Fix for Bug 3944 - Relative paths are systematically too long in Beagleboard bld.inf and .mmp files
// Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// omap3530/shared/mstick/mstick.cpp
//
#include <nk_priv.h>
#include <assp/omap3530_assp/omap3530_timer.h>
#include <assp/omap3530_assp/omap3530_prcm.h>
#include <assp/omap3530_assp/omap3530_irqmap.h>
#include <assp/omap3530_assp/omap3530_hardware_base.h>
using namespace TexasInstruments::Omap3530 ;
using namespace TexasInstruments::Omap3530::GPTimer ;
const TUint32 KMaxIdleTicks = 0xFFFFFF;
const TUint KMinSuppressTickCount = 2;
static const Omap3530HwBase::TRegValue KTickInterruptMask = TISR::T_OVF_IT_FLAG::KOn;
namespace Omap3
{
namespace MsTick
{
void MsTickIsr(TAny* aPtr )
{
// Clear interrupts
TGpTimer1::iTISR.Write( KTickInterruptMask );
TGpTimer1::iTOCR.Write( 0 );
reinterpret_cast< NTimerQ* >( aPtr )->Tick();
}
EXPORT_C TInt Start()
{
__KTRACE_OPT(KBOOT,Kern::Printf("+Omap3:MsTick:Start"));
// Enable GPT1 and set it to run from the 32kHz sysclk
Prcm::SetGptClockSource( Prcm::EGpt1, Prcm::EGptClock32k );
Prcm::SetClockState( Prcm::EClkGpt1_F, Prcm::EClkOn );
Prcm::SetClockState( Prcm::EClkGpt1_I, Prcm::EClkAuto );
__NK_ASSERT_DEBUG(TGpTimer1::iTISTAT.Read() == 0x1);
// Prcm::AddToWakeupGroup( Prcm::EClkGpt1_I, Prcm::EWakeGroupMpu );
//Set GPT1 to highest priority
Interrupt::SetPriority(EOmap3530_IRQ37_GPT1_IRQ,KOmap3530MaxIntPriority);
// Bind to GPTimer 1 interrupt
TInt r = Interrupt::Bind( TGpTimer1::Irq(), MsTickIsr, NTimerQ::TimerAddress() );
if( KErrNone == r )
{
TGpTimer1::Reset();
while ( !TGpTimer1::ResetComplete()) {}
const TRegValue startOcp = ( TIOCP_CFG::T_AUTOIDLE::KOff
| TIOCP_CFG::T_SOFTRESET::KOff
| TIOCP_CFG::T_ENAWAKEUP::KOn
| TIOCP_CFG::T_IDLEMODE::KSmartIdle
| TIOCP_CFG::T_EMUFREE::KOff
| TIOCP_CFG::T_CLOCKACTIVITY::KMaintainFuncClock);
TGpTimer1::iTIOCP_CFG.Write(startOcp) ;
TGpTimer1::iTIOCP_CFG.Modify(TIOCP_CFG::T_SOFTRESET::KOn, KClear32);
TGpTimer1::iTIOCP_CFG.Write(startOcp);
// Enable timer to generate wakeups
TGpTimer1::iTWER.Write(TWER::T_MAT_WUP_ENA::KOff | TWER::T_OVF_WUP_ENA::KOn | TWER::T_TCAR_WUP_ENA::KOff);
TGpTimer1::ConfigureFor1Ms();
TGpTimer1::iTIER.Write(TIER::T_MAT_IT_ENA::KOff | TIER::T_OVF_IT_ENA::KOn | TIER::T_TCAR_IT_ENA::KOff);
TGpTimer1::iTISR.Write(TISR::T_MAT_IT_FLAG::KOn | TISR::T_OVF_IT_FLAG::KOn | TISR::T_TCAR_IT_FLAG::KOff);
TGpTimer1::iTTGR.Write(1);
TGpTimer1::iTOWR.Write( 0 );
while (TGpTimer1::WriteOutstanding()) {}
// Start the timer in auto-reload mode
TGpTimer1::iTCLR.Modify(KClear32, (TCLR::T_ST::KOn | TCLR::T_AR::KOn | TCLR::T_IDLEMODE::KOverflow));
// Ensure Timer Control Reg write is completed
while(TGpTimer1::WriteOutstanding());
Interrupt::Enable(TGpTimer1::Irq());
}
__KTRACE_OPT(KBOOT,Kern::Printf("-Omap3:MsTick:Start:%d", r ));
return r;
}
EXPORT_C TInt SuppressIdleTicks( TInt aMaxSleepTicks )
{
TUint32 targetSleepTicks = (aMaxSleepTicks >= KMaxIdleTicks) ? KMaxIdleTicks : aMaxSleepTicks;
if( targetSleepTicks >= KMinSuppressTickCount )
{
while(TGpTimer1::WriteOutstanding());
// Mask out the next <targetSleepTicks> number of overflow events
// Don't clear TOCR - we want to include any pending expiries that happened
// while we were setting up into the sleep count
TGpTimer1::iTOWR.Write( targetSleepTicks );
// Clear any pending interrupt so we don't wake up immediately
TGpTimer1::iTISR.Write( KTickInterruptMask );
while(TGpTimer1::WriteOutstanding());
}
else
{
targetSleepTicks = 0;
}
return targetSleepTicks;
}
EXPORT_C TInt EndIdleTickSuppression( TInt aMaxSleepTicks )
{
TUint actualSleepTicks = 0;
if( aMaxSleepTicks >= KMinSuppressTickCount )
{
// Get counter values immediately. TCRR must be read first so we can check for
// overflow while we are executing this code
TUint32 tcrr = TGpTimer1::iTCRR.Read();
TUint32 tisr = TGpTimer1::iTISR.Read() bitand KTickInterruptMask;
TUint32 tocr = TGpTimer1::iTOCR.Read();
TUint32 targetSleepTicks = (aMaxSleepTicks >= KMaxIdleTicks) ? KMaxIdleTicks : aMaxSleepTicks;
// Initial assumption is number of ticks missed == overflow count
actualSleepTicks = tocr;
if( tisr )
{
// If maximum time has expired TOCR will be reset to zero
// we want to handle the pending tick interrupt immediately
// in the normal tick ISR so don't include it in the count of
// ticks slept
actualSleepTicks = targetSleepTicks - 1;
}
// Set timer back to normal mode
// Dont' clear interrupts - we want any pending timer interrupt handled in the tick ISR
TGpTimer1::iTOWR.Write( 0 );
TGpTimer1::iTOCR.Write( 0 );
while(TGpTimer1::WriteOutstanding());
// Check whether another tick has expired while we were doing this
if( TGpTimer1::iTCRR.Read() < tcrr )
{
// it's overflowed since we first checked
if( tisr )
{
// if there was already a pending interrupt to be handled by the tick ISR
// we need to include this new expiry in the sleep count
++actualSleepTicks;
}
// else if there wasn't already a pending interrupt, this overflow will have generated
// one which will be handled by the tick ISR
}
}
return actualSleepTicks;
}
} // namespace MsTick
} // namespace Omap3
DECLARE_STANDARD_EXTENSION()
{
return KErrNone;
}