// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// Implementation of a digitiser (touch-screen) driver.
// This code assumes that an interrupt is generated on pen-down and pen-up events.
//
//
#include <assp.h>
#include <videodriver.h>
#include <drivers/xyin.h>
#include <assp/omap3530_assp/omap3530_gpio.h>
#include <assp/omap3530_assp/omap3530_scm.h>
#include "mconf.h"
#include "../common/controller.h"
// TODO replace DEBUG_PRINT( with __KTRACE_OPT(KHARDWARE,
#define DEBUG_PRINT(x) x
const TInt KXyinThreadPriority = 33; // might need to be updated..
_LIT(KXyinThreadName, "DigitizerThread");
//
// TO DO: (mandatory)
//
// Define the following constants that describe the digitiser position & dimensions
// This is only example code... you need to modify it for your hardware
// digitiser origin & size in pixels
const TUint KConfigXyOffsetX = 0; // digitiser origin - same as display area
const TUint KConfigXyOffsetY = 0;
const TUint KConfigXyWidth = 640; // 640 pixels per line
const TUint KConfigXyHeight = 480; // 480 lines per panel
// digitiser dimensions in digitiser co-ordinates
const TInt KConfigXyBitsX = 12;
const TInt KConfigXyBitsY = 12;
const TInt KConfigXySpreadX = 1 << KConfigXyBitsX; // maximum valid X spread
const TInt KConfigXySpreadY = 1 << KConfigXyBitsY; // maximum valid Y spread
const TInt KConfigXyMinX = 0; // minimum valid X value
const TInt KConfigXyMinY = 0; // minimum valid Y value
const TInt KConfigXyMaxX = KConfigXySpreadX - 1; // maximum valid X value
const TInt KConfigXyMaxY = KConfigXySpreadY - 1; // maximum valid Y value
// Define a 2x2 matrix and two constants Tx and Ty to convert digitiser co-ordinates
// to pixels such that
//
// (X<<16 Y<<16) = (x y) x (R11 R12) + (Tx Ty)
// (R21 R22)
// or :
//
// X = (x*R11 + y*R21 + TX) >> 16;
// Y = (x*R12 + y*R22 + TY) >> 16;
//
// where x,y are digitiser coordinates, Tx,Ty are constant offsets and X,Y are screen
// coordinates. Left shifting by 16 bits is used so as not to lose precision.
//
// These are default values to be used before calibration has taken place
// These are best set by observation.
// The example values given below are for a digitiser whose origin is at bottom left
// (the screen origin is at top left)
const TInt KConfigXyR11 = (KConfigXyWidth << 16) / KConfigXySpreadX; // 10240
const TInt KConfigXyR12 = 0;
const TInt KConfigXyR21 = 0;
const TInt KConfigXyR22 = - ((KConfigXyHeight << 16) / KConfigXySpreadY); // -7680
const TInt KConfigXyTx = 0;
const TInt KConfigXyTy = (KConfigXyHeight << 16) / KConfigXySpreadY;
//
// TO DO: (optional)
//
// Define the following constants that describe the digitiser behaviour
// This is only example code... you need to modify it for your hardware
// After taking a sample, wait for the specified number of nano-kernel ticks (normally 1 ms)
// before taking the next sample
const TInt KInterSampleTime = 1;
// After a group of samples has been processed by the DDigitiser::ProcessRawSample() DFC,
// wait for the specified number of nano-kernel ticks before taking the next sample
const TInt KInterGroupTime = 1;
// After a pen-down interrupt,
// wait for the specified number of nano-kernel ticks before taking the next sample
const TInt KPenDownDelayTime = 2;
// If powering up the device with the pen down,
// wait for the specified number of nano-kernel ticks before taking the next sample
const TInt KPenUpPollTime = 30;
// After a pen-up interrupt,
// wait for the specified number of nano-kernel ticks before calling PenUp()
const TInt KPenUpDebounceTime = 10;
// number of samples to discard on pen-down
const TInt KConfigXyPenDownDiscard = 1;
// number of samples to discard on pen-up
const TInt KConfigXyPenUpDiscard = 1;
// offset in pixels to cause movement in X direction
const TInt KConfigXyAccThresholdX = 12;
// offset in pixels to cause movement in Y direction
const TInt KConfigXyAccThresholdY = 12;
// number of samples to average - MUST be <= KMaxXYSamples
const TInt KConfigXyNumXYSamples = 2;
// disregard extremal values in each 4-sample group
const TBool KConfigXyDisregardMinMax= EFalse;
// obsolete constants :
const TInt KConfigXyDriveXRise = 0;
const TInt KConfigXyDriveYRise = 0;
const TInt KConfigXyMaxJumpX = 0;
const TInt KConfigXyMaxJumpY = 0;
/******************************************************
* Main Digitiser Class
******************************************************/
//
// TO DO: (optional)
//
// Add any private functions and data you require
//
NONSHARABLE_CLASS(DTemplateDigitiser) : public DDigitiser
{
public:
enum TState
{
E_HW_PowerUp,
E_HW_PenUpDebounce,
E_HW_CollectSample
};
public:
// from DDigitiser - initialisation
DTemplateDigitiser();
virtual TInt DoCreate();
void SetDefaultConfig();
// from DDigitiser - signals to hardware-dependent code
virtual void WaitForPenDown();
virtual void WaitForPenUp();
virtual void WaitForPenUpDebounce();
virtual void DigitiserOn();
virtual void DigitiserOff();
virtual void FilterPenMove(const TPoint& aPoint);
virtual void ResetPenMoveFilter();
// from DDigitiser - machine-configuration related things
virtual TInt DigitiserToScreen(const TPoint& aDigitiserPoint, TPoint& aScreenPoint);
virtual void ScreenToDigitiser(TInt& aX, TInt& aY);
virtual TInt SetXYInputCalibration(const TDigitizerCalibration& aCalibration);
virtual TInt CalibrationPoints(TDigitizerCalibration& aCalibration);
virtual TInt SaveXYInputCalibration();
virtual TInt RestoreXYInputCalibration(TDigitizerCalibrationType aType);
virtual void DigitiserInfo(TDigitiserInfoV01& aInfo);
// from DPowerHandler
virtual void PowerDown(TPowerState);
virtual void PowerUp();
public:
// implementation
void TakeSample();
void PenInterrupt();
void DigitiserPowerUp();
void DoPowerUp();
private:
static void TimerCallback(TAny* aPtr);
static void TimerIntCallback(TAny* aPtr);
static void TakeReadingDfc(TAny* aPtr);
static void PowerUpDfc(TAny* aPtr);
static void PowerDownDfc(TAny* aPtr);
static void PenIsr(TAny* aPtr);
TouchController iController;
NTimer iTimer;
NTimer iTimerInt;
TDfc iTakeReadingDfc;
TDfc iPowerDownDfc;
TDfc iPowerUpDfc;
TInt iSamplesCount;
TState iState;
TUint8 iPoweringDown;
TSize iScreenSize;
TActualMachineConfig& iMachineConfig;
};
/******************************************************
* Digitiser main code
******************************************************/
/**
Creates a new instance of DDigitiser.
Called by extension entry point (PIL) to create a DDigitiser-derived object.
@return a pointer to a DTemplateDigitiser object
*/
DDigitiser* DDigitiser::New()
{
return new DTemplateDigitiser;
}
DTemplateDigitiser::DTemplateDigitiser() :
iTimer(TimerCallback,this),
iTimerInt(TimerIntCallback,this),
iTakeReadingDfc(TakeReadingDfc,this,5),
iPowerDownDfc(PowerDownDfc,this,5),
iPowerUpDfc(PowerUpDfc,this,5),
iMachineConfig(TheActualMachineConfig())
{
}
TInt DTemplateDigitiser::DoCreate()
{
__KTRACE_OPT(KEXTENSION,Kern::Printf("DTemplateDigitiser::DoCreate"));
DEBUG_PRINT(Kern::Printf("DTemplateDigitiser::DoCreate"));
if (Kern::ColdStart())
{
__KTRACE_OPT(KEXTENSION,Kern::Printf("Resetting digitiser calibration"));
// Emergency digitiser calibration values
iMachineConfig.iCalibration.iR11 = KConfigXyR11;
iMachineConfig.iCalibration.iR12 = KConfigXyR12;
iMachineConfig.iCalibration.iR21 = KConfigXyR21;
iMachineConfig.iCalibration.iR22 = KConfigXyR22;
iMachineConfig.iCalibration.iTx = KConfigXyTx;
iMachineConfig.iCalibration.iTy = KConfigXyTy;
}
// create a DFCQ for this driver
TInt r = Kern::DfcQCreate(iDfcQ, KXyinThreadPriority, &KXyinThreadName);
if(r != KErrNone)
{
__KTRACE_OPT(KIIC, Kern::Printf("Digitizer: DFC Queue creation failed, ch: %d, r = %d\n", r));
return r;
}
iTakeReadingDfc.SetDfcQ(iDfcQ);
iPowerDownDfc.SetDfcQ(iDfcQ);
iPowerUpDfc.SetDfcQ(iDfcQ);
#ifdef USE_SYMBIAN_PRM
// register power handler
Add();
#endif
// setup the DAV (data ready/available) pin by binding to the GPIO pin..
r = GPIO::BindInterrupt(KDataReadyPin, PenIsr, this);
if(r != KErrNone)
{
Kern::Printf("GPIO::BindInterrupt() failed for pin %d, r=%d", KDataReadyPin, r);
return r;
}
r = GPIO::SetPinDirection(KDataReadyPin, GPIO::EInput);
if(r == KErrNone)
{
r = GPIO::SetInterruptTrigger(KDataReadyPin, GPIO::EEdgeRising);
if(r == KErrNone)
{
GPIO::SetDebounceTime(KDataReadyPin, 100);
SCM::SetPadConfig(CONTROL_PADCONF_MMC2_DAT0, SCM::EMsw, SCM::EMode4 | SCM::EInputEnable); // 133 (mmc2dat1)
r = GPIO::SetPinMode(KDataReadyPin, GPIO::EEnabled);
}
}
if (r == KErrNone)
{
// set up the default configuration
SetDefaultConfig();
// some of the pre-configuration of the touch controller could be done here..
iController.HardReset();
iController.Configure(TouchController::EModeSingle);
DigitiserPowerUp();
}
return r;
}
/**
Initialise the DDigitiser::iCfg structure
*/
void DTemplateDigitiser::SetDefaultConfig()
{
iCfg.iPenDownDiscard = KConfigXyPenDownDiscard; // number of samples to discard on pen-down
iCfg.iPenUpDiscard = KConfigXyPenUpDiscard; // number of samples to discard on pen-up
iCfg.iDriveXRise = KConfigXyDriveXRise; // number of milliseconds to wait when driving horizontal edges
iCfg.iDriveYRise = KConfigXyDriveYRise; // number of milliseconds to wait when driving vertical edges
iCfg.iMinX = KConfigXyMinX; // minimum valid X value
iCfg.iMaxX = KConfigXyMaxX; // maximum valid X value
iCfg.iSpreadX = KConfigXySpreadX; // maximum valid X spread
iCfg.iMinY = KConfigXyMinY; // minimum valid Y value
iCfg.iMaxY = KConfigXyMaxY; // maximum valid Y value
iCfg.iSpreadY = KConfigXySpreadY; // maximum valid Y spread
iCfg.iMaxJumpX = KConfigXyMaxJumpX; // maximum X movement per sample (pixels)
iCfg.iMaxJumpY = KConfigXyMaxJumpY; // maximum Y movement per sample (pixels)
iCfg.iAccThresholdX = KConfigXyAccThresholdX; // offset in pixels to cause movement in X direction
iCfg.iAccThresholdY = KConfigXyAccThresholdY; // offset in pixels to cause movement in Y direction
iCfg.iNumXYSamples = KConfigXyNumXYSamples; // number of samples to average
iCfg.iDisregardMinMax = KConfigXyDisregardMinMax; // disregard extremal values in each 4-sample group
}
/**
Takes a sample from the digitiser.
Called in the context of a DFC thread.
*/
void DTemplateDigitiser::TakeSample()
{
#ifdef USE_SYMBIAN_PRM
TTemplatePowerController::WakeupEvent(); // notify of pendown (wakeup event) and let the power controller sort
// out if it needs propagation
#endif
// TO DO: (mandatory)
// Read from appropriate hardware register to determine whether digitiser panel is being touched
// Set penDown to ETrue if touched or EFalse if not touched.
//
TPoint points[4];
TInt num_points = 0;
TInt r = iController.GetMeasurements(points, num_points);
Kern::Printf("Num touches: %d", num_points);
Kern::Printf("Measurments: (r: %d)", r);
for(TInt i = 0; i < num_points; i++)
{
Kern::Printf("%d: iX: %d, iY: %d",i, points[i].iX, points[i].iY);
}
TInt penDown = num_points;
// DEBUG_PRINT(Kern::Printf("TS: S%d PD%d Sp%d", (TInt)iState, penDown?1:0, iSamplesCount));
if (iState==E_HW_PowerUp)
{
// waiting for pen to go up after switch on due to pen down or through the HAL
// coverity[dead_error_condition]
// The next line should be reachable when this template file is edited for use
if (!penDown) // pen has gone up -> transition to new state
{
iState=E_HW_CollectSample;
iSamplesCount=0; // reset sample buffer
// TO DO: (mandatory)
// Write to the appropriate hardware register to clear the digitiser interrupt
//
// TO DO: (mandatory)
// Write to the appropriate hardware register(s) to allow the hardware
// to detect when the digitizer panel is touched
//
// Interrupt::Enable(KIntIdDigitiser); // enable pen-down interrupt
// TO DO: (mandatory)
// Write to the appropriate hardware register to enable the digitiser interrupt
//
}
else // pen is still down, wait a bit longer in this state
{
iTimer.OneShot(KPenUpPollTime);
}
return;
}
if (!penDown)
{
if (iState==E_HW_PenUpDebounce)
{
iState=E_HW_CollectSample; // back to initial state, no samples collected
iSamplesCount=0; // reset sample buffer
// Need to lock the kernel to simulate ISR context and thus defer preemption,
// since PenUp() expects an ISR context and calls TDfc::Add().
NKern::Lock();
PenUp(); // adds DFC
NKern::Unlock();
}
else // iState=E_HW_CollectSample
{
iState=E_HW_PenUpDebounce;
iTimer.OneShot(KPenUpDebounceTime); // wait a bit to make sure pen still up
}
return;
}
else if (iState==E_HW_PenUpDebounce) // pen down
{
// false alarm - pen is down again
iState=E_HW_CollectSample; // take a new set of samples
iSamplesCount=0; // reset sample buffer
}
// default: pen down and iState=E_HW_CollectSample
// TO DO: (mandatory)
// Read from appropriate hardware register to get the current digitiser coordinates
// of the point that is being touched. Set aResults accordingly.
// This is only example code... you need to modify it for your hardware
//
TPoint aResults;
// X axis
iX[iSamplesCount] = aResults.iX;
// Y axis
iY[iSamplesCount] = aResults.iY;
DEBUG_PRINT(Kern::Printf("Raw: X=%d Y=%d",iX[iSamplesCount],iY[iSamplesCount]));
// Put the hardware back into pen-detect mode
// TO DO: (mandatory)
// Write to the appropriate hardware register(s) to allow the hardware
// to detect when the digitizer panel is touched
//
// count samples collected - if it's less than minimum,
// schedule the reading of another sample
if (++iSamplesCount < iCfg.iNumXYSamples) // iX[] and iY[] are 4 levels deep in xyin.h...
{
if(KInterSampleTime > 0) // need to check this config param as it might be zero!
iTimer.OneShot(KInterSampleTime); // haven't got a complete group yet, so queue timer to sample again
else
iTakeReadingDfc.Enque();
return;
}
// Have a complete group of samples so pass up to processing layer (PIL)
// Need to lock the kernel to simulate ISR context and thus defer preemption,
// since RawSampleValid() expects an ISR context and calls TDfc::Add().
NKern::Lock();
RawSampleValid(); // adds DFC
NKern::Unlock();
}
/**
Request for an interrupt to be generated when the pen is next down
Called by PIL at startup or when pen leaves digitiser after pen-up event issued
*/
void DTemplateDigitiser::WaitForPenDown()
{
// Called at startup or when pen leaves digitiser after pen-up event issued
DEBUG_PRINT(Kern::Printf("WD: PowerDownMask %x",iPoweringDown));
if (iPoweringDown)
{
// powering down
// TO DO: (mandatory)
// Write to the appropriate hardware register(s) to allow the hardware
// to detect when the digitizer panel is touched and wakes up the system if in standby
//
//
// TO DO: (optional)
//
// Relinquish request on power resources
// This will place the peripheral hardware in a low power "Sleep" mode which is Interrupt detection capable
// EXAMPLE ONLY
#ifdef USE_SYMBIAN_PRM
TemplateResourceManager* aManager = TTemplatePowerController::ResourceManager();
aManager -> ModifyToLevel(TemplateResourceManager::AsynchMlResourceUsedByXOnly, 50 /* a percentage */);
aManager -> SharedBResource1() -> Release();
#endif
iPoweringDown = EFalse;
PowerDownDone();
}
else
{
// TO DO: (mandatory)
// Write to the appropriate hardware register to clear the digitiser interrupt
//
// TO DO: (mandatory)
// Write to the appropriate hardware register(s) to allow the hardware
// to detect when the digitizer panel is touched
//
if ((iTimer.iState == NTimer::EIdle) && (iTimerInt.iState == NTimer::EIdle))
{
GPIO::EnableInterrupt(KDataReadyPin); // enable pen-down interrupt
}
}
}
/**
Called by PIL after it has processed a group of raw samples while pen is down.
Used to indicate that the iX, iY buffers may be re-used
*/
void DTemplateDigitiser::WaitForPenUp()
{
DEBUG_PRINT(Kern::Printf("WU"));
iState = E_HW_CollectSample;
iSamplesCount = 0; // reset sample buffer
if(KInterGroupTime > 0) // need to check this config param as it might be zero!
{
iTimer.OneShot(KInterGroupTime);
}
else
{
iTakeReadingDfc.Enque();
}
}
/**
Called by PIL if the group of samples collected is not good enough
Used to indicate that the iX, iY buffers may be re-used
*/
void DTemplateDigitiser::WaitForPenUpDebounce()
{
DEBUG_PRINT(Kern::Printf("WUDB"));
iState = E_HW_CollectSample;
iSamplesCount = 0; // reset sample buffer
if(KInterGroupTime > 0) // need to check this config param as it might be zero!
iTimer.OneShot(KInterGroupTime);
else
iTakeReadingDfc.Enque();
}
/**
Pen up/down interrupt service routine (ISR)
*/
static TUint IsrCnt = 0;
void DTemplateDigitiser::PenInterrupt()
{
DEBUG_PRINT(Kern::Printf("I: %d ", IsrCnt++));
// Interrupt::Clear(KIntIdDigitiser); // should already have been cleared
// GPIO::DisableInterrupt(KDataReadyPin);
// TO DO: (mandatory)
// Read from appropriate hardware register to determine whether digitiser panel is being touched
// Set penDown to ETrue if touched or EFalse if not touched.
// This is only example code... you need to modify it for your hardware
// GPIO::DisableInterrupt(KDataReadyPin);
// TBool penDown = iController.NumOfTouches();
TBool penDown = 1;
// coverity[dead_error_condition]
if(!penDown) // pen up
{
// TO DO: (mandatory)
// Write to the appropriate hardware register to clear the digitiser interrupt
//
// TO DO: (mandatory)
// Write to the appropriate hardware register(s) to allow the hardware
// to detect when the digitizer panel is touched
//
return; // ... and exit!
}
// Interrupt::Disable(KIntIdDigitiser); // do NOT disable the capability to generate interrupts at the source
// Add the timing of pen interrupts as entropy data for the RNG
// Interrupt::AddTimingEntropy();
if(0)
// if (KPenDownDelayTime>0) // need to check this config param as it might be zero!
{
iTimerInt.OneShot(KPenDownDelayTime); // start a debounce timer which will queue a DFC to process the interrupt
}
else
{
// TO DO: (mandatory)
// Write to the appropriate hardware register to clear the digitiser interrupt
// This will re-trigger the interrupt mechanism to catch the next interrupt...
//
iTakeReadingDfc.Add();
}
}
void DTemplateDigitiser::TimerCallback(TAny* aPtr)
{
DTemplateDigitiser* pD=(DTemplateDigitiser*)aPtr;
DEBUG_PRINT(Kern::Printf("T"));
pD->iTakeReadingDfc.Add();
}
/**
Debounce timer callback
schedules a DFC to process a pen-down interrupt
@param aPtr a pointer to DTemplateDigitiser
*/
void DTemplateDigitiser::TimerIntCallback(TAny* aPtr)
{
DTemplateDigitiser* pD=(DTemplateDigitiser*)aPtr;
DEBUG_PRINT(Kern::Printf("TI"));
// GPIO::DisableInterrupt(KDataReadyPin);
// clear xy interrupt -> re-triggers the interrupt mechanism to catch the next IRQ
// TO DO: (mandatory)
// Write to the appropriate hardware register to clear the digitiser interrupt
//
pD->iTakeReadingDfc.Add();
}
/**
Pen-up/down interrupt handler
@param aPtr a pointer to DTemplateDigitiser
*/
void DTemplateDigitiser::PenIsr(TAny* aPtr)
{
DTemplateDigitiser* pD=(DTemplateDigitiser*)aPtr;
pD->PenInterrupt();
}
/**
DFC for taking a sample
@param aPtr a pointer to DTemplateDigitiser
*/
void DTemplateDigitiser::TakeReadingDfc(TAny* aPtr)
{
DTemplateDigitiser* pD=(DTemplateDigitiser*)aPtr;
pD->TakeSample();
}
void DTemplateDigitiser::PowerUp()
{
iPowerUpDfc.Enque(); // queue a DFC in this driver's context
}
void DTemplateDigitiser::PowerUpDfc(TAny* aPtr)
{
DTemplateDigitiser* pD=(DTemplateDigitiser*)aPtr;
pD->DoPowerUp();
}
void DTemplateDigitiser::DoPowerUp()
{
__KTRACE_OPT(KPOWER, Kern::Printf("DTemplateDigitiser::PowerUpDfc()"));
DigitiserOn();
PowerUpDone(); // must be called from a different thread than PowerUp()
}
/**
Turn the digitiser on
May be called as a result of a power transition or from the HAL
If called from HAL, then the digitiser may be already be on (iPointerOn == ETrue)
*/
void DTemplateDigitiser::DigitiserOn()
{
__KTRACE_OPT(KPOWER,Kern::Printf("DTemplateDigitiser::DigitiserOn() iPointerOn=%d", iPointerOn));
if (!iPointerOn) // may have been powered up already
DigitiserPowerUp();
}
/**
Power-up the digitiser. Assumes digitiser is off.
*/
void DTemplateDigitiser::DigitiserPowerUp()
{
__KTRACE_OPT(KPOWER, Kern::Printf("DigitiserPowerUp"));
iPointerOn = ETrue; // now turned on
// TO DO: (mandatory)
// Write to the appropriate hardware register to clear the digitiser interrupt
//
//
// TO DO: (optional)
//
// Reassert request on power resources
// This will move the peripheral hardware out of low power "Sleep" mode back to fully operational
// EXAMPLE ONLY
//
#ifdef USE_SYMBIAN_PRM
TemplateResourceManager* aManager = TTemplatePowerController::ResourceManager();
aManager -> ModifyToLevel(TemplateResourceManager::AsynchMlResourceUsedByXOnly, 100 /* a percentage */);
aManager -> SharedBResource1() -> Use();
#endif
// TO DO: (mandatory)
// Write to the appropriate hardware register(s) to allow the hardware
// to detect when the digitizer panel is touched
//
iState = E_HW_PowerUp; // so we wait for pen up if necessary
iTakeReadingDfc.Enque();
}
void DTemplateDigitiser::PowerDown(TPowerState /*aPowerState*/)
{
iPoweringDown = ETrue;
iPowerDownDfc.Enque(); // queue a DFC in this driver's context
}
void DTemplateDigitiser::PowerDownDfc(TAny* aPtr)
{
DTemplateDigitiser* pD=(DTemplateDigitiser*)aPtr;
pD->DigitiserOff();
}
/**
Turn the digitiser off
May be called as a result of a power transition or from the HAL
If called from Power Manager, then the digitiser may be already be off (iPointerOn == EFalse)
if the platform is in silent running mode
*/
void DTemplateDigitiser::DigitiserOff()
{
__KTRACE_OPT(KPOWER,Kern::Printf("DTemplateDigitiser::DigitiserOff() iPointerOn=%d", iPointerOn));
if (iPointerOn) // can have been powered down from HAL
{
iPointerOn = EFalse;
// Interrupt::Disable(KIntIdDigitiser);
// TO DO: (mandatory)
// Write to the appropriate hardware register to disable the digitiser interrupt
//
iTimer.Cancel();
iTimerInt.Cancel();
iTakeReadingDfc.Cancel();
if (iState != E_HW_CollectSample)
{
// Need to lock the kernel to simulate ISR context and thus defer preemption,
// since PenUp() expects an ISR context and calls TDfc::Add().
NKern::Lock();
PenUp(); // adds DFC (will call WaitForPenDown)
NKern::Unlock();
}
else
{
// TO DO: (mandatory)
// Write to the appropriate hardware register(s) to allow the hardware
// to detect when the digitizer panel is touched and wakes up the system if in standby
//
//
// TO DO: (optional)
//
// Relinquish request on power resources as we are being powered down
// This will place the peripheral hardware in a low power "Sleep" mode which is Interrupt detection capable
// EXAMPLE ONLY
//
#ifdef USE_SYMBIAN_PRM
TemplateResourceManager* aManager = TTemplatePowerController::ResourceManager();
aManager -> ModifyToLevel(TemplateResourceManager::AsynchMlResourceUsedByXOnly, 0 /* a percentage */);
aManager -> SharedBResource1() -> Release();
#endif
if (iPoweringDown) // came here through PowerDown
{
iPoweringDown = EFalse;
PowerDownDone();
}
}
}
else // already powered down (by HAL)
{
if (iPoweringDown) // came here through PowerDown
{
iPoweringDown = EFalse;
PowerDownDone();
}
}
}
/**
Convert digitiser coordinates to screen coordinates
@param aDigitiserPoint the digitiser coordinates
@param aScreenPoint A TPoint supplied by the caller.
On return, set to the converted screen coordinates in pixels.
@return KErrNone if successful
*/
TInt DTemplateDigitiser::DigitiserToScreen(const TPoint& aDigitiserPoint, TPoint& aScreenPoint)
{
NKern::LockSystem();
TInt R11 = iMachineConfig.iCalibration.iR11;
TInt R12 = iMachineConfig.iCalibration.iR12;
TInt R21 = iMachineConfig.iCalibration.iR21;
TInt R22 = iMachineConfig.iCalibration.iR22;
TInt TX = iMachineConfig.iCalibration.iTx;
TInt TY = iMachineConfig.iCalibration.iTy;
NKern::UnlockSystem();
TInt X = aDigitiserPoint.iX;
TInt Y = aDigitiserPoint.iY;
aScreenPoint.iX = (X*R11 + Y*R21 + TX) >> 16;
aScreenPoint.iY = (X*R12 + Y*R22 + TY) >> 16;
DEBUG_PRINT(Kern::Printf("DtS: Dp.x %d, Dp.y %d, Sp.x %d, Sp.y %d", X,Y,aScreenPoint.iX,aScreenPoint.iY));
return KErrNone;
}
/**
Convert screen coordinates back into digitiser coordinates
using the current constants from the superpage
@param aX The screen X coordinate in pixels; On return, set to the digitiser X coordinate.
@param aY The screen Y coordinate in pixels; On return, set to the digitiser Y coordinate.
*/
void DTemplateDigitiser::ScreenToDigitiser(TInt& aX, TInt& aY)
{
NKern::LockSystem();
Int64 R11 = iMachineConfig.iCalibration.iR11;
Int64 R12 = iMachineConfig.iCalibration.iR12;
Int64 R21 = iMachineConfig.iCalibration.iR21;
Int64 R22 = iMachineConfig.iCalibration.iR22;
Int64 TX = iMachineConfig.iCalibration.iTx;
Int64 TY = iMachineConfig.iCalibration.iTy;
NKern::UnlockSystem();
Int64 X = aX;
Int64 Y = aY;
//
// Xd=(Xs<<16)*R22-(Ys<<16)*R21-(TX*R22)+(TY*R21)
// -------------------------------------------
// (R22*R11)-(R21*R12)
//
//
// Yd=(Xs<<16)*R12-(Ys<<16)*R11-(TX*R12)+(TY*R11)
// -------------------------------------------
// (R21*R12)-(R22*R11)
//
// where Xd and Yd are digitiser coordinates
// Xs and Ys are supplied screen coordinates
//
X<<=16;
Y<<=16;
Int64 d=Int64(R21)*Int64(R12)-Int64(R22)*Int64(R11);
Int64 r=(X*R12)-(Y*R11)-(TX*R12)+(TY*R11);
r=r/d;
aY=(TInt)r;
r=(X*R22)-(Y*R21)-(TX*R22)+(TY*R21);
r=r/(-d);
aX=(TInt)r;
}
/**
Calculate values for R11, R12, R21, R22, TX and TY
@param aCalibration the screen coordinates of points touched
@return KErrNone if successful
*/
TInt DTemplateDigitiser::SetXYInputCalibration(const TDigitizerCalibration& aCalibration)
{
TInt R11,R12,R21,R22,TX,TY;
//
// Get coords of expected points
//
TDigitizerCalibration cal;
TInt ret=CalibrationPoints(cal);
if (ret!=KErrNone)
return ret;
TInt Xp1=cal.iTl.iX;
TInt Yp1=cal.iTl.iY;
TInt Xp2=cal.iBl.iX;
TInt Yp2=cal.iBl.iY;
TInt Xp3=cal.iBr.iX;
TInt Yp3=cal.iBr.iY;
//
// Get coords of points touched in screen coordinates
//
TInt X1=aCalibration.iTl.iX;
TInt Y1=aCalibration.iTl.iY;
TInt X2=aCalibration.iBl.iX;
TInt Y2=aCalibration.iBl.iY;
TInt X3=aCalibration.iBr.iX;
TInt Y3=aCalibration.iBr.iY;
//
// Convert back to raw digitiser coordinates
//
ScreenToDigitiser(X1,Y1);
ScreenToDigitiser(X2,Y2);
ScreenToDigitiser(X3,Y3);
//
// (Y1-Y2)(Xp1-Xp3) - (Y1-Y3)(Xp1-Xp2)
// ----------------------------------- = R11
// (Y1-Y2)(X1-X3) - (Y1-Y3)(X1-X2)
//
Int64 r=((Int64(Y1-Y2)*Int64(Xp1-Xp3))-(Int64(Y1-Y3)*Int64(Xp1-Xp2)));
r<<=16;
r/=(Int64(Y1-Y2)*Int64(X1-X3)-Int64(Y1-Y3)*Int64(X1-X2));
R11=(TInt)r;
//
// (Y1-Y2)(Yp1-Yp3) - (Y1-Y3)(Yp1-Yp2)
// ----------------------------------- = R12
// (Y1-Y2)(X1-X3) - (Y1-Y3)(X1-X2)
//
r=((Int64(Y1-Y2)*Int64(Yp1-Yp3))-(Int64(Y1-Y3)*Int64(Yp1-Yp2)));
r<<=16;
r/=(Int64(Y1-Y2)*Int64(X1-X3)-Int64(Y1-Y3)*Int64(X1-X2));
R12=(TInt)r;
//
// (X1-X3)(Xp2-Xp3) - (X2-X3)(Xp1-Xp3)
// ----------------------------------- = R21
// (Y2-Y3)(X1-X3) - (Y1-Y3)(X2-X3)
//
r=(((X1-X3)*(Xp2-Xp3))-((X2-X3)*(Xp1-Xp3)));
r<<=16;
r/=(Int64(Y2-Y3)*Int64(X1-X3)-Int64(Y1-Y3)*Int64(X2-X3));
R21=(TInt)r;
//
// (X1-X3)(Yp2-Yp3) - (X2-X3)(Yp1-Yp3)
// ----------------------------------- = R22
// (Y2-Y3)(X1-X3) - (Y1-Y3)(X2-X3)
//
r=((Int64(X1-X3)*Int64(Yp2-Yp3))-(Int64(X2-X3)*Int64(Yp1-Yp3)));
r<<=16;
r/=(Int64(Y2-Y3)*Int64(X1-X3)-Int64(Y1-Y3)*Int64(X2-X3));
R22=(TInt)r;
//
// TX = Xp1 - X1*R11 - Y1*R21
//
TX=(Xp1<<16)-(X1*R11)-(Y1*R21);
//
// TY = Yp1 - X1*R12 - Y1*R22
//
TY=(Yp1<<16)-(X1*R12)-(Y1*R22);
//
// Write new values into the superpage
//
NKern::LockSystem();
iMachineConfig.iCalibration.iR11 = R11;
iMachineConfig.iCalibration.iR12 = R12;
iMachineConfig.iCalibration.iR21 = R21;
iMachineConfig.iCalibration.iR22 = R22;
iMachineConfig.iCalibration.iTx = TX;
iMachineConfig.iCalibration.iTy = TY;
NKern::UnlockSystem();
return(KErrNone);
}
/**
Informs the user-side calibration application where to draw
the cross-hairs on the screen
@param aCalibration On return contains the for points on the screen (in screen coordinates)
where the cross-hairs should be drawn
@return KErrNone if succcessful
*/
TInt DTemplateDigitiser::CalibrationPoints(TDigitizerCalibration& aCalibration)
{
TVideoInfoV01Buf buf;
TVideoInfoV01& vidinfo=buf();
TInt r = Kern::HalFunction(EHalGroupDisplay, EDisplayHalCurrentModeInfo, (TAny*)&buf, NULL);
if (r!=KErrNone)
return r;
iScreenSize=vidinfo.iSizeInPixels;
aCalibration.iBl.iX = aCalibration.iTl.iX = iScreenSize.iWidth/10;
aCalibration.iTr.iY = aCalibration.iTl.iY = iScreenSize.iHeight/10;
aCalibration.iBr.iY = aCalibration.iBl.iY = iScreenSize.iHeight-iScreenSize.iHeight/10;
aCalibration.iTr.iX = aCalibration.iBr.iX = iScreenSize.iWidth-iScreenSize.iWidth/10;
return r;
}
/**
Saves the digitiser calibration to the persistent machine configuration area
so that it can be restored after a power-down/up
@return KErrNone if succcessful
*/
TInt DTemplateDigitiser::SaveXYInputCalibration()
{
NKern::LockSystem();
iMachineConfig.iCalibrationSaved = iMachineConfig.iCalibration;
NKern::UnlockSystem();
return(KErrNone);
}
/**
Restores the digitiser calibration from the persistent machine configuration area
following a power-up
@param aType indicates whether to restore factory or saved settings
@return KErrNone if succcessful
*/
TInt DTemplateDigitiser::RestoreXYInputCalibration(TDigitizerCalibrationType aType)
{
TInt r=KErrNone;
NKern::LockSystem();
switch (aType)
{
case EFactory:
iMachineConfig.iCalibration=iMachineConfig.iCalibrationFactory;
break;
case ESaved:
iMachineConfig.iCalibration=iMachineConfig.iCalibrationSaved;
break;
default:
r=KErrNotSupported;
break;
}
NKern::UnlockSystem();
return r;
}
/**
Gets the digitiser configuration information
@param aInfo On return, contains information about the digitiser's dimensions etc.
*/
void DTemplateDigitiser::DigitiserInfo(TDigitiserInfoV01& aInfo)
{
__KTRACE_OPT(KEXTENSION,Kern::Printf("DTemplateDigitiser::DigitiserInfo"));
aInfo.iDigitiserSize.iWidth=KConfigXyWidth;
aInfo.iDigitiserSize.iHeight=KConfigXyHeight;
aInfo.iOffsetToDisplay.iX=KConfigXyOffsetX;
aInfo.iOffsetToDisplay.iY=KConfigXyOffsetY;
}
/**
Issues a pen move event if the distance from the last point is greater than the threshold
@param aPoint the pen position in screen coordinates
*/
void DTemplateDigitiser::FilterPenMove(const TPoint& aPoint)
{
TPoint offset=aPoint;
offset.iX-=iLastPos.iX;
offset.iY-=iLastPos.iY;
if (Abs(offset.iX)>=iCfg.iAccThresholdX || Abs(offset.iY)>=iCfg.iAccThresholdY)
{
iLastPos=aPoint;
IssuePenMoveEvent(aPoint);
}
}
/**
Reset the pen move filter
*/
void DTemplateDigitiser::ResetPenMoveFilter()
{
}