIC master channel for a SPI bus.
       
    16 //
       
    17 
       
    18 #define DBGPRINT(x)
       
    19 #define DBG_ERR(x) x
       
    20 
       
    21 
       
    22 #ifdef _DEBUG
       
    23 #define DEBUG_ONLY(x) //x
       
    24 #else
       
    25 #define DEBUG_ONLY(x)
       
    26 #endif
       
    27 
       
    28 
       
    29 // DO NOT CHANGE THESE- trying to tune the driver (unless you really know what you're doing)
       
    30 // as this this is only for development purpose to tune the driver. Fifo mode is not yet enabled, but this
       
    31 // doesn't affect operation. After development has been finished - these macros and #ifdefs will be removed
       
    32 // entirely. For now only SINGLE_MODE should ever be defined.
       
    33 //#define USE_TX_FIFO
       
    34 //#define USING_TX_COUNTER
       
    35 //#define PER_TRANSFER_MODE
       
    36 #define SINGLE_MODE
       
    37 
       
    38 #include <assp/omap3530_assp/omap3530_assp_priv.h>
       
    39 #include <assp/omap3530_assp/omap3530_prcm.h>
       
    40 #include <drivers/iic.h>
       
    41 #include "omap3530_spi.h"
       
    42 #include "psl_init.h"
       
    43 #include "master.h"
       
    44 
       
    45 DSpiMasterBeagle::DSpiMasterBeagle(TInt aChannelNumber, TBusType aBusType, TChannelDuplex aChanDuplex) :
       
    46 	DIicBusChannelMaster(aBusType, aChanDuplex),
       
    47 	iTransferEndDfc(TransferEndDfc, this, KIicPslDfcPriority)
       
    48 	{
       
    49 	iChannelNumber = aChannelNumber;
       
    50 	iIrqId = KMcSpiIrqId[iChannelNumber];
       
    51 	iHwBase = KMcSpiRegBase[iChannelNumber];
       
    52 	iState = EIdle;
       
    53 	DBGPRINT(Kern::Printf("DSpiMasterBeagle::DSpiMasterBeagle: at 0x%x, iChannelNumber = %d", this, iChannelNumber));
       
    54 	}
       
    55 
       
    56 TInt DSpiMasterBeagle::DoCreate()
       
    57 	{
       
    58 	DBGPRINT(Kern::Printf("\nDSpiMasterBeagle::DoCreate() ch: %d \n", iChannelNumber));
       
    59 	DBGPRINT(Kern::Printf("HW revision is %x", AsspRegister::Read32(iHwBase + MCSPI_REVISION)));
       
    60 
       
    61 	TInt r = KErrNone;
       
    62 
       
    63 	// Create the DFCQ to be used by the channel
       
    64 	if(!iDfcQ)
       
    65 		{
       
    66 		TBuf8<KMaxName> threadName (KIicPslThreadName);
       
    67 		threadName.AppendNum(iChannelNumber);
       
    68 		r = Kern::DfcQCreate(iDfcQ, KIicPslThreadPriority, &threadName);
       
    69 		if(r != KErrNone)
       
    70 			{
       
    71 			DBG_ERR(Kern::Printf("DFC Queue creation failed, channel number: %d, r = %d\n", iChannelNumber, r));
       
    72 			return r;
       
    73 			}
       
    74 		}
       
    75 
       
    76 	// PIL Base class initialization - this must be called prior to SetDfcQ(iDfcQ)
       
    77 	r = Init();
       
    78 	if(r == KErrNone)
       
    79 		{
       
    80 		// Call base class function to set DFCQ pointers in the required objects
       
    81 		// This also enables the channel to process transaction requests
       
    82 		SetDfcQ(iDfcQ);
       
    83 
       
    84 		// PSL DFCQ initialisation for local DFC
       
    85 		iTransferEndDfc.SetDfcQ(iDfcQ);
       
    86 
       
    87 		// Bind interrupts.
       
    88 		r = Interrupt::Bind(iIrqId, Isr, this);
       
    89 		if(r < KErrNone)
       
    90 			{
       
    91 			DBG_ERR(Kern::Printf("ERROR: InterruptBind error.. %d", r));
       
    92 			return r;
       
    93 			}
       
    94 		}
       
    95 
       
    96 	// Make sure clocks are enabled (TBD: this could go to 'PowerUp/PowerDown' if using PRM)
       
    97 	Prcm::SetClockState( Prcm::EClkMcSpi3_F, Prcm::EClkOn );
       
    98 	Prcm::SetClockState( Prcm::EClkMcSpi3_I, Prcm::EClkOn );
       
    99 	// TODO:consider auto-idle for PRCM.CM_AUTOIDLE1_CORE
       
   100 
       
   101 	SetupSpiPins(iChannelNumber);
       
   102 	// end of system wide settings..
       
   103 
       
   104 	return r;
       
   105 	}
       
   106 
       
   107 // A static method used to construct the DSpiMasterBeagle object.
       
   108 DSpiMasterBeagle* DSpiMasterBeagle::New(TInt aChannelNumber, const TBusType aBusType, const TChannelDuplex aChanDuplex)
       
   109 	{
       
   110 	DBGPRINT(Kern::Printf("DSpiMasterBeagle::NewL(): ChannelNumber = %d, BusType =%d", aChannelNumber, aBusType));
       
   111 	DSpiMasterBeagle *pChan = new DSpiMasterBeagle(aChannelNumber, aBusType, aChanDuplex);
       
   112 
       
   113 	TInt r = KErrNoMemory;
       
   114 	if(pChan)
       
   115 		{
       
   116 		r = pChan->DoCreate();
       
   117 		}
       
   118 	if(r != KErrNone)
       
   119 		{
       
   120 		delete pChan;
       
   121 		pChan = NULL;
       
   122 		}
       
   123 	return pChan;
       
   124 	}
       
   125 
       
   126 // This method is called by the PIL to initiate the transaction. After finishing it's processing,
       
   127 // the PSL calls the PIL function CompleteRequest to indicate the success (or otherwise) of the request
       
   128 TInt DSpiMasterBeagle::DoRequest(TIicBusTransaction* aTransaction)
       
   129 	{
       
   130 	DBGPRINT(Kern::Printf("\n=>DSpiMasterBeagle::DoRequest (aTransaction=0x%x)\n", aTransaction));
       
   131 
       
   132 	// If the pointer to the transaction passed in as a parameter, or its associated pointer to the
       
   133 	// header information is NULL, return KErrArgument
       
   134 	if(!aTransaction || !GetTransactionHeader(aTransaction))
       
   135 		{
       
   136 		return KErrArgument;
       
   137 		}
       
   138 
       
   139 	// The PSL operates a simple state machine to ensure that only one transaction is processed
       
   140 	// at a time - if the channel is currently busy, reject the request (PIL should not try that!)
       
   141 	if(iState != EIdle)
       
   142 		{
       
   143 		return KErrInUse;
       
   144 		}
       
   145 
       
   146 	// copy pointer to the transaction
       
   147 	iCurrTransaction = aTransaction;
       
   148 
       
   149 	// Configure the hardware to support the transaction
       
   150 	TInt r = KErrNone;
       
   151 	if(TransConfigDiffersFromPrev())
       
   152 		{
       
   153 		r = ConfigureInterface();
       
   154 		if(r != KErrNone)
       
   155 			{
       
   156 			return r;
       
   157 			}
       
   158 		}
       
   159 
       
   160 	// start processing transfers of this transaction.
       
   161 	r = ProcessNextTransfers();
       
   162 	return r;
       
   163 	}
       
   164 
       
   165 TBool DSpiMasterBeagle::TransConfigDiffersFromPrev()
       
   166 	{
       
   167 	TConfigSpiV01 &newHeader = (*(TConfigSpiBufV01*) (GetTransactionHeader(iCurrTransaction)))();
       
   168 
       
   169 	// get the slave address (i.e. known as a 'channel' for the current SPI module)
       
   170 	TInt slaveAddr = GET_SLAVE_ADDR(iCurrTransaction->GetBusId());
       
   171 	DBGPRINT(Kern::Printf("slaveAddr %x", slaveAddr));
       
   172 
       
   173 	// compare it to the previous configuration..
       
   174 	if(slaveAddr                        != iCurrSS ||
       
   175 	   newHeader.iWordWidth             != iCurrHeader.iWordWidth ||
       
   176 	   newHeader.iClkSpeedHz            != iCurrHeader.iClkSpeedHz ||
       
   177 	   newHeader.iClkMode               != iCurrHeader.iClkMode ||
       
   178 	   newHeader.iTimeoutPeriod         != iCurrHeader.iTimeoutPeriod ||
       
   179 	   newHeader.iBitOrder              != iCurrHeader.iBitOrder ||
       
   180 	   newHeader.iTransactionWaitCycles != iCurrHeader.iTransactionWaitCycles ||
       
   181 	   newHeader.iSSPinActiveMode       != iCurrHeader.iSSPinActiveMode)
       
   182 		{
       
   183 		iCurrSS = slaveAddr;
       
   184 		iCurrHeader = newHeader; //copy the header..
       
   185 		return ETrue;
       
   186 		}
       
   187 	return ETrue;
       
   188 	}
       
   189 
       
   190 // Init the hardware with the data provided in the transaction and slave-address field
       
   191 // (these values are already stored in the iCurrHeader)
       
   192 TInt DSpiMasterBeagle::ConfigureInterface()
       
   193 	{
       
   194 	DBGPRINT(Kern::Printf("ConfigureInterface()"));
       
   195 
       
   196 	// soft reset the SPI..(Channel 3 for now)
       
   197 	TUint val = AsspRegister::Read32(iHwBase + MCSPI_SYSCONFIG);
       
   198 	val = MCSPI_SYSCONFIG_SOFTRESET;  // issue reset
       
   199 
       
   200 	AsspRegister::Write32(iHwBase + MCSPI_SYSCONFIG, MCSPI_SYSCONFIG_SOFTRESET);
       
   201 
       
   202 	val = 0; // TODO will add here this 'smart-wait' stuff that was proposed earlier..
       
   203 	while (!(val & MCSPI_SYSSTATUS_RESETDONE))
       
   204 		val = AsspRegister::Read32(iHwBase + MCSPI_SYSSTATUS);
       
   205 
       
   206 	//AsspRegister::Write32(iHwBase + MCSPI_SYSCONFIG, MCSPI_SYSCONFIG_CLOCKACTIVITY_ALL_ON);
       
   207 
       
   208 	AsspRegister::Write32(iHwBase + MCSPI_IRQSTATUS, ~0); // clear all interrupts (for now) -- normally only for channel..
       
   209 
       
   210 	// channel configuration
       
   211 	//	Set the SPI1.MCSPI_CHxCONF[18] IS bit to 0 for the spi1_somi pin in receive mode.
       
   212 	//	val = MCSPI_CHxCONF_IS; // pin selection (somi - simo)
       
   213 	// TODO configuration of PINS could also be configurable on a 'per SPI module' basis..
       
   214 
       
   215 	// Set the SPI1.MCSPI_CHxCONF[17] DPE1 bit to 0 and the SPI1.MCSPI_CHxCONF[16] DPE0 bit to 1 for the spi1.simo pin in transmit mode.
       
   216 	val = MCSPI_CHxCONF_DPE0;
       
   217 
       
   218 	// Set transmit & | receive mode for transmit only mode here. If needed - it will be changed dynamically.
       
   219 	val |= MCSPI_CHxCONF_TRM_NO_RECEIVE;
       
   220 
       
   221 	// set word length.
       
   222 	val |= SpiWordWidth(iCurrHeader.iWordWidth);
       
   223 
       
   224 	// use the appropriate word with (assuming the data is aligned to bytes).
       
   225 	if(iCurrHeader.iWordWidth > ESpiWordWidth_16)
       
   226 		{
       
   227 		iWordSize = 4;
       
   228 		}
       
   229 	else if (iCurrHeader.iWordWidth > ESpiWordWidth_8)
       
   230 		{
       
   231 		iWordSize = 2;
       
   232 		}
       
   233 	else
       
   234 		{
       
   235 		iWordSize = 1;
       
   236 		}
       
   237 
       
   238 	// set Slave Select / Chip select signal mode
       
   239 	val |= iCurrHeader.iSSPinActiveMode == ESpiCSPinActiveLow ? MCSPI_CHxCONF_EPOL_LOW : 0;
       
   240 
       
   241 	// set the CLK POL and PHA (clock mode)
       
   242 	val |= SpiClkMode(iCurrHeader.iClkMode);
       
   243 
       
   244 	// Set clock. Note that CheckHdr() will be called prior to this function for this header,
       
   245 	// so the value iClkSpeedHz is valid at this point, the KErrNotSupported is not possible
       
   246 	// so the return value check can be ommited here
       
   247 	val |= SpiClkValue(iCurrHeader.iClkSpeedHz);
       
   248 	// __ASSERT_DEBUG(val >= KErrNone, Kern::Fault("spi/master.cpp, line: ", __LINE__));
       
   249 
       
   250 #ifdef USE_TX_FIFO
       
   251 	// enable fifo for transmission..
       
   252 	// Update me: this can only set in a 'single' mode.. or for only one channel
       
   253 	// but at the momment IIC SPI is used in 'single' mode onlny..
       
   254 	val |= MCSPI_CHxCONF_FFEW;
       
   255 //	val |= MCSPI_CHxCONF_FFER; // fifo enable for receive.. (TODO)
       
   256 #endif
       
   257 
       
   258 	// update the register..
       
   259 	AsspRegister::Write32(iHwBase + MCSPI_CHxCONF(iCurrSS), val);
       
   260 
       
   261 	// CS (SS) pin direction..
       
   262 	val = MCSPI_SYST_SPIDATDIR0;
       
   263 
       
   264 	// drive csx pin hight or low
       
   265 	val |= (iCurrHeader.iSSPinActiveMode == ESpiCSPinActiveLow)? 1 << iCurrSS : 0;
       
   266 	AsspRegister::Write32(iHwBase + MCSPI_SYST, val);
       
   267 
       
   268 	// Set the MS bit to 0 to provide the clock (ie. to setup as master)
       
   269 #ifndef SINGLE_MODE
       
   270 	AsspRegister::Write32(iHwBase + MCSPI_MODULCTRL, MCSPI_MODULCTRL_MS_MASTER);
       
   271 #else
       
   272 	AsspRegister::Write32(iHwBase + MCSPI_MODULCTRL, MCSPI_MODULCTRL_MS_MASTER | MCSPI_MODULCTRL_SINGLE);
       
   273 #endif
       
   274 
       
   275 	return KErrNone;
       
   276 	}
       
   277 
       
   278 TInt DSpiMasterBeagle::ProcessNextTransfers()
       
   279 	{
       
   280 	DBGPRINT(Kern::Printf("DSpiMasterBeagle::ProcessNextTransfers():%s", iState==EIdle ? "first" : "next"));
       
   281 
       
   282 	// Since new transfers are strating, clear exisiting flags
       
   283 	iOperation.iValue = TIicOperationType::ENop;
       
   284 
       
   285 	// If this is the first transfer in the transaction the channel will be in state EIdle
       
   286 	if(iState == EIdle)
       
   287 		{
       
   288 		// Get the pointer to half-duplex transfer object..
       
   289 		iHalfDTransfer = GetTransHalfDuplexTferPtr(iCurrTransaction);
       
   290 
       
   291 		// Get the pointer to full-duplex transfer object..
       
   292 		iFullDTransfer = GetTransFullDuplexTferPtr(iCurrTransaction);
       
   293 
       
   294 		// Update the channel state to EBusy and initialise the transaction status
       
   295 		iState = EBusy;
       
   296 		iTransactionStatus = KErrNone;
       
   297 
       
   298 		// start timeout timer for this transaction
       
   299 		StartSlaveTimeOutTimer(iCurrHeader.iTimeoutPeriod);
       
   300 		}
       
   301 	else
       
   302 	// If not in state EIdle, get the next transfer in the linked-list held by the transaction
       
   303 		{
       
   304 		// Get the pointer the next half-duplex transfer object..
       
   305 		iHalfDTransfer = GetTferNextTfer(iHalfDTransfer);
       
   306 
       
   307 		// Get the pointer to the next half-duplex transfer object..
       
   308 		if(iFullDTransfer)
       
   309 			{
       
   310 			iFullDTransfer = GetTferNextTfer(iFullDTransfer);
       
   311 			}
       
   312 		}
       
   313 
       
   314 	TInt r = KErrNone;
       
   315 	if(!iFullDTransfer && !iHalfDTransfer)
       
   316 		{
       
   317 		// There is no more to transfer - and all previous were were completed,
       
   318 		DBGPRINT(Kern::Printf("All transfers completed successfully"));
       
   319 		ExitComplete(KErrNone);
       
   320 		}
       
   321 	else
       
   322 		{
       
   323 		// Process next transfers
       
   324 		TInt8 hDTrType = (TInt8) GetTferType(iHalfDTransfer);
       
   325 
       
   326 		if(iFullDTransfer)
       
   327 			{
       
   328 			// For full-duplex transfer setup the read transfer first, as it doesn't
       
   329 			// really start anything - SPI master starts operation when Tx (or clocks)starts..
       
   330 
       
   331 			if(hDTrType == TIicBusTransfer::EMasterRead)
       
   332 				{
       
   333 				r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterRead);
       
   334 				if(r != KErrNone)
       
   335 					{
       
   336 					return r;
       
   337 					}
       
   338 				r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterWrite);
       
   339 				}
       
   340 			else // hDTrType == TIicBusTransfer::EMasterWrite)
       
   341 				{
       
   342 				r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterRead);
       
   343 				if(r != KErrNone)
       
   344 					{
       
   345 					return r;
       
   346 					}
       
   347 				r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterWrite);
       
   348 				}
       
   349 			}
       
   350 		else
       
   351 		// This is a HalfDuplex transfer - so just start it
       
   352 			{
       
   353 			r = StartTransfer(iHalfDTransfer, hDTrType);
       
   354 			}
       
   355 		}
       
   356 	return r;
       
   357 	}
       
   358 
       
   359 TInt DSpiMasterBeagle::StartTransfer(TIicBusTransfer* aTransferPtr, TUint8 aType)
       
   360 	{
       
   361 	DBGPRINT(Kern::Printf("DSpiMasterBeagle::StartTransfer() @0x%x, aType: %s",
       
   362 			               aTransferPtr, aType == TIicBusTransfer::EMasterWrite ? "write" : "read"));
       
   363 
       
   364 	if(aTransferPtr == NULL)
       
   365 		{
       
   366 		DBG_ERR(Kern::Printf("DSpiMasterBeagle::StartTransfer - NULL pointer\n"));
       
   367 		return KErrArgument;
       
   368 		}
       
   369 
       
   370 	TInt r = KErrNone;
       
   371 
       
   372 	switch(aType)
       
   373 		{
       
   374 		case TIicBusTransfer::EMasterWrite:
       
   375 			{
       
   376 			DBGPRINT(Kern::Printf("Starting EMasterWrite, duplex=%x", iFullDTransfer));
       
   377 
       
   378 			// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
       
   379 			const TDes8* desBufPtr = GetTferBuffer(aTransferPtr);
       
   380 
       
   381 			DBGPRINT(Kern::Printf("Length %d, iWordSize %d", desBufPtr->Length(), iWordSize));
       
   382 
       
   383 			// Store the current address and ending address for Transmission - they are required by the ISR and DFC
       
   384 			iTxData    = (TInt8*)  desBufPtr->Ptr();
       
   385 			iTxDataEnd = (TInt8*) (iTxData + desBufPtr->Length());
       
   386 			if ((TInt)iTxDataEnd % iWordSize)
       
   387 				{
       
   388 				DBG_ERR(Kern::Printf("Wrong configuration - word size does not match buffer length"));
       
   389 				return KErrArgument;
       
   390 				}
       
   391 
       
   392 			DBGPRINT(Kern::Printf("Tx: Start: %x, End %x, bytes %d", iTxData, iTxDataEnd, desBufPtr->Length()));
       
   393 
       
   394 			// Set the flag to indicate that we'll be transmitting data
       
   395 			iOperation.iOp.iIsTransmitting = ETrue;
       
   396 
       
   397 			// initiate the transmission..
       
   398 			r = DoTransfer(aType);
       
   399 			if(r != KErrNone)
       
   400 				{
       
   401 				DBG_ERR(Kern::Printf("Starting Write failed, r = %d", r));
       
   402 				}
       
   403 			break;
       
   404 			}
       
   405 
       
   406 		case TIicBusTransfer::EMasterRead:
       
   407 			{
       
   408 			DBGPRINT(Kern::Printf("Starting EMasterRead, duplex=%x", iFullDTransfer));
       
   409 
       
   410 			// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
       
   411 			const TDes8* aBufPtr = GetTferBuffer(aTransferPtr);
       
   412 
       
   413 			// Store the current address and ending address for Reception - they are required by the ISR and DFC
       
   414 			iRxData = (TInt8*) aBufPtr->Ptr();
       
   415 			iRxDataEnd = (TInt8*) (iRxData + aBufPtr->Length());
       
   416 
       
   417 			DBGPRINT(Kern::Printf("Rx: Start: %x, End %x, bytes %d", iRxData, iRxDataEnd, aBufPtr->Length()));
       
   418 
       
   419 			// Set the flag to indicate that we'll be receiving data
       
   420 			iOperation.iOp.iIsReceiving = ETrue;
       
   421 
       
   422 			// initiate the reception
       
   423 			r = DoTransfer(aType);
       
   424 			if(r != KErrNone)
       
   425 				{
       
   426 				DBG_ERR(Kern::Printf("Starting Read failed, r = %d", r));
       
   427 				}
       
   428 			break;
       
   429 			}
       
   430 
       
   431 		default:
       
   432 			{
       
   433 			DBG_ERR(Kern::Printf("Unsupported TransactionType %x", aType));
       
   434 			r = KErrArgument;
       
   435 			break;
       
   436 			}
       
   437 		}
       
   438 
       
   439 	return r;
       
   440 	}
       
   441 
       
   442 // Method called by StartTransfer to actually initiate the transfers.
       
   443 TInt DSpiMasterBeagle::DoTransfer(TUint8 aType)
       
   444 	{
       
   445 	DBGPRINT(Kern::Printf("\nDSpiMasterBeagle::DoTransfer()"));
       
   446 	TInt r = KErrNone;
       
   447 
       
   448 	AsspRegister::Write32(iHwBase + MCSPI_IRQSTATUS, ~0);
       
   449 
       
   450 	switch(aType)
       
   451 		{
       
   452 		case TIicBusTransfer::EMasterWrite:
       
   453 			{
       
   454 			// enable the channel here..
       
   455 			AsspRegister::Write32(iHwBase + MCSPI_CHxCTRL(iCurrSS), MCSPI_CHxCTRL_EN);
       
   456 
       
   457 			AsspRegister::Modify32(iHwBase + MCSPI_IRQSTATUS, 0,
       
   458 								   MCSPI_IRQ_TX_EMPTY(iCurrSS) /*| MCSPI_IRQ_TX_UNDERFLOW(iCurrSS)*/);
       
   459 
       
   460 			AsspRegister::Modify32(iHwBase + MCSPI_IRQENABLE, 0,
       
   461 								   MCSPI_IRQ_TX_EMPTY(iCurrSS) /*| MCSPI_IRQ_TX_UNDERFLOW(iCurrSS)*/);
       
   462 
       
   463 #ifdef SINGLE_MODE
       
   464 			// in SINGLE mode needs to manually assert CS line for current
       
   465 			AsspRegister::Modify32(iHwBase + MCSPI_CHxCONF(iCurrSS), 0, MCSPI_CHxCONF_FORCE);
       
   466 
       
   467 			// change the pad config - now the SPI drives the line appropriately..
       
   468 			SetCsActive(iChannelNumber, iCurrSS, iCurrHeader.iSSPinActiveMode);
       
   469 #endif /*SINGLE_MODE*/
       
   470 
       
   471 #ifdef USE_TX_FIFO
       
   472 			const TInt KTxFifoThreshold = 8;
       
   473 			TUint numWordsToTransfer = (iTxDataEnd - iTxData);
       
   474 			TUint wordsToWrite = Min(numWordsToTransfer/iWordSize, KTxFifoThreshold/iWordSize);
       
   475 
       
   476 
       
   477 			TInt iAlmostFullLevel = 0;
       
   478 			TInt iAlmostEmptyLevel = 1; //KTxFifoThreshold;
       
   479 
       
   480 			// setup FIFOs
       
   481 			AsspRegister::Write32(iHwBase + MCSPI_XFERLEVEL,
       
   482 								  MCSPI_XFERLEVEL_WCNT(0) | // total num words
       
   483 								  MCSPI_XFERLEVEL_AFL(iAlmostFullLevel)     | // Rx almost full
       
   484 								  MCSPI_XFERLEVEL_AEL(iAlmostEmptyLevel) );   // Tx almost empty
       
   485 
       
   486 			// copy data to fifo..
       
   487 			for (TInt i = 0; i < wordsToWrite; i++)
       
   488 				{
       
   489 				iTxData += iWordSize;
       
   490 				AsspRegister::Write32(iHwBase + MCSPI_TXx(iCurrSS), *(iTxData -iWordSize));
       
   491 				}
       
   492 
       
   493 #else /*USE_TX_FIFO*/
       
   494 
       
   495 			TUint val = 0;
       
   496 			for (TInt i = 0; i < iWordSize; i++)
       
   497 				{
       
   498 				val |= (*iTxData++) << i * 8;
       
   499 				}
       
   500 
       
   501 			DEBUG_ONLY(DumpCurrentStatus("DoTransfer(Write)"));
       
   502 			AsspRegister::Write32(iHwBase + MCSPI_TXx(iCurrSS), val);
       
   503 #endif /*USE_TX_FIFO*/
       
   504 
       
   505 			// enable system interrupt
       
   506 			Interrupt::Enable(iIrqId);
       
   507 			break;
       
   508 			}
       
   509 		case TIicBusTransfer::EMasterRead:
       
   510 			{
       
   511 			// enable transmit and receive..
       
   512 			AsspRegister::Modify32(iHwBase + MCSPI_CHxCONF(iCurrSS), MCSPI_CHxCONF_TRM_NO_RECEIVE, 0);
       
   513 
       
   514 			// for single read (not duplex) one way to to allow clock generation is to enable Tx
       
   515 			// and write '0' to Txregister (just like in duplex transaction). We also need to assert Cs line.
       
   516 			if(!iFullDTransfer)
       
   517 				{
       
   518 				// enable the channel..
       
   519 				AsspRegister::Write32(iHwBase + MCSPI_CHxCTRL(iCurrSS), MCSPI_CHxCTRL_EN);
       
   520 
       
   521 				// enable TX and RX Empty interrupts
       
   522 				AsspRegister::Modify32(iHwBase + MCSPI_IRQSTATUS, 0, MCSPI_IRQ_TX_EMPTY(iCurrSS) | MCSPI_IRQ_RX_FULL(iCurrSS));
       
   523 				AsspRegister::Modify32(iHwBase + MCSPI_IRQENABLE, 0, MCSPI_IRQ_TX_EMPTY(iCurrSS) | MCSPI_IRQ_RX_FULL(iCurrSS));
       
   524 #ifdef SINGLE_MODE
       
   525 				// in SINGLE mode needs to manually assert CS line for current
       
   526 				AsspRegister::Modify32(iHwBase + MCSPI_CHxCONF(iCurrSS), 0, MCSPI_CHxCONF_FORCE);
       
   527 
       
   528 				// change the pad config - now the SPI drives the line appropriately..
       
   529 				SetCsActive(iChannelNumber, iCurrSS, iCurrHeader.iSSPinActiveMode);
       
   530 #endif /*SINGLE_MODE*/
       
   531 				}
       
   532 			else
       
   533 				{
       
   534 				// enable only interrupts for RX here. Tx is handled in EMasterWrite case above.
       
   535 				AsspRegister::Write32(iHwBase + MCSPI_IRQSTATUS, MCSPI_IRQ_RX_FULL(iCurrSS));
       
   536 				AsspRegister::Write32(iHwBase + MCSPI_IRQENABLE, MCSPI_IRQ_RX_FULL(iCurrSS));
       
   537 				}
       
   538 
       
   539 			DEBUG_ONLY(DumpCurrentStatus("DoTransfer(Read)"));
       
   540 			// and enable system interrupts
       
   541 			if(!iFullDTransfer)
       
   542 				Interrupt::Enable(iIrqId);
       
   543 			break;
       
   544 			}
       
   545 		default:
       
   546 			{
       
   547 			DBG_ERR(Kern::Printf("Unsupported TransactionType %x", aType));
       
   548 			r = KErrArgument;
       
   549 			break;
       
   550 			}
       
   551 		}
       
   552 
       
   553 	return r;
       
   554 	}
       
   555 
       
   556 #ifdef _DEBUG
       
   557 static TInt IsrCnt = 0;
       
   558 void DSpiMasterBeagle::DumpCurrentStatus(const TInt8* aWhere /*=NULL*/)
       
   559 	{
       
   560 	if(aWhere)
       
   561 		Kern::Printf("------ Status (%s)--------", aWhere);
       
   562 	else
       
   563 		Kern::Printf("------ Status --------");
       
   564 	Kern::Printf("\niTransactionStatus: %d", iTransactionStatus);
       
   565 	Kern::Printf("iTransferEndDfc %s queued", iTransferEndDfc.Queued() ? "" : "NOT");
       
   566 
       
   567 	if(iOperation.iOp.iIsTransmitting)
       
   568 		{
       
   569 		Kern::Printf("TX STATUS:");
       
   570 		Kern::Printf("  iTxData    %x", iTxData);
       
   571 		Kern::Printf("  iTxDataEnd %x", iTxDataEnd);
       
   572 		Kern::Printf("  left to write: %x (words)", (iTxDataEnd - iTxData)/iWordSize);
       
   573 		}
       
   574 
       
   575 	if(iOperation.iOp.iIsReceiving)
       
   576 		{
       
   577 		Kern::Printf("RX STATUS:");
       
   578 		Kern::Printf("  iRxData    %x", iRxData);
       
   579 		Kern::Printf("  iRxDataEnd %x", iRxDataEnd);
       
   580 		Kern::Printf("  left to read: %x (words)", (iRxDataEnd - iRxData)/iWordSize);
       
   581 		}
       
   582 	Kern::Printf("  iCurrSS %d",iCurrSS);
       
   583 
       
   584 	Kern::Printf("IsrCnt %d", IsrCnt);
       
   585 	TUint status = AsspRegister::Read32(iHwBase + MCSPI_IRQSTATUS);
       
   586 	Kern::Printf("MCSPI_IRQSTATUS (0x%x):", status);
       
   587 	if(status & MCSPI_IRQ_TX_EMPTY(iCurrSS))
       
   588 		Kern::Printf("   MCSPI_IRQ_TX_EMPTY");
       
   589 	if(status & MCSPI_IRQ_TX_UNDERFLOW(iCurrSS))
       
   590 		Kern::Printf("   MCSPI_IRQ_TX_UNDERFLOW");
       
   591 	if(!iCurrSS && status & MCSPI_IRQ_RX_OVERFLOW)
       
   592 		Kern::Printf("   MCSPI_IRQ_RX_OVERFLOW");
       
   593 	if(status & MCSPI_IRQ_RX_FULL(iCurrSS))
       
   594 		Kern::Printf("   MCSPI_IRQ_RX_FULL");
       
   595 
       
   596 	Kern::Printf("MCSPI_CHxSTAT(%d):", iCurrSS);
       
   597 	status = AsspRegister::Read32(iHwBase + MCSPI_CHxSTAT(iCurrSS));
       
   598 	if(status & MCSPI_CHxSTAT_RXFFF)
       
   599 		Kern::Printf("   MCSPI_CHxSTAT_RXFFF");
       
   600 	if(status & MCSPI_CHxSTAT_RXFFE)
       
   601 		Kern::Printf("   MCSPI_CHxSTAT_RXFFE");
       
   602 	if(status & MCSPI_CHxSTAT_TXFFF)
       
   603 		Kern::Printf("   MCSPI_CHxSTAT_TXFFF");
       
   604 	if(status & MCSPI_CHxSTAT_TXFFE)
       
   605 		Kern::Printf("   MCSPI_CHxSTAT_TXFFE");
       
   606 	if(status & MCSPI_CHxSTAT_EOT)
       
   607 		Kern::Printf("   MCSPI_CHxSTAT_EOT");
       
   608 	if(status & MCSPI_CHxSTAT_TXS)
       
   609 		Kern::Printf("   MCSPI_CHxSTAT_TXS");
       
   610 	if(status & MCSPI_CHxSTAT_RXS)
       
   611 		Kern::Printf("   MCSPI_CHxSTAT_RXS");
       
   612 
       
   613 	Kern::Printf("MCSPI_XFERLEVEL:");
       
   614 	status = AsspRegister::Read32(iHwBase + MCSPI_XFERLEVEL);
       
   615 	Kern::Printf("   MCSPI_XFERLEVEL_WCNT %d", status >> MCSPI_XFERLEVEL_WCNT_OFFSET);
       
   616 	Kern::Printf("   MCSPI_XFERLEVEL_AFL %d", (status >> MCSPI_XFERLEVEL_AFL_OFFSET) & 0x3F);
       
   617 	Kern::Printf("   MCSPI_XFERLEVEL_AEL %d\n", (status >> MCSPI_XFERLEVEL_AEL_OFFSET) & 0x1F);
       
   618 	Kern::Printf("---------------------------------------/*\n\n\n");
       
   619 	}
       
   620 #endif
       
   621 
       
   622 void DSpiMasterBeagle::Isr(TAny* aPtr)
       
   623 	{
       
   624 	DSpiMasterBeagle *a = (DSpiMasterBeagle*) aPtr;
       
   625 	DEBUG_ONLY(IsrCnt++);
       
   626 	DEBUG_ONLY(a->DumpCurrentStatus("Isr entry"));
       
   627 
       
   628 	TUint32 status = AsspRegister::Read32(a->iHwBase + MCSPI_IRQSTATUS);
       
   629 	AsspRegister::Write32(a->iHwBase + MCSPI_IRQSTATUS, status); // clear status bits..
       
   630 
       
   631 	// TX_EMPTY - when an item (or number of items if FIFO is used) was transmitted..
       
   632 	if(status & MCSPI_IRQ_TX_EMPTY(a->iCurrSS))
       
   633 		{
       
   634 
       
   635 		if(a->iOperation.iOp.iIsTransmitting)
       
   636 			{
       
   637 #ifdef USE_TX_FIFO
       
   638 			// when FIFO is used - should write (at least) the MCSPI_XFERLEVEL_AFL + 1 words to this register..
       
   639 			while(a->iTxData != a->iTxDataEnd)
       
   640 				{
       
   641 				AsspRegister::Write32(a->iHwBase + MCSPI_TXx(a->iCurrSS), *a->iTxData);
       
   642 				a->iTxData += a->iWordSize;	// Then increment the pointer to the data.s
       
   643 
       
   644 				if(AsspRegister::Read32(a->iHwBase + MCSPI_CHxSTAT(a->iCurrSS)) & MCSPI_CHxSTAT_TXFFF)
       
   645 					{
       
   646 					break;
       
   647 					}
       
   648 				}
       
   649 #else
       
   650 			// transfer next word..
       
   651 			if(a->iTxData != a->iTxDataEnd)
       
   652 				{
       
   653 				TUint val = 0;
       
   654 				for (TInt i = 0; i < a->iWordSize; i++)
       
   655 					{
       
   656 					val |= (*a->iTxData++) << i * 8;
       
   657 					}
       
   658 				AsspRegister::Write32(a->iHwBase + MCSPI_TXx(a->iCurrSS), val);
       
   659 				}
       
   660 
       
   661 			// check again - if this was the last one..and we're not waiting for rx - end transfer
       
   662 			if(a->iTxData == a->iTxDataEnd && !a->iOperation.iOp.iIsReceiving)
       
   663 				{
       
   664 				Interrupt::Disable(a->iIrqId);
       
   665 				a->iTransferEndDfc.Add();
       
   666 				}
       
   667 #endif
       
   668 			}
       
   669 		else
       
   670 			{
       
   671 			// writing a 'dummy' word (for read only transferss (writing 0 doesn't change line state)
       
   672 			AsspRegister::Write32(a->iHwBase + MCSPI_TXx(a->iCurrSS), 0);
       
   673 			}
       
   674 		}
       
   675 
       
   676 	if(status & MCSPI_IRQ_RX_FULL(a->iCurrSS))
       
   677 		{
       
   678 		if(a->iOperation.iOp.iIsReceiving)
       
   679 			{
       
   680 			if(a->iRxDataEnd != a->iRxData)
       
   681 				{
       
   682 				TUint8 nextRxValue = AsspRegister::Read32(a->iHwBase + MCSPI_RXx(a->iCurrSS));
       
   683 				*a->iRxData = nextRxValue;
       
   684 				a->iRxData += a->iWordSize;
       
   685 				}
       
   686 
       
   687 			// If the Rx buffer is now full, finish the transmission.
       
   688 			if(a->iRxDataEnd == a->iRxData)
       
   689 				{
       
   690 				Interrupt::Disable(a->iIrqId);
       
   691 				a->iTransferEndDfc.Add();
       
   692 				}
       
   693 			}
       
   694 		}
       
   695 
       
   696 #if 0 // TODO - probably master, as it creates CLK for slave - will never have to bother with this..
       
   697 	if(status & MCSPI_IRQ_TX_UNDERFLOW(a->iCurrSS))
       
   698 		{
       
   699 		DBG_ERR(Kern::Printf("Underflow"));
       
   700 		a->iTransactionStatus = KErrUnderflow;
       
   701 
       
   702 		// disable the channel..
       
   703 		AsspRegister::Modify32(a->iHwBase + MCSPI_CHxCTRL(0), MCSPI_CHxCTRL_EN, 0);
       
   704 		Interrupt::Disable(a->iIrqId);
       
   705 		DEBUG_ONLY(a->DumpCurrentStatus("TxUnderflow"));
       
   706 		DBG_ERR(Kern::Fault("TxUnderflow", 0));
       
   707 		}
       
   708 #endif
       
   709 #if defined(USE_TX_FIFO) && defined(USING_TX_COUNTER)
       
   710 	if(status & MCSPI_IRQSTATUS_EOW)
       
   711 		{
       
   712 		Kern::Printf("EOW");
       
   713 		// TODO: end of transfer..
       
   714 		}
       
   715 #endif
       
   716 
       
   717 	// end of ISR processing
       
   718 	DEBUG_ONLY(a->DumpCurrentStatus("Isr end"));
       
   719 	}
       
   720 
       
   721 void DSpiMasterBeagle::TransferEndDfc(TAny* aPtr)
       
   722 	{
       
   723 	DBGPRINT(Kern::Printf("DSpiMasterBeagle::TransferEndDfc"));
       
   724 	DSpiMasterBeagle *a = (DSpiMasterBeagle*) aPtr;
       
   725 
       
   726 	TUint chanStatus = AsspRegister::Read32(a->iHwBase + MCSPI_CHxSTAT(a->iCurrSS));
       
   727 	if(a->iOperation.iOp.iIsTransmitting)
       
   728 		{
       
   729 		TUint expected = MCSPI_CHxSTAT_EOT | MCSPI_CHxSTAT_TXS;
       
   730 
       
   731 #ifdef USE_TX_FIFO
       
   732 		while(!AsspRegister::Read32(a->iHwBase + MCSPI_CHxSTAT(a->iCurrSS)) & MCSPI_CHxSTAT_TXFFE);
       
   733 #endif
       
   734 		while(chanStatus & expected != expected)
       
   735 			{
       
   736 			chanStatus = AsspRegister::Read32(a->iHwBase + MCSPI_CHxSTAT(a->iCurrSS));
       
   737 			}
       
   738 		}
       
   739 
       
   740 	if(a->iOperation.iOp.iIsReceiving)
       
   741 		{
       
   742 		TUint expected = MCSPI_CHxSTAT_RXS;
       
   743 
       
   744 		while(chanStatus & expected != expected)
       
   745 			{
       
   746 			chanStatus = AsspRegister::Read32(a->iHwBase + MCSPI_CHxSTAT(a->iCurrSS));
       
   747 			}
       
   748 		__ASSERT_DEBUG(a->iRxDataEnd == a->iRxData,
       
   749 		               Kern::Fault("SPI master: exiting not having received all?", 12));
       
   750 		}
       
   751 
       
   752 	// make sure the CS pin is asserted..
       
   753 	if(a->iCurrHeader.iSSPinActiveMode == ESpiCSPinActiveLow)
       
   754 		{
       
   755 		AsspRegister::Modify32(a->iHwBase + MCSPI_SYST, 0, 1 << a->iCurrSS);
       
   756 		}
       
   757 	else
       
   758 		{
       
   759 		AsspRegister::Modify32(a->iHwBase + MCSPI_SYST, 1 << a->iCurrSS, 0);
       
   760 		}
       
   761 
       
   762 #ifdef SINGLE_MODE
       
   763 	// manually de-assert CS line for this channel
       
   764 	AsspRegister::Modify32(a->iHwBase + MCSPI_CHxCONF(a->iCurrSS), MCSPI_CHxCONF_FORCE, 0);
       
   765 
       
   766 	// drive csx pin high or low. Doing this here causes, that CS lines are toggled for each transfers.
       
   767 	TUint val = (a->iCurrHeader.iSSPinActiveMode == ESpiCSPinActiveLow)? 1 << a->iCurrSS : 0;
       
   768 	if (val)
       
   769 		{
       
   770 		AsspRegister::Modify32(a->iHwBase + MCSPI_SYST, 0, val);
       
   771 		}
       
   772 	// put the CS signal to 'inactive' state (as on channel disable it would have a glitch)
       
   773 	SetCsInactive(a->iChannelNumber, a->iCurrSS, a->iCurrHeader.iSSPinActiveMode);
       
   774 
       
   775 #endif
       
   776 
       
   777 	// disable the channel
       
   778 	AsspRegister::Modify32(a->iHwBase + MCSPI_CHxCTRL(0), MCSPI_CHxCTRL_EN, 0);
       
   779 
       
   780 	// Start the next transfer for this transaction, if any remain
       
   781 	if(a->iState == EBusy)
       
   782 		{
       
   783 		TInt err = a->ProcessNextTransfers();
       
   784 		if(err != KErrNone)
       
   785 			{
       
   786 			// If the next transfer could not be started, complete the transaction with
       
   787 			// the returned error code
       
   788 			a->ExitComplete(err);
       
   789 			}
       
   790 		}
       
   791 	}
       
   792 
       
   793 void DSpiMasterBeagle::ExitComplete(TInt aErr, TBool aComplete /*= ETrue*/)
       
   794 	{
       
   795 	DBGPRINT(Kern::Printf("DSpiMasterBeagle::ExitComplete, aErr %d, aComplete %d", aErr, aComplete));
       
   796 
       
   797 	// make sure CS is in inactive state (for the current / last transaction) on error
       
   798 	if(!aComplete)
       
   799 		{
       
   800 		SetCsInactive(iChannelNumber, iCurrSS, iCurrHeader.iSSPinActiveMode);
       
   801 		}
       
   802 
       
   803 	// disable this channel (and reset..)
       
   804 	AsspRegister::Modify32(iHwBase + MCSPI_CHxCTRL(iCurrSS), MCSPI_CHxCTRL_EN, 0);
       
   805 	AsspRegister::Write32(iHwBase + MCSPI_SYSCONFIG, MCSPI_SYSCONFIG_SOFTRESET);
       
   806 
       
   807 	// Disable interrupts for the channel
       
   808 	Interrupt::Disable(iIrqId);
       
   809 
       
   810 	// Cancel any timers and DFCs..
       
   811 	CancelTimeOut();
       
   812 	iTransferEndDfc.Cancel();
       
   813 
       
   814 	// Change the channel state back to EIdle
       
   815 	iState = EIdle;
       
   816 
       
   817 	// Call the PIL method to complete the request
       
   818 	if(aComplete)
       
   819 		{
       
   820 		CompleteRequest(aErr);
       
   821 		}
       
   822 	}
       
   823 
       
   824 #ifdef _DEBUG
       
   825 void DumpHeader(TConfigSpiV01& aHeader)
       
   826 	{
       
   827 	Kern::Printf("header:");
       
   828 	Kern::Printf("iWordWidth %d (%d bits)", aHeader.iWordWidth, (SpiWordWidth(aHeader.iWordWidth)) >> MCSPI_CHxCONF_WL_OFFSET + 1);
       
   829 	Kern::Printf("iClkSpeedHz %d", aHeader.iClkSpeedHz);
       
   830 	Kern::Printf("iClkMode %d", aHeader.iClkMode);
       
   831 	Kern::Printf("iTimeoutPeriod %d", aHeader.iTimeoutPeriod);
       
   832 	Kern::Printf("iBitOrder %d", aHeader.iBitOrder);
       
   833 	Kern::Printf("iTransactionWaitCycles %d", aHeader.iTransactionWaitCycles);
       
   834 	Kern::Printf("iSSPinActiveMode %d", aHeader.iSSPinActiveMode);
       
   835 	}
       
   836 #endif
       
   837 
       
   838 // virtual method called by the PIL when a transaction is queued (with QueueTransaction).
       
   839 // This is done in the context of the Client's thread.
       
   840 // The PSL is required to check that the transaction header is valid for this channel.
       
   841 TInt DSpiMasterBeagle::CheckHdr(TDes8* aHdrBuff)
       
   842 	{
       
   843 	TInt r = KErrNone;
       
   844 	if(!aHdrBuff)
       
   845 		{
       
   846 		r = KErrArgument;
       
   847 		}
       
   848 	else
       
   849 		{
       
   850 		TConfigSpiV01 &header = (*(TConfigSpiBufV01*) (aHdrBuff))();
       
   851 
       
   852 		// check if word width and clock are supported
       
   853 		if(SpiWordWidth(header.iWordWidth) < KMinSpiWordWidth ||
       
   854 		   SpiClkValue(header.iClkSpeedHz) < 0 || // == KErrNotSupported
       
   855 		   header.iBitOrder == ELsbFirst) // this SPI only transmits MSB fist
       
   856 			{
       
   857 #ifdef _DEBUG
       
   858 			if(header.iBitOrder == ELsbFirst)
       
   859 				DBG_ERR(Kern::Printf("iClkSpeedHz value (%d) is not supported", header.iClkSpeedHz));
       
   860 			if(SpiClkValue(header.iClkSpeedHz) < 0)
       
   861 				DBG_ERR(Kern::Printf("iClkSpeedHz: %d is not supported", header.iClkSpeedHz));
       
   862 			if((SpiWordWidth(header.iWordWidth)+ 1) >> MCSPI_CHxCONF_WL_OFFSET < KMinSpiWordWidth)
       
   863 				DBG_ERR(Kern::Printf("iWordWidth: %d is not supported, min value is: %d",
       
   864 						              SpiWordWidth(header.iWordWidth), KMinSpiWordWidth));
       
   865 			DumpHeader(header);
       
   866 #endif
       
   867 			r = KErrNotSupported;
       
   868 			DBG_ERR(Kern::Printf("DSpiMasterBeagle::CheckHdr()failed, r = %d", r));
       
   869 			}
       
   870 		}
       
   871 	return r;
       
   872 	}
       
   873 
       
   874 // This method is called by the PIL in the case of expiry of a timer for a transaction.
       
   875 // TODO: this name is confusing - it could be changed in the PIL to reflect it's real purpose(TBD)
       
   876 // It has NOTHING to do with a Slave (i.e. slave might be completely silent for SPI-and master won't notice it!)
       
   877 TInt DSpiMasterBeagle::HandleSlaveTimeout()
       
   878 	{
       
   879 	DBG_ERR(Kern::Printf("HandleSlaveTimeout"));
       
   880 
       
   881 	// Stop the PSL's operation, and inform the PIL of the timeout
       
   882 	ExitComplete(KErrTimedOut, EFalse);
       
   883 
       
   884 	return KErrTimedOut;
       
   885 	}
       
   886