// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// omap3530/omap3530_drivers/i2c/i2c.cpp
// I2C Driver
// Main interface, I2c, is declared in omap3530_i2c.h
// A more restricted register orientated interface, I2cReg, is declared in omap3530_i2creg.h
// This file is part of the Beagle Base port
//
#include <assp/omap3530_assp/omap3530_i2creg.h>
#include <assp/omap3530_assp/omap3530_irqmap.h>
#include <assp/omap3530_assp/omap3530_hardware_base.h>
#include <assp/omap3530_assp/omap3530_ktrace.h>
//#include <assp/omap3530_assp/omap3530_prm.h>
#include <assp/omap3530_assp/omap3530_prcm.h>
#include <nk_priv.h>
#include <nklib.h>
//#include <resourceman.h>
_LIT(KDfcName, "I2C_DFC"); // Not used by the I2c dfc!
DECLARE_STANDARD_EXTENSION()
{
return KErrNone;
}
namespace I2c
{
const TInt KMaxDevicesPerUnit = 8; // arbitary - change if required
const TInt KNumUnits = E3 + 1;
// Each unit has KMaxDevicesPerUnit of these structures. At least one for each slave device on it's bus.
struct TDeviceControl
{
TDeviceAddress iAddress; // the slave devices address; 7 or 10 bits
TDfcQue* iDfcQueue; // calling driver's DFC thread
NFastSemaphore iSyncSem; // used to block the calling thread during synchronous transfers
};
// There are three instances of this structure - one for each I2C bus on the OMAP3530
struct TUnitControl
{
TUnitControl();
TSpinLock iLock; // prevents concurrent access to the request queue
DMutex* iOpenMutex;
enum
{
EIdle,
ERead,
EWrite
} iState;
// Configuration stored and checked during Open()
TRole iRole;
TMode iMode;
void* iExclusiveClient;
TRate iRate;
TDeviceAddress iOwnAddress;
// The DFC for this unit - it runs on the thread associated with the active transfer
TDfc iDfc;
// the slave devices on this unit's bus
TDeviceControl iDevice[KMaxDevicesPerUnit];
TInt iNumDevices;
// The queue of requested transfers - the active transfer is the head of the queue
TTransferPb* iTransferQ;
TTransferPb* iTransferQTail; // the last transfer on the queue
// the current phase of the sctive transfer
TTransferPb* iCurrentPhase;
};
// The OMAP3530 register address
const TUint KI2C_IE[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070004>::Value, Omap3530HwBase::TVirtual<0x48072004>::Value, Omap3530HwBase::TVirtual<0x48060004>::Value};
const TUint KI2C_STAT[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070008>::Value, Omap3530HwBase::TVirtual<0x48072008>::Value, Omap3530HwBase::TVirtual<0x48060008>::Value};
//const TUint KI2C_WE[KNumUnits] =
// {Omap3530HwBase::TVirtual<0x4807000C>::Value, Omap3530HwBase::TVirtual<0x4807200C>::Value, Omap3530HwBase::TVirtual<0x4806000C>::Value};
const TUint KI2C_SYSS[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070010>::Value, Omap3530HwBase::TVirtual<0x48072010>::Value, Omap3530HwBase::TVirtual<0x48060010>::Value};
const TUint KI2C_BUF[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070014>::Value, Omap3530HwBase::TVirtual<0x48072014>::Value, Omap3530HwBase::TVirtual<0x48060014>::Value};
const TUint KI2C_CNT[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070018>::Value, Omap3530HwBase::TVirtual<0x48072018>::Value, Omap3530HwBase::TVirtual<0x48060018>::Value};
const TUint KI2C_DATA[KNumUnits] =
{Omap3530HwBase::TVirtual<0x4807001C>::Value, Omap3530HwBase::TVirtual<0x4807201C>::Value, Omap3530HwBase::TVirtual<0x4806001C>::Value};
const TUint KI2C_SYSC[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070020>::Value, Omap3530HwBase::TVirtual<0x48072020>::Value, Omap3530HwBase::TVirtual<0x48060020>::Value};
const TUint KI2C_CON[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070024>::Value, Omap3530HwBase::TVirtual<0x48072024>::Value, Omap3530HwBase::TVirtual<0x48060024>::Value};
//const TUint KI2C_OA0[KNumUnits] =
// {Omap3530HwBase::TVirtual<0x48070028>::Value, Omap3530HwBase::TVirtual<0x48072028>::Value, Omap3530HwBase::TVirtual<0x48060028>::Value};
const TUint KI2C_SA[KNumUnits] =
{Omap3530HwBase::TVirtual<0x4807002C>::Value, Omap3530HwBase::TVirtual<0x4807202C>::Value, Omap3530HwBase::TVirtual<0x4806002C>::Value};
const TUint KI2C_PSC[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070030>::Value, Omap3530HwBase::TVirtual<0x48072030>::Value, Omap3530HwBase::TVirtual<0x48060030>::Value};
const TUint KI2C_SCLL[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070034>::Value, Omap3530HwBase::TVirtual<0x48072034>::Value, Omap3530HwBase::TVirtual<0x48060034>::Value};
const TUint KI2C_SCLH[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070038>::Value, Omap3530HwBase::TVirtual<0x48072038>::Value, Omap3530HwBase::TVirtual<0x48060038>::Value};
//const TUint KI2C_SYSTEST[KNumUnits] =
// {Omap3530HwBase::TVirtual<0x4807003C>::Value, Omap3530HwBase::TVirtual<0x4807203C>::Value, Omap3530HwBase::TVirtual<0x4806003C>::Value};
const TUint KI2C_BUFSTAT[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070040>::Value, Omap3530HwBase::TVirtual<0x48072040>::Value, Omap3530HwBase::TVirtual<0x48060040>::Value};
const TUint KI2C_OA1[KNumUnits] =
{Omap3530HwBase::TVirtual<0x48070044>::Value, Omap3530HwBase::TVirtual<0x48072044>::Value, Omap3530HwBase::TVirtual<0x48060044>::Value};
//const TUint KI2C_OA2[KNumUnits] =
// {Omap3530HwBase::TVirtual<0x48070048>::Value, Omap3530HwBase::TVirtual<0x48072048>::Value, Omap3530HwBase::TVirtual<0x48060048>::Value};
//const TUint KI2C_OA3[KNumUnits] =
// {Omap3530HwBase::TVirtual<0x4807004C>::Value, Omap3530HwBase::TVirtual<0x4807204C>::Value, Omap3530HwBase::TVirtual<0x4806004C>::Value};
//const TUint KI2C_ACTOA[KNumUnits] =
// {Omap3530HwBase::TVirtual<0x48070050>::Value, Omap3530HwBase::TVirtual<0x48072050>::Value, Omap3530HwBase::TVirtual<0x48060050>::Value};
//const TUint KI2C_SBLOCK[KNumUnits] =
// {Omap3530HwBase::TVirtual<0x48070054>::Value, Omap3530HwBase::TVirtual<0x48072054>::Value, Omap3530HwBase::TVirtual<0x48060054>::Value};
const TUint KCM_ICLKEN1_CORE = Omap3530HwBase::TVirtual<0x48004A10>::Value;
const TUint KCM_FCLKEN1_CORE = Omap3530HwBase::TVirtual<0x48004A00>::Value;
// the Id's used when binding the interrupts
const TOmap3530_IRQ KIrqId[KNumUnits] = {EOmap3530_IRQ56_I2C1_IRQ, EOmap3530_IRQ57_I2C2_IRQ, EOmap3530_IRQ61_I2C3_IRQ};
// The three unit control blocks; one for each unit
TUnitControl gUcb[KNumUnits];
//TUint prmClientId;
TUnit RawUnit(THandle aHandle);
TUnit Unit(THandle aHandle);
TUnitControl& UnitCb(THandle aHandle);
TDeviceAddress Device(THandle aHandle);
TDeviceControl& DeviceCb(THandle aHandle);
THandle Handle(TUnit aUnit, TDeviceAddress aDeviceAddress);
void Complete(TUnitControl& aUnit, TInt aResult);
void Configure(TUnit); // reset and configure an I2C unit
void Deconfigure(TUnit);
void TheIsr(void*);
void TheDfc(TAny* aUnit);
EXPORT_C TConfigPb::TConfigPb() :
iUnit((TUnit)-1), // ensure that an un-initialised cpb will return KErrArgument from Open()
iExclusiveClient(0),
iDeviceAddress(1)
{}
EXPORT_C TTransferPb::TTransferPb() :
iNextPhase(0)
{}
EXPORT_C THandle Open(const TConfigPb& aConfig)
{
//TInt r = PowerResourceManager::RegisterClient( prmClientId, KDfcName );
//__NK_ASSERT_ALWAYS(r==KErrNone);
THandle h;
__NK_ASSERT_ALWAYS(aConfig.iVersion == I2C_VERSION);
if (aConfig.iUnit >= E1 && aConfig.iUnit <= E3)
{
TUnitControl& unit = gUcb[aConfig.iUnit];
Kern::MutexWait( *unit.iOpenMutex );
if (unit.iNumDevices == 0)
{
if (aConfig.iRole == EMaster &&
aConfig.iMode == E7Bit &&
aConfig.iRate >= E100K && aConfig.iRate <= E400K)
{
unit.iRole = aConfig.iRole;
unit.iMode = aConfig.iMode;
unit.iExclusiveClient = aConfig.iExclusiveClient;
unit.iRate = aConfig.iRate;
unit.iDevice[unit.iNumDevices].iAddress = aConfig.iDeviceAddress;
unit.iDevice[unit.iNumDevices++].iDfcQueue = aConfig.iDfcQueue;
h = Handle(aConfig.iUnit, aConfig.iDeviceAddress);
Configure(aConfig.iUnit);
TInt r = Interrupt::Bind(KIrqId[aConfig.iUnit], TheIsr, (void*) aConfig.iUnit);
__NK_ASSERT_DEBUG(r == KErrNone);
}
else
{
h = KErrArgument;
}
}
else // unit is already open
{
if (unit.iNumDevices < KMaxDevicesPerUnit)
{
if (unit.iRole == aConfig.iRole &&
unit.iMode == aConfig.iMode &&
unit.iExclusiveClient == aConfig.iExclusiveClient &&
unit.iRate == aConfig.iRate)
{
h = 0;
for (TInt i = 0; i < unit.iNumDevices; i++)
{
if (unit.iDevice[i].iAddress == aConfig.iDeviceAddress)
{
h = KErrInUse;
break;
}
}
if (h == 0)
{
unit.iDevice[unit.iNumDevices].iAddress = aConfig.iDeviceAddress;
unit.iDevice[unit.iNumDevices++].iDfcQueue = aConfig.iDfcQueue;
h = Handle(aConfig.iUnit, aConfig.iDeviceAddress);
}
}
else
{
h = KErrInUse;
}
}
else
{
h = KErrTooBig;
}
}
Kern::MutexSignal( *unit.iOpenMutex );
}
else
{
h = KErrArgument;
}
return h;
}
EXPORT_C void Close(THandle& aHandle)
{
TUnit unitI = RawUnit(aHandle);
if (unitI >= E1 && unitI <= E3)
{
TUnitControl& unit = gUcb[unitI];
Kern::MutexWait( *unit.iOpenMutex );
TInt i = 0;
for (; i < unit.iNumDevices; i++)
{
if (unit.iDevice[i].iAddress == Device(aHandle))
{
unit.iNumDevices--;
break;
}
}
for (; i < unit.iNumDevices; i++)
{
unit.iDevice[i] = unit.iDevice[i + 1];
}
if (unit.iNumDevices == 0)
{
(void) Interrupt::Unbind(KIrqId[unitI]);
Deconfigure(TUnit(unitI));
}
Kern::MutexSignal( *unit.iOpenMutex );
}
aHandle = -1;
//PowerResourceManager::DeRegisterClient(prmClientId);
//prmClientId=0;
}
void AddToQueue( TUnitControl& aUnit, TDeviceControl& aDcb, TTransferPb& aWcb )
{
TInt irq = __SPIN_LOCK_IRQSAVE(aUnit.iLock);
if (aUnit.iTransferQ == 0)
{
__NK_ASSERT_DEBUG(aUnit.iState == TUnitControl::EIdle);
aUnit.iTransferQ = &aWcb;
aUnit.iCurrentPhase = &aWcb;
aUnit.iTransferQTail = &aWcb;
aUnit.iDfc.SetDfcQ(aDcb.iDfcQueue);
aUnit.iDfc.Enque();
}
else
{
__NK_ASSERT_DEBUG(aUnit.iTransferQTail->iNextTransfer == 0);
aUnit.iTransferQTail->iNextTransfer = &aWcb;
aUnit.iTransferQTail = &aWcb;
}
__SPIN_UNLOCK_IRQRESTORE(unit.iLock, irq);
}
EXPORT_C TInt TransferS(THandle aHandle, TTransferPb& aWcb)
{
__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("+I2C:TransferS")));
CHECK_PRECONDITIONS(MASK_NOT_ISR, "I2c::TransferS");
aWcb.iNextTransfer = 0;
aWcb.iCompletionDfc = 0; // indicate that it is a sync transfer and the FSM needs to Signal the semaphore
TDeviceControl& dcb = DeviceCb(aHandle);
aWcb.iDcb = &dcb;
aWcb.iResult = (TInt)&dcb.iSyncSem; // use the async tranfer result member to store the semaphore // Todo: store ptr to dcb in aWcb
NKern::FSSetOwner(&dcb.iSyncSem, 0);
TUnitControl& unit = UnitCb(aHandle);
AddToQueue( unit, dcb, aWcb );
NKern::FSWait(&dcb.iSyncSem);
__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("-I2C:TransferS:%d", aWcb.iResult)));
return aWcb.iResult;
}
EXPORT_C void TransferA(THandle aHandle, TTransferPb& aWcb)
{
__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("+I2C:TransferA")));
CHECK_PRECONDITIONS(MASK_NOT_ISR, "I2c::TransferA");
aWcb.iNextTransfer = 0;
TDeviceControl& dcb = DeviceCb(aHandle);
aWcb.iDcb = &dcb;
TUnitControl& unit = UnitCb(aHandle);
AddToQueue( unit, dcb, aWcb );
__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("-I2C:TransferA")));
}
EXPORT_C void CancelATransfer(THandle)
{
}
inline TBool BitSet(TUint32 aWord, TUint32 aMask)
{
return (aWord & aMask) != 0;
}
const TUint32 KStatBb = 1 << 12;
const TUint32 KStatNack = 1 << 1;
const TUint32 KStatAl = 1 << 0;
const TUint32 KStatArdy = 1 << 2;
const TUint32 KStatRdr = 1 << 13;
const TUint32 KStatRRdy = 1 << 3;
const TUint32 KStatXdr = 1 << 14;
const TUint32 KStatXrdy = 1 << 4;
const TUint32 KStatBf = 1 << 8;
const TUint32 KStatInterupts = KStatXdr | KStatRdr | KStatBf | KStatXrdy | KStatRRdy | KStatArdy | KStatNack | KStatAl;
const TUint32 KConMst = 1 << 10;
const TUint32 KConI2cEn = 1 << 15;
const TUint32 KConTrx = 1 << 9;
const TUint32 KConStp = 1 << 1;
const TUint32 KConStt = 1 << 0;
void TheDfc(TAny* aUnit)
{
TUnit unitI = (TUnit)(TInt)aUnit;
TUnitControl& unit = gUcb[unitI];
__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("I2C:DFC:S%d", unit.iState)) );
switch (unit.iState)
{
case TUnitControl::EIdle:
{
// 18.5.1.1.2
// 1
TTransferPb& tpb = *unit.iTransferQ;
TTransferPb& ppb = *unit.iCurrentPhase;
TUint32 con = KConI2cEn | KConMst;
if (ppb.iType == TTransferPb::EWrite)
{
con |= KConTrx;
}
AsspRegister::Write16(KI2C_CON[unitI], con);
// 18.5.1.1.3
TUint32 sa = AsspRegister::Read16(KI2C_SA[unitI]);
__KTRACE_OPT(KI2C, Kern::Printf("I2C:SA[%d]: 0x%04x<-0x%04x", unitI, sa, tpb.iDcb->iAddress));
AsspRegister::Write16(KI2C_SA[unitI], tpb.iDcb->iAddress);
TUint32 cnt = AsspRegister::Read16(KI2C_CNT[unitI]);
__KTRACE_OPT(KI2C, Kern::Printf("I2C:CNT[%d]: 0x%04x<-0x%04x", unitI, cnt, ppb.iLength));
AsspRegister::Write16(KI2C_CNT[unitI], ppb.iLength);
// 18.5.1.1.4
if (ppb.iNextPhase == 0) // last phase
{
con |= KConStp; // STP
}
con |= KConStt; // STT
if (&tpb == &ppb) // first phase
{
TInt im = NKern::DisableAllInterrupts(); // ensure that the transaction is started while the bus is free
TUint32 stat = AsspRegister::Read16(KI2C_STAT[unitI]);
__KTRACE_OPT(KI2C, Kern::Printf("I2C:STAT[%d]: 0x%04x", unitI, stat));
__NK_ASSERT_ALWAYS(!BitSet(stat, KStatBb)); // if multi-master then need a polling state with a timeout
AsspRegister::Write16(KI2C_CON[unitI], con);
NKern::RestoreInterrupts(im);
}
else // a follow on phase
{
AsspRegister::Write16(KI2C_CON[unitI], con);
}
__KTRACE_OPT(KI2C, Kern::Printf("I2C:CON[%d]: 0x%04x", unitI, con));
__KTRACE_OPT(KI2C, Kern::Printf("I2C:..CNT[%d]: 0x%04x", unitI, AsspRegister::Read16(KI2C_CNT[unitI])));
if (ppb.iType == TTransferPb::ERead)
{
unit.iState = TUnitControl::ERead;
}
else
{
unit.iState = TUnitControl::EWrite;
}
}
break;
case TUnitControl::ERead:
case TUnitControl::EWrite:
{
TTransferPb& ppb = *unit.iCurrentPhase;
TUint32 stat = AsspRegister::Read16(KI2C_STAT[unitI]);
__KTRACE_OPT(KI2C, Kern::Printf("I2C:STAT[%d]: 0x%04x", unitI, stat));
do
{
if (BitSet(stat, KStatNack))
{
__KTRACE_OPT(KI2C, Kern::Printf("I2C:N"));
Configure(unitI); // reset the whole unit. Need more testing to determine the correct behavior.
__KTRACE_OPT(KI2C, Kern::Printf("I2C:CON|STAT[%d]: 0x%04x|0x%04x", unitI, AsspRegister::Read16(KI2C_CON[unitI]), AsspRegister::Read16(KI2C_STAT[unitI])));
Complete(unit, KErrGeneral);
return;
}
if (BitSet(stat, KStatAl))
{
__KTRACE_OPT(KI2C, Kern::Printf("I2C:A"));
AsspRegister::Write16(KI2C_STAT[unitI], KStatAl);
if((AsspRegister::Read16(KI2C_CON[unitI]) & (KConMst | KConStp)) == 0)
{
AsspRegister::Modify16(KI2C_CON[unitI], KClearNone, KConStp);
Complete(unit, KErrGeneral);
return;
}
}
if (BitSet(stat, KStatArdy))
{
__KTRACE_OPT(KI2C, Kern::Printf("I2C:Y"));
AsspRegister::Write16(KI2C_STAT[unitI], KStatArdy);
if (ppb.iNextPhase != 0)
{
unit.iCurrentPhase = ppb.iNextPhase;
unit.iState = TUnitControl::EIdle;
unit.iDfc.Enque();
return;
}
else
{
Complete(unit, KErrNone);
return;
}
}
if (BitSet(stat, KStatRdr))
{
__NK_ASSERT_DEBUG(unit.iState == TUnitControl::ERead);
TUint32 rxstat = AsspRegister::Read16(KI2C_BUFSTAT[unitI]) >> 8;
rxstat &= 0x3f;
__KTRACE_OPT(KI2C, Kern::Printf("I2C:R%d", rxstat));
for (TUint i = 0; i < rxstat; i++)
{
TUint8* d = const_cast<TUint8*>(ppb.iData++);
*d = (TUint8) AsspRegister::Read16(KI2C_DATA[unitI]);
}
AsspRegister::Write16(KI2C_STAT[unitI], KStatRdr);
}
else if (BitSet(stat, KStatRRdy))
{
__KTRACE_OPT(KI2C, Kern::Printf("I2C:..BUF:%x BUFSTAT:%x", AsspRegister::Read16(KI2C_BUF[unitI]), AsspRegister::Read16(KI2C_BUFSTAT[unitI])));
__NK_ASSERT_DEBUG(unit.iState == TUnitControl::ERead);
TUint32 rtrsh = AsspRegister::Read16(KI2C_BUF[unitI]) >> 8;
rtrsh &= 0x3f;
__KTRACE_OPT(KI2C, Kern::Printf("I2C:RD%d", rtrsh + 1));
for (TUint i = 0; i < rtrsh + 1; i++)
{
TUint8* d = const_cast<TUint8*>(ppb.iData++);
*d = (TUint8) AsspRegister::Read16(KI2C_DATA[unitI]);
}
AsspRegister::Write16(KI2C_STAT[unitI], KStatRRdy);
}
if (BitSet(stat, KStatXdr))
{
__NK_ASSERT_DEBUG(unit.iState == TUnitControl::EWrite);
TUint32 txstat = AsspRegister::Read16(KI2C_BUFSTAT[unitI]);
txstat &= 0x3f;
__KTRACE_OPT(KI2C, Kern::Printf("I2C:W%d", txstat));
for (TUint i = 0; i < txstat; i++)
{
AsspRegister::Write16(KI2C_DATA[unitI], *ppb.iData++);
}
AsspRegister::Write16(KI2C_STAT[unitI], KStatXdr);
}
else if (BitSet(stat, KStatXrdy))
{
__NK_ASSERT_DEBUG(unit.iState == TUnitControl::EWrite);
TUint32 xtrsh = AsspRegister::Read16(KI2C_BUF[unitI]);
xtrsh &= 0x3f;
__KTRACE_OPT(KI2C, Kern::Printf("I2C:WD%d", xtrsh + 1));
for (TUint i = 0; i < xtrsh + 1; i++)
{
AsspRegister::Write16(KI2C_DATA[unitI], *ppb.iData++);
}
AsspRegister::Write16(KI2C_STAT[unitI], KStatXrdy);
}
/* if (stat == KStatBf)
{
__KTRACE_OPT(KI2C, Kern::Printf("F"));
__NK_ASSERT_ALWAYS(ppb.iNextPhase == 0);
AsspRegister::Write16(KI2C_STAT[unitI], KStatBf);
Complete(unit, KErrNone);
return;
}
*/ stat = AsspRegister::Read16(KI2C_STAT[unitI]);
__KTRACE_OPT(KI2C, Kern::Printf("I2C:STAT[%d]: 0x%04x", unitI, stat));
} while (BitSet(stat, KStatInterupts));
}
break;
}
Interrupt::Enable(KIrqId[unitI]);
}
TUnitControl::TUnitControl() :
iLock(TSpinLock::EOrderGenericIrqLow1),
iDfc(TheDfc, 0, 1),
iNumDevices(0),
iTransferQ(0)
{
iDfc.iPtr = (void*)(this - gUcb); // unit index
__ASSERT_ALWAYS( Kern::MutexCreate( iOpenMutex, KNullDesC, KMutexOrdGeneral0 ) == KErrNone, Kern::Fault( "I2C", __LINE__ ) );
}
void TheIsr(void* aUnit)
{
TUnit unitI = (TUnit)(TInt)aUnit;
Interrupt::Disable(KIrqId[unitI]);
TUnitControl& unit = gUcb[unitI];
__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("=I2C:DFC:u%x", &unit )));
unit.iDfc.Add();
}
void Configure(TUnit aUnitI)
{
__ASSERT_NO_FAST_MUTEX;
__NK_ASSERT_ALWAYS(aUnitI<3);
// 18.5.1.1.1
// 1
//TInt r = PowerResourceManager::ChangeResourceState( prmClientId, Omap3530Prm::EPrmClkI2c1_F+aUnitI, Prcm::EClkOn );
//r = PowerResourceManager::ChangeResourceState( prmClientId, Omap3530Prm::EPrmClkI2c1_I+aUnitI, Prcm::EClkOn );
TUint32 iClkEn = AsspRegister::Read16(KCM_ICLKEN1_CORE);
TUint32 fClkEn = AsspRegister::Read16(KCM_FCLKEN1_CORE);
__KTRACE_OPT(KI2C, Kern::Printf("I2C:CM_I|FCLKEN1[%d]: 0x%04x|0x%04x", aUnitI, iClkEn, fClkEn));
AsspRegister::Modify32(KCM_ICLKEN1_CORE, 0, 1 << 15 + aUnitI);
AsspRegister::Modify32(KCM_FCLKEN1_CORE, 0, 1 << 15 + aUnitI);
// Reset
AsspRegister::Write16(KI2C_SYSC[aUnitI], 0x0002);
if (gUcb[aUnitI].iRate == E100K)
{
// 2
AsspRegister::Write16(KI2C_PSC[aUnitI], 23);
// 3 + 4
AsspRegister::Write16(KI2C_SCLL[aUnitI], 0x000d); // 100kHz F/S, 400kHz HS
AsspRegister::Write16(KI2C_SCLH[aUnitI], 0x000f);
}
else if (gUcb[aUnitI].iRate == E400K)
{
// 2
AsspRegister::Write16(KI2C_PSC[aUnitI], 9);
// 3 + 4
AsspRegister::Write16(KI2C_SCLL[aUnitI], 0x0005); // 400kHz F/S, 400kHz HS
AsspRegister::Write16(KI2C_SCLH[aUnitI], 0x0007);
}
// 6
AsspRegister::Write16(KI2C_OA1[aUnitI], gUcb[aUnitI].iOwnAddress);
// 7
TUint32 buf = AsspRegister::Read16(KI2C_BUF[aUnitI]);
__KTRACE_OPT(KI2C, Kern::Printf("I2C:I2C_BUF[%d]: 0x%04x", aUnitI, buf));
// 8
TUint32 con = AsspRegister::Read16(KI2C_CON[aUnitI]);
__KTRACE_OPT(KI2C, Kern::Printf("I2C:I2C_CON[%d]: 0x%04x<-0x%04x", aUnitI, con, con | 1 << 15));
AsspRegister::Modify16(KI2C_CON[aUnitI], 0, 1 << 15);
TUint32 syss = AsspRegister::Read16(KI2C_SYSS[aUnitI]);
__NK_ASSERT_DEBUG(syss == 0x1);
// set-up interrupts
TUint32 ie = AsspRegister::Read16(KI2C_IE[aUnitI]);
__KTRACE_OPT(KI2C, Kern::Printf("I2C:IE[%d]: 0x%04x<-0x%04x", aUnitI, ie, KStatInterupts));
AsspRegister::Write16(KI2C_IE[aUnitI], KStatInterupts);
}
void Deconfigure(TUnit aUnitI)
{
__ASSERT_NO_FAST_MUTEX;
__NK_ASSERT_ALWAYS(aUnitI<3);
//TInt r = PowerResourceManager::ChangeResourceState( prmClientId, Omap3530Prm::EPrmClkI2c1_F+aUnitI, Prcm::EClkOff );
//__KTRACE_OPT(KBOOT, Kern::Printf("EPrmClkI2c%d_F DIS %d", aUnitI, r));
//r = PowerResourceManager::ChangeResourceState( prmClientId, Omap3530Prm::EPrmClkI2c1_I+aUnitI, Prcm::EClkOff );
//__KTRACE_OPT(KBOOT, Kern::Printf("EPrmClkI2c%d_I DIS %d", aUnitI, r));
AsspRegister::Modify32(KCM_ICLKEN1_CORE, 1 << 15 + aUnitI, 0);
AsspRegister::Modify32(KCM_FCLKEN1_CORE, 1 << 15 + aUnitI, 0);
}
THandle Handle(TUnit aUnit, TDeviceAddress aDeviceAddress)
{
return THandle(aUnit << 16 | aDeviceAddress);
}
TUnit RawUnit(THandle aHandle)
{
TUnit r = TUnit(aHandle >> 16);
return r;
}
TUnit Unit(THandle aHandle)
{
TUnit r = RawUnit(aHandle);
if (r < E1 || r > E3)
{
__KTRACE_OPT(KI2C, Kern::Printf("I2C Unit out of range: %d", r));
r = E1;
}
return r;
}
TUnitControl& UnitCb(THandle aHandle)
{
return gUcb[Unit(aHandle)];
}
TDeviceAddress Device(THandle aHandle)
{
TDeviceAddress r = TDeviceAddress(aHandle & 0x0000ffff);
if (r < 0 || r > 1023)
{
__KTRACE_OPT(KI2C, Kern::Printf("I2C Device out of range: %d", r));
}
return r;
}
TDeviceControl& DeviceCb(THandle aHandle)
{
TUnitControl& unit = UnitCb(aHandle);
TDeviceAddress device = Device(aHandle);
TInt i = 0;
for (; i < unit.iNumDevices; i++)
{
if (unit.iDevice[i].iAddress == device)
{
break;
}
}
return unit.iDevice[i];
}
void Complete(TUnitControl& aUnit, TInt aResult)
{
aUnit.iTransferQ->iResult = aResult;
aUnit.iState = TUnitControl::EIdle;
TInt irq = __SPIN_LOCK_IRQSAVE(aUnit.iLock);
TTransferPb& tpb = *aUnit.iTransferQ;
aUnit.iTransferQ = aUnit.iTransferQ->iNextTransfer;
__SPIN_UNLOCK_IRQRESTORE(aUnit.iLock, irq);
if (tpb.iCompletionDfc == 0)
{
NKern::FSSignal(&tpb.iDcb->iSyncSem);
}
else
{
tpb.iCompletionDfc->Enque();
}
}
} // namespace I2c
namespace I2cReg
{
EXPORT_C TUint8 ReadB(I2c::THandle aH, TUint8 aAddr)
{
const TUint8 KAddress = aAddr;
I2c::TTransferPb addressPhase;
addressPhase.iType = I2c::TTransferPb::EWrite;
addressPhase.iLength = 1;
addressPhase.iData = &KAddress;
TUint8 readData;
I2c::TTransferPb dataPhase;
dataPhase.iType = I2c::TTransferPb::ERead;
dataPhase.iLength = 1;
dataPhase.iData = &readData;
addressPhase.iNextPhase = &dataPhase; // link into a two phase transfer
TInt r = KErrNone;
TInt retryCount = 0;
do
{
r=I2c::TransferS(aH, addressPhase);
retryCount++;
}
while (r != KErrNone && retryCount < 5);
__NK_ASSERT_ALWAYS(r == KErrNone);
return readData;
}
EXPORT_C void WriteB(I2c::THandle aH, TUint8 aAddr, TUint8 aData)
{
const TUint8 KAddrData[2] = {aAddr, aData};
I2c::TTransferPb fullTransfer;
fullTransfer.iType = I2c::TTransferPb::EWrite;
fullTransfer.iLength = 2;
fullTransfer.iData = KAddrData;
TInt r = KErrNone;
TInt retryCount = 0;
do
{
r=I2c::TransferS(aH, fullTransfer);
retryCount++;
}
while (r != KErrNone && retryCount < 5);
__NK_ASSERT_ALWAYS(r == KErrNone);
}
} // namespace I2cReg