Umbrella changes to use different display and serial-key-board drivers for UI and Texshell
// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// omap3530/omap3530_drivers/usbcc/pa_usbc.cpp
//
#include <usbc.h>
//#include <resourceman.h>
#include <assp/omap3530_assp/omap3530_assp_priv.h>
#include <assp/omap3530_assp/omap3530_irqmap.h>
#include <assp/omap3530_assp/omap3530_usbc.h>
//#include <assp/omap3530_assp/omap3530_prm.h>
#include <assp/omap3530_assp/omap3530_prcm.h>
// Debug support
#ifdef _DEBUG
static const char KUsbPanicCat[] = "USB PSL";
#endif
_LIT(KDfcName, "USB_DFC");
// Register definitions - move to a seperate header file at some point..
const TUint KCM_ICLKEN1_CORE = Omap3530HwBase::TVirtual<0x48004A10>::Value;
const TUint KENHOSTOTGUSB_BIT = KBit4;
const TUint KCM_AUTOIDLE1_CORE = Omap3530HwBase::TVirtual<0x48004A30>::Value;
const TUint KAUTO_HOSTOTGUSB_BIT = KBit4;
const TInt KSetupPacketSize = 8;
const TInt KMaxPayload = 0x400;
const TInt KUsbDfcPriority = 45;
const TUint KUSBBase = Omap3530HwBase::TVirtual<0x480AB000>::Value;
// USB registers - need the slave clock enabled to access most of these
const TUint KFADDR_REG = 0x0;
const TUint KADDRESS_MSK = 0x7F;
const TUint KPOWER_REG = 0x1;
const TUint KSOFTCONNECT_BIT = KBit6;
const TUint KSUSPENDM_BIT = KBit1;
const TUint KRESUME_BIT = KBit2;
const TUint KHSEN_BIT = KBit5;
// const TUint KRESET_BIT = KBit3;
const TUint K_INTRTX_REG =0x2;
const TUint K_INTRRX_REG =0x4;
const TUint K_INTRTXE_REG =0x6;
const TUint K_INTRRXE_REG =0x8;
const TUint K_INTRUSB_REG = 0xA;
const TUint K_INTRUSBE_REG = 0xB;
const TUint K_INT_RESET = KBit2;
const TUint K_INT_RESUME = KBit1;
const TUint K_INT_SUSPEND = KBit0;
//const TUint K_DEVCTRL_REG = 0x60;
const TUint K_FIFO0_REG = 0x20;
const TUint K_FIFO_OFFSET = 0x4;
const TUint K_COUNT0_REG = 0x18;
const TUint K_RXCOUNT_REG = 0x18;
const TUint K_CONFIGDATA_REG = 0x1F;
const TUint K_MPRXE = KBit7;
const TUint K_MPTXE = KBit6;
const TUint K_DYNFIFO = KBit2;
const TUint K_SOFTCONNECT = KBit1;
const TUint K_INDEX_REG = 0xE;
const TUint K_PERI_CSR0_REG = 0x12;
const TUint K_EP0_FLUSHFIFO = KBit8;
const TUint K_EP0_SERV_SETUPEND = KBit7;
const TUint K_EP0_SERV_RXPKTRDY = KBit6;
const TUint K_EP0_SETUPEND = KBit4;
const TUint K_EP0_SENDSTALL = KBit5;
const TUint K_EP0_DATAEND = KBit3;
const TUint K_EP0_SENTSTALL = KBit2;
const TUint K_EP0_TXPKTRDY = KBit1;
const TUint K_EP0_RXPKTRDY = KBit0;
const TUint K_TXMAXP_REG = 0x10;
const TUint K_RXMAXP_REG = 0x14;
const TUint K_PERI_TXCSR_REG = 0x12;
const TUint K_TX_ISO = KBit14;
const TUint K_TX_DMAEN = KBit12;
const TUint K_TX_DMAMODE = KBit10;
const TUint K_TX_CLRDATATOG = KBit6;
const TUint K_TX_SENTSTALL = KBit5;
const TUint K_TX_SENDSTALL = KBit4;
const TUint K_TX_FLUSHFIFO = KBit3;
const TUint K_TX_UNDERRUN = KBit2;
// const TUint K_TX_FIFONOTEMPTY = KBit1;
const TUint K_TX_TXPKTRDY = KBit0;
const TUint K_PERI_RXCSR_REG = 0x16;
const TUint K_RX_ISO = KBit14;
const TUint K_RX_DMAEN = KBit13;
const TUint K_RX_DISNYET = KBit12;
const TUint K_RX_CLRDATATOG = KBit7;
const TUint K_RX_SENTSTALL = KBit6;
const TUint K_RX_SENDSTALL = KBit5;
const TUint K_RX_FLUSHFIFO = KBit4;
const TUint K_RX_OVERRUN = KBit2;
const TUint K_RX_RXPKTRDY = KBit0;
const TUint K_TXFIFOSZ_REG = 0x62;
const TUint K_RXFIFOSZ_REG = 0x63;
const TUint K_TXFIFOADDR_REG = 0x64;
const TUint K_RXFIFOADDR_REG = 0x66;
const TUint K_OTG_SYSCONFIG_REG = 0x404;
const TUint K_ENABLEWAKEUP = KBit2;
//const TUint K_OTG_SYSSTATUS_REG = 0x408;
// End of Register definitions
// Define USB_SUPPORTS_PREMATURE_STATUS_IN to enable proper handling of a premature STATUS_IN stage, i.e. a
// situation where the host sends less data than first announced and instead of more data (OUT) will send an
// IN token to start the status stage. What we do in order to implement this here is to prime the TX fifo with
// a ZLP immediately when we find out that we're dealing with a DATA_OUT request. This way, as soon as the
// premature IN token is received, we complete the transaction by sending off the ZLP. If we don't prime the
// TX fifo then there is no way for us to recognise a premature status because the IN token itself doesn't
// raise an interrupt. We would simply wait forever for more data, or rather we would time out and the host
// would move on and send the next Setup packet.
// The reason why we would not want to implement the proper behaviour is this: After having primed the TX fifo
// with a ZLP, it is impossible for a user to reject such a (class/vendor specific) Setup request, basically
// because the successful status stage happens automatically. At the time the user has received and decoded
// the Setup request there's for her no way to stall Ep0 in order to show to the host that this Setup packet
// is invalid or inappropriate or whatever, because she cannot prevent the status stage from happening.
// (All this is strictly true only if the amount of data in the data stage is less than or equal to Ep0's max
// packet size. However this is almost always the case.)
//#define USB_SUPPORTS_PREMATURE_STATUS_IN
static const TUsbcEndpointCaps DeviceEndpoints[KUsbTotalEndpoints] =
{
// Hardware # iEndpoints index
{KEp0MaxPktSzMask, (KUsbEpTypeControl | KUsbEpDirOut)}, // 0 - 0
{KEp0MaxPktSzMask, (KUsbEpTypeControl | KUsbEpDirIn )}, // 0 - 1
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 1 - 2
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 2 - 3
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 3 - 4
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 4 - 5
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 5 - 6
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 6 - 7
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 7 - 8
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 8 - 9
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 9 - 10
{KEp0MaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 10 - 11
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 11 - 12
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 12 - 13
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 13 - 14
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 14 - 15
// Disabled due to limited FIFO space
/*{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 15 - 16
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 16 - 17
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 17 - 18
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 18 - 19
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 19 - 20
{KEp0MaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 20 - 21
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 21 - 22
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 22 - 23
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 23 - 24
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 24 - 25
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 25 - 26
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 26 - 27
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 27 - 28
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 28 - 29
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 29 - 30
{KIntMaxPktSzMask, (KUsbEpTypeInterrupt | KUsbEpDirIn )} // 30- 31*/
};
// --- TEndpoint --------------------------------------------------------------
TEndpoint::TEndpoint()
//
// Constructor
//
: iRxBuf(NULL), iReceived(0), iLength(0), iZlpReqd(EFalse), iNoBuffer(EFalse), iDisabled(EFalse),
iPackets(0), iLastError(KErrNone), iRequest(NULL), iRxTimer(RxTimerCallback, this),
iRxTimerSet(EFalse), iRxMoreDataRcvd(EFalse), iPacketIndex(NULL), iPacketSize(NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf("TEndpoint::TEndpoint"));
}
void TEndpoint::RxTimerCallback(TAny* aPtr)
//
// (This function is static.)
//
{
TEndpoint* const ep = static_cast<TEndpoint*>(aPtr);
if (!ep)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !ep"));
}
else if (!ep->iRxTimerSet)
{
// Timer 'stop' substitute (instead of stopping it,
// we just let it expire after clearing iRxTimerSet)
__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxTimerSet - returning"));
}
else if (!ep->iRxBuf)
{
// Request already completed
__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxBuf - returning"));
}
else if (ep->iRxMoreDataRcvd)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: not yet completing..."));
ep->iRxMoreDataRcvd = EFalse;
ep->iRxTimer.Again(KRxTimerTimeout);
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: completing now..."));
*ep->iPacketSize = ep->iReceived;
ep->iController->RxComplete(ep);
}
}
// --- DOmap3530Usbcc public ---------------------------------------------------
DOmap3530Usbcc::DOmap3530Usbcc()
//
// Constructor.
//
: iCableConnected(ETrue), iBusIsPowered(EFalse),
iInitialized(EFalse), iUsbClientConnectorCallback(UsbClientConnectorCallback),
iAssp( static_cast<Omap3530Assp*>( Arch::TheAsic() ) ),
iEp0Configured(EFalse), iSuspendDfc(SuspendDfcFn, this, 7),
iResumeDfc(ResumeDfcFn, this, 7), iResetDfc(ResetDfcFn, this, 7)
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DOmap3530Usbcc"));
TInt r = Kern::DfcQCreate(iDfcQueue, KUsbDfcPriority, &KDfcName);
iSuspendDfc.SetDfcQ(iDfcQueue);
iResetDfc.SetDfcQ(iDfcQueue);
iResumeDfc.SetDfcQ(iDfcQueue);
iSoftwareConnectable = iAssp->UsbSoftwareConnectable();
iCableDetectable = iAssp->UsbClientConnectorDetectable();
if (iCableDetectable)
{
// Register our callback for detecting USB cable insertion/removal.
// We ignore the error code: if the registration fails, we just won't get any events.
// (Which of course is bad enough...)
(void) iAssp->RegisterUsbClientConnectorCallback(iUsbClientConnectorCallback, this);
// Call the callback straight away so we get the proper PIL state from the beginning.
(void) UsbClientConnectorCallback(this);
}
for (TInt i = 0; i < KUsbTotalEndpoints; i++)
{
iEndpoints[i].iController = this;
}
__KTRACE_OPT(KUSB, Kern::Printf("-DOmap3530Usbcc::DOmap3530Usbcc"));
}
TInt DOmap3530Usbcc::Construct()
//
// Construct.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Construct"));
iPhy = MOmap3530UsbPhy::New();
if( !iPhy )
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Failed to get pointer to USB PHY"));
return KErrNoMemory;
}
//TInt r = PowerResourceManager::RegisterClient( iPrmClientId, KDfcName );
//if( r != KErrNone )
// {
// __KTRACE_OPT(KPANIC, Kern::Printf(" Error: Failed to connect to PRM"));
// return r;
// }
TUsbcDeviceDescriptor* DeviceDesc = TUsbcDeviceDescriptor::New(
0x00, // aDeviceClass
0x00, // aDeviceSubClass
0x00, // aDeviceProtocol
KEp0MaxPktSz, // aMaxPacketSize0
KUsbVendorId, // aVendorId
KUsbProductId, // aProductId
KUsbDevRelease, // aDeviceRelease
1); // aNumConfigurations
if (!DeviceDesc)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for dev desc failed."));
return KErrGeneral;
}
TUsbcConfigDescriptor* ConfigDesc = TUsbcConfigDescriptor::New(
1, // aConfigurationValue
ETrue, // aSelfPowered (see 12.4.2 "Bus-Powered Devices")
ETrue, // aRemoteWakeup
0); // aMaxPower (mA)
if (!ConfigDesc)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for config desc failed."));
return KErrGeneral;
}
TUsbcLangIdDescriptor* StringDescLang = TUsbcLangIdDescriptor::New(KUsbLangId);
if (!StringDescLang)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for lang id $ desc failed."));
return KErrGeneral;
}
// ('sizeof(x) - 2' because 'wchar_t KStringXyz' created a wide string that ends in '\0\0'.)
TUsbcStringDescriptor* StringDescManu =
TUsbcStringDescriptor::New(TPtr8(
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringManufacturer)),
sizeof(KStringManufacturer) - 2, sizeof(KStringManufacturer) - 2));
if (!StringDescManu)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for manufacturer $ desc failed."));
return KErrGeneral;
}
TUsbcStringDescriptor* StringDescProd =
TUsbcStringDescriptor::New(TPtr8(
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringProduct)),
sizeof(KStringProduct) - 2, sizeof(KStringProduct) - 2));
if (!StringDescProd)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for product $ desc failed."));
return KErrGeneral;
}
TUsbcStringDescriptor* StringDescSer =
TUsbcStringDescriptor::New(TPtr8(
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringSerialNo)),
sizeof(KStringSerialNo) - 2, sizeof(KStringSerialNo) - 2));
if (!StringDescSer)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for serial no $ desc failed."));
return KErrGeneral;
}
TUsbcStringDescriptor* StringDescConf =
TUsbcStringDescriptor::New(TPtr8(
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringConfig)),
sizeof(KStringConfig) - 2, sizeof(KStringConfig) - 2));
if (!StringDescConf)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for config $ desc failed."));
return KErrGeneral;
}
const TBool b = InitialiseBaseClass(DeviceDesc,
ConfigDesc,
StringDescLang,
StringDescManu,
StringDescProd,
StringDescSer,
StringDescConf);
if (!b)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UsbClientController::InitialiseBaseClass failed."));
return KErrGeneral;
}
return KErrNone;
}
DOmap3530Usbcc::~DOmap3530Usbcc()
//
// Destructor.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::~DOmap3530Usbcc"));
// Unregister our callback for detecting USB cable insertion/removal
if (iCableDetectable)
{
iAssp->UnregisterUsbClientConnectorCallback();
}
if (iInitialized)
{
// (The explicit scope operator is used against Lint warning #1506.)
DOmap3530Usbcc::StopUdc();
}
}
TBool DOmap3530Usbcc::DeviceStateChangeCaps() const
//
// Returns capability of hardware to accurately track the device state (Chapter 9 state).
//
{
return EFalse;
}
TInt DOmap3530Usbcc::SignalRemoteWakeup()
//
// Forces the UDC into a non-idle state to perform a remote wakeup operation.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SignalRemoteWakeup"));
Kern::Printf("DOmap3530Usbcc::SignalRemoteWakeup");
// Resume signal
TInt sysconfig = AsspRegister::Read32(KUSBBase+K_OTG_SYSCONFIG_REG );
if(sysconfig&K_ENABLEWAKEUP && iRmWakeupStatus_Enabled)
{
AsspRegister::Modify8(KUSBBase+KPOWER_REG, KClearNone , KRESUME_BIT);
Kern::NanoWait(10000000); // Wait 10ms - Use a callback instead!
AsspRegister::Modify8(KUSBBase+KPOWER_REG, KRESUME_BIT, KSetNone);
}
return KErrNone;
}
void DOmap3530Usbcc::DumpRegisters()
//
// Dumps the contents of a number of UDC registers to the screen (using Kern::Printf()).
// Rarely used, but might prove helpful when needed.
//
{
Kern::Printf("DOmap3530Usbcc::DumpRegisters:");
}
TDfcQue* DOmap3530Usbcc::DfcQ(TInt /* aUnit */)
//
// Returns a pointer to the kernel DFC queue to be used buy the USB LDD.
//
{
return iDfcQueue;
}
// --- DOmap3530Usbcc private virtual ------------------------------------------
TInt DOmap3530Usbcc::SetDeviceAddress(TInt aAddress)
//
// Sets the PIL-provided device address manually (if possible - otherwise do nothing).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetDeviceAddress: %d", aAddress));
AsspRegister::Write8(KUSBBase+KFADDR_REG, aAddress & KADDRESS_MSK);
if (aAddress || GetDeviceStatus()==EUsbcDeviceStateAddress)
{
// Address can be zero.
MoveToAddressState();
}
return KErrNone;
}
TInt DOmap3530Usbcc::ConfigureEndpoint(TInt aRealEndpoint, const TUsbcEndpointInfo& aEndpointInfo)
//
// Prepares (enables) an endpoint (incl. Ep0) for data transmission or reception.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ConfigureEndpoint(%d)", aRealEndpoint));
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
if (n < 0)
return KErrArgument;
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
if (ep->iDisabled == EFalse)
{
EnableEndpointInterrupt(aRealEndpoint);
if(n!=0)
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
if(aRealEndpoint%2==0)
{
AsspRegister::Write16(KUSBBase+K_PERI_RXCSR_REG, K_RX_CLRDATATOG | K_RX_DISNYET);
}
else
{
AsspRegister::Write16(KUSBBase+K_PERI_TXCSR_REG, K_TX_CLRDATATOG);
}
}
else
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
AsspRegister::Write16(KUSBBase+K_PERI_CSR0_REG, K_EP0_FLUSHFIFO); // FlushFifo;
}
}
ep->iNoBuffer = EFalse;
if (n == 0)
iEp0Configured = ETrue;
return KErrNone;
}
TInt DOmap3530Usbcc::DeConfigureEndpoint(TInt aRealEndpoint)
//
// Disables an endpoint (incl. Ep0).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeConfigureEndpoint(%d)", aRealEndpoint));
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
if (n < 0)
return KErrArgument;
DisableEndpointInterrupt(aRealEndpoint);
if (n == 0)
{
iEp0Configured = EFalse;
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO);
}
else
{
if(aRealEndpoint%2==0)
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_FLUSHFIFO);
}
else
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_FLUSHFIFO);
}
}
return KErrNone;
}
TInt DOmap3530Usbcc::AllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
//
// Puts the requested endpoint resource to use, if possible.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::AllocateEndpointResource(%d): %d",
aRealEndpoint, aResource));
// TO DO: Allocate endpoint resource here.
return KErrNone;
}
TInt DOmap3530Usbcc::DeAllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
//
// Stops the use of the indicated endpoint resource, if beneficial.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeAllocateEndpointResource(%d): %d",
aRealEndpoint, aResource));
// TO DO: Deallocate endpoint resource here.
return KErrNone;
}
TBool DOmap3530Usbcc::QueryEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) const
//
// Returns the status of the indicated resource and endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::QueryEndpointResource(%d): %d",
aRealEndpoint, aResource));
// TO DO: Query endpoint resource here. The return value should reflect the actual state.
return ETrue;
}
TInt DOmap3530Usbcc::OpenDmaChannel(TInt aRealEndpoint)
//
// Opens a DMA channel for this endpoint. This function is always called during the creation of an endpoint
// in the PIL. If DMA channels are a scarce resource, it's possible to do nothing here and wait for an
// AllocateEndpointResource call instead.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::OpenDmaChannel(%d)", aRealEndpoint));
// TO DO (optional): Open DMA channel here.
// An error should only be returned in case of an actual DMA problem.
return KErrNone;
}
void DOmap3530Usbcc::CloseDmaChannel(TInt aRealEndpoint)
//
// Closes a DMA channel for this endpoint. This function is always called during the destruction of an
// endpoint in the PIL.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CloseDmaChannel(%d)", aRealEndpoint));
// TO DO (optional): Close DMA channel here (only if it was opened via OpenDmaChannel).
}
TInt DOmap3530Usbcc::SetupEndpointRead(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
//
// Sets up a read request for an endpoint on behalf of the LDD.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointRead(%d)", aRealEndpoint));
if (!IS_OUT_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
return KErrArgument;
}
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
if (ep->iRxBuf != NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", aRealEndpoint));
return KErrGeneral;
}
ep->iRxBuf = aCallback.iBufferStart;
ep->iReceived = 0;
ep->iLength = aCallback.iLength;
// For Bulk reads we start out with the assumption of 1 packet (see BulkReceive for why):
ep->iPackets = IS_BULK_OUT_ENDPOINT(aRealEndpoint) ? 1 : 0;
ep->iRequest = &aCallback;
ep->iPacketIndex = aCallback.iPacketIndex;
if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
*ep->iPacketIndex = 0; // a one-off optimization
ep->iPacketSize = aCallback.iPacketSize;
if (ep->iDisabled)
{
ep->iDisabled = EFalse;
EnableEndpointInterrupt(aRealEndpoint);
}
else if (ep->iNoBuffer)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > There had been no Rx buffer available: reading Rx FIFO now"));
ep->iNoBuffer = EFalse;
if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
{
BulkReadRxFifo(aRealEndpoint);
}
else if (IS_ISO_OUT_ENDPOINT(aRealEndpoint))
{
IsoReadRxFifo(aRealEndpoint);
}
else
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
}
}
return KErrNone;
}
TInt DOmap3530Usbcc::SetupEndpointWrite(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
//
// Sets up a write request for an endpoint on behalf of the LDD.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointWrite(%d)", aRealEndpoint));
if (!IS_IN_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
return KErrArgument;
}
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
if (ep->iTxBuf != NULL)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: iEndpoints[%d].iTxBuf != NULL", aRealEndpoint));
return KErrGeneral;
}
ep->iTxBuf = aCallback.iBufferStart;
ep->iTransmitted = 0;
ep->iLength = aCallback.iLength;
ep->iPackets = 0;
ep->iZlpReqd = aCallback.iZlpReqd;
ep->iRequest = &aCallback;
if (IS_BULK_IN_ENDPOINT(aRealEndpoint))
{
if (ep->iDisabled)
{
ep->iDisabled = EFalse;
EnableEndpointInterrupt(aRealEndpoint);
}
BulkTransmit(aRealEndpoint);
}
else if (IS_ISO_IN_ENDPOINT(aRealEndpoint))
{
IsoTransmit(aRealEndpoint);
}
else if (IS_INT_IN_ENDPOINT(aRealEndpoint))
{
IntTransmit(aRealEndpoint);
}
else
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
}
return KErrNone;
}
TInt DOmap3530Usbcc::CancelEndpointRead(TInt aRealEndpoint)
//
// Cancels a read request for an endpoint on behalf of the LDD.
// No completion to the PIL occurs.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CancelEndpointRead(%d)", aRealEndpoint));
if (!IS_OUT_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
return KErrArgument;
}
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
if (ep->iRxBuf == NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf == NULL", aRealEndpoint));
return KErrNone;
}
// : Flush the Ep's Rx FIFO here
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO );
}
else
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_FLUSHFIFO );
}
ep->iRxBuf = NULL;
ep->iReceived = 0;
ep->iNoBuffer = EFalse;
return KErrNone;
}
TInt DOmap3530Usbcc::CancelEndpointWrite(TInt aRealEndpoint)
//
// Cancels a write request for an endpoint on behalf of the LDD.
// No completion to the PIL occurs.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CancelEndpointWrite(%d)", aRealEndpoint));
if (!IS_IN_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
return KErrArgument;
}
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
if (ep->iTxBuf == NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iTxBuf == NULL", aRealEndpoint));
return KErrNone;
}
// TO DO (optional): Flush the Ep's Tx FIFO here, if possible.
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO );
}
else
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_FLUSHFIFO );
}
ep->iTxBuf = NULL;
ep->iTransmitted = 0;
ep->iNoBuffer = EFalse;
return KErrNone;
}
TInt DOmap3530Usbcc::SetupEndpointZeroRead()
//
// Sets up an Ep0 read request (own function due to Ep0's special status).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointZeroRead"));
TEndpoint* const ep = &iEndpoints[KEp0_Out];
if (ep->iRxBuf != NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", KEp0_Out));
return KErrGeneral;
}
ep->iRxBuf = iEp0_RxBuf;
ep->iReceived = 0;
return KErrNone;
}
TInt DOmap3530Usbcc::SetupEndpointZeroWrite(const TUint8* aBuffer, TInt aLength, TBool aZlpReqd)
//
// Sets up an Ep0 write request (own function due to Ep0's special status).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointZeroWrite"));
TEndpoint* const ep = &iEndpoints[KEp0_In];
if (ep->iTxBuf != NULL)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: iEndpoints[%d].iTxBuf != NULL", KEp0_In));
return KErrGeneral;
}
ep->iTxBuf = aBuffer;
ep->iTransmitted = 0;
ep->iLength = aLength;
ep->iZlpReqd = aZlpReqd;
ep->iRequest = NULL;
Ep0Transmit();
return KErrNone;
}
TInt DOmap3530Usbcc::SendEp0ZeroByteStatusPacket()
//
// Sets up an Ep0 write request for zero bytes.
// This is a separate function because no data transfer is involved here.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SendEp0ZeroByteStatusPacket"));
// This is possibly a bit tricky. When this function is called it just means that the higher layer wants a
// ZLP to be sent. Whether we actually send one manually here depends on a number of factors, as the
// current Ep0 state (i.e. the stage of the Ep0 Control transfer), and, in case the hardware handles some
// ZLPs itself, whether it might already handle this one.
// Here is an example of what the checking of the conditions might look like:
#ifndef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
if ((!iEp0ReceivedNonStdRequest && iEp0State == EP0_IN_DATA_PHASE) ||
#else
if ((!iEp0ReceivedNonStdRequest && iEp0State != EP0_IDLE) ||
#endif
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
(iEp0ReceivedNonStdRequest && iEp0State != EP0_OUT_DATA_PHASE))
#else
(iEp0ReceivedNonStdRequest))
#endif
{
// TO DO: Arrange for the sending of a ZLP here.
Kern::Printf("ZLP!");
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND );
}
return KErrNone;
}
TInt DOmap3530Usbcc::StallEndpoint(TInt aRealEndpoint)
//
// Stalls an endpoint.
//
{
__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::StallEndpoint(%d)", aRealEndpoint));
if (IS_ISO_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint cannot be stalled"));
return KErrArgument;
}
// Stall the endpoint here.
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SENDSTALL);
}
else
if(aRealEndpoint%2==0)
{
// RX stall
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_SENDSTALL);
}
else
{
// TX stall
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_SENDSTALL );
}
return KErrNone;
}
TInt DOmap3530Usbcc::ClearStallEndpoint(TInt aRealEndpoint)
//
// Clears the stall condition of an endpoint.
//
{
__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::ClearStallEndpoint(%d)", aRealEndpoint));
if (IS_ISO_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint cannot be unstalled"));
return KErrArgument;
}
// De-stall the endpoint here.
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, K_EP0_SENTSTALL, KSetNone );
}
else
if(aRealEndpoint%2==0)
{
//Clear RX stall
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENDSTALL, KSetNone );
}
else
{
//Clear TX stall
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_SENDSTALL, KSetNone );
}
return KErrNone;
}
TInt DOmap3530Usbcc::EndpointStallStatus(TInt aRealEndpoint) const
//
// Reports the stall status of an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EndpointStallStatus(%d)", aRealEndpoint));
if (IS_ISO_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint has no stall status"));
return KErrArgument;
}
// Query endpoint stall status here. The return value should reflect the actual state.
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_CSR0_REG);
return status & K_EP0_SENTSTALL;
}
else
if(aRealEndpoint%2==0)
{
//Clear RX stall
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG);
return status & K_RX_SENDSTALL;
}
else
{
//Clear TX stall
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_TXCSR_REG);
return status & K_TX_SENDSTALL;
}
}
TInt DOmap3530Usbcc::EndpointErrorStatus(TInt aRealEndpoint) const
//
// Reports the error status of an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EndpointErrorStatus(%d)", aRealEndpoint));
if (!IS_VALID_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_VALID_ENDPOINT(%d)", aRealEndpoint));
return KErrArgument;
}
// TO DO: Query endpoint error status here. The return value should reflect the actual state.
// With some UDCs there is no way of inquiring the endpoint error status; say 'ETrue' in that case.
// Bulk EP's don't have an error status
return ETrue;
}
TInt DOmap3530Usbcc::ResetDataToggle(TInt aRealEndpoint)
//
// Resets to zero the data toggle bit of an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResetDataToggle(%d)", aRealEndpoint));
// Reset the endpoint's data toggle bit here.
// With some UDCs there is no way to individually reset the endpoint's toggle bits; just return KErrNone
// in that case.
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
{
// No way of setting data toggle for EP0
}
else
if(aRealEndpoint%2==0)
{
//Clear RX stall
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_CLRDATATOG);
}
else
{
//Clear TX stall
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_CLRDATATOG);
}
return KErrNone;
}
TInt DOmap3530Usbcc::SynchFrameNumber() const
//
// For use with isochronous endpoints only. Causes the SOF frame number to be returned.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SynchFrameNumber"));
// TO DO: Query and return the SOF frame number here.
return 0;
}
void DOmap3530Usbcc::SetSynchFrameNumber(TInt aFrameNumber)
//
// For use with isochronous endpoints only. Causes the SOF frame number to be stored.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetSynchFrameNumber(%d)", aFrameNumber));
// We should actually store this number somewhere. But the PIL always sends '0x00'
// in response to a SYNCH_FRAME request...
// TO DO: Store the frame number. Alternatively (until SYNCH_FRAME request specification changes): Do
// nothing.
}
TInt DOmap3530Usbcc::StartUdc()
//
// Called to initialize the device controller hardware before any operation can be performed.
//
{
__KTRACE_OPT(KUSB,Kern::Printf("DOmap3530Usbcc::StartUdc"));
if (iInitialized)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UDC already initialised"));
return KErrNone;
}
// Disable UDC (might also reset the entire design):
UdcDisable();
// Bind & enable the UDC interrupt
if (SetupUdcInterrupt() != KErrNone)
{
return KErrGeneral;
}
// Enable the slave clock
EnableSICLK();
// Write meaningful values to some registers:
InitialiseUdcRegisters();
// Finally, turn on the UDC:
UdcEnable();
// and enable the PHY
iPhy->StartPHY();
iPhy->SetPHYMode(ENormal);
// Even if only one USB feature has been enabled, we later need to undo it:
iInitialized = ETrue;
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc: UDC Enabled"));
return KErrNone;
}
TInt DOmap3530Usbcc::StopUdc()
//
// Basically, makes undone what happened in StartUdc.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::StopUdc"));
if (!iInitialized)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UDC not initialized"));
return KErrNone;
}
// Disable UDC:
UdcDisable();
// Disable & unbind the UDC interrupt:
ReleaseUdcInterrupt();
iPhy->SetPHYMode(EUART);
// Finally turn off slave clock
DisableSICLK();
// Only when all USB features have been disabled we'll call it a day:
iInitialized = EFalse;
return KErrNone;
}
TInt DOmap3530Usbcc::UdcConnect()
//
// Connects the UDC to the bus under software control. How this is achieved depends on the UDC; the
// functionality might also be part of the Variant component (instead of the ASSP).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcConnect"));
//AsspRegister::Modify8(KUSBBase+KPOWER_REG , KClearNone, KSOFTCONNECT_BIT);
AsspRegister::Write8(KUSBBase+KPOWER_REG , KSOFTCONNECT_BIT | KHSEN_BIT);
iPhy->EnablePHY();
// Here: A call into the Variant-provided function.
return iAssp->UsbConnect();
}
TInt DOmap3530Usbcc::UdcDisconnect()
//
// Disconnects the UDC from the bus under software control. How this is achieved depends on the UDC; the
// functionality might also be part of the Variant component (instead of the ASSP).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcDisconnect"));
// Here: A call into the Variant-provided function.
return iAssp->UsbDisconnect();
}
TBool DOmap3530Usbcc::UsbConnectionStatus() const
//
// Returns a value showing the USB cable connection status of the device.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbConnectionStatus"));
return iCableConnected;
}
TBool DOmap3530Usbcc::UsbPowerStatus() const
//
// Returns a truth value showing whether VBUS is currently powered or not.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbPowerStatus"));
return iBusIsPowered;
}
TBool DOmap3530Usbcc::DeviceSelfPowered() const
//
// Returns a truth value showing whether the device is currently self-powered or not.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceSelfPowered"));
// TO DO: Query and return self powered status here. The return value should reflect the actual state.
// (This can be always 'ETrue' if the UDC does not support bus-powered devices.)
return ETrue;
}
const TUsbcEndpointCaps* DOmap3530Usbcc::DeviceEndpointCaps() const
//
// Returns a pointer to an array of elements, each of which describes the capabilities of one endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceEndpointCaps"));
__KTRACE_OPT(KUSB, Kern::Printf(" > Ep: Sizes Mask, Types Mask"));
__KTRACE_OPT(KUSB, Kern::Printf(" > --------------------------"));
for (TInt i = 0; i < KUsbTotalEndpoints; ++i)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > %02d: 0x%08x, 0x%08x",
i, DeviceEndpoints[i].iSizes, DeviceEndpoints[i].iTypesAndDir));
}
return DeviceEndpoints;
}
TInt DOmap3530Usbcc::DeviceTotalEndpoints() const
//
// Returns the element number of the endpoints array a pointer to which is returned by DeviceEndpointCaps.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceTotalEndpoints"));
return KUsbTotalEndpoints;
}
TBool DOmap3530Usbcc::SoftConnectCaps() const
//
// Returns a truth value showing whether or not there is the capability to disconnect and re-connect the D+
// line under software control.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SoftConnectCaps"));
return iSoftwareConnectable;
}
void DOmap3530Usbcc::Suspend()
//
// Called by the PIL after a Suspend event has been reported (by us).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Suspend"));
if (NKern::CurrentContext() == EThread)
{
iSuspendDfc.Enque();
}
else
{
iSuspendDfc.Add();
}
// TO DO (optional): Implement here anything the device might require after bus SUSPEND signalling.
// Need to put the transceiver into suspend too. Can't do it here as it requries I2C and we are in an interrupt context.
AsspRegister::Modify8(KUSBBase+KPOWER_REG , KClearNone, KSUSPENDM_BIT);
}
void DOmap3530Usbcc::Resume()
//
// Called by the PIL after a Resume event has been reported (by us).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Resume"));
if (NKern::CurrentContext() == EThread)
{
iResumeDfc.Enque();
}
else
{
iResumeDfc.Add();
}
// TO DO (optional): Implement here anything the device might require after bus RESUME signalling.
// Need to put the transceiver into resume too. Can't do it here as it requries I2C and we are in an interrupt context.
AsspRegister::Modify8(KUSBBase+KPOWER_REG, KClearNone , KRESUME_BIT);
Kern::NanoWait(10000000); // Wait 10ms - Use a callback instead!
AsspRegister::Modify8(KUSBBase+KPOWER_REG, KRESUME_BIT, KSetNone);
}
void DOmap3530Usbcc::Reset()
//
// Called by the PIL after a Reset event has been reported (by us).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Reset"));
// This does not really belong here, but has to do with the way the PIL sets
// up Ep0 reads and writes.
TEndpoint* ep = &iEndpoints[0];
ep->iRxBuf = NULL;
++ep;
ep->iTxBuf = NULL;
// Idle
Ep0NextState(EP0_IDLE);
// TO DO (optional): Implement here anything the device might require after bus RESET signalling.
// Need to put the transceiver into reset too. Can't do it here as it requries I2C and we are in an interrupt context.
if (NKern::CurrentContext() == EThread)
{
iResetDfc.Enque();
}
else
{
iResetDfc.Add();
}
// Write meaningful values to some registers
InitialiseUdcRegisters();
UdcEnable();
if (iEp0Configured)
EnableEndpointInterrupt(0);
}
// --- DOmap3530Usbcc private --------------------------------------------------
void DOmap3530Usbcc::InitialiseUdcRegisters()
//
// Called after every USB Reset etc.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::InitialiseUdcRegisters"));
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
AsspRegister::Write8(KUSBBase+K_CONFIGDATA_REG, K_SOFTCONNECT | K_DYNFIFO | K_MPTXE | K_MPRXE);// Dynamic FIFO
// Configure FIFO's
for(TUint n=1; n<KUsbTotalEndpoints; n++) // Fifo for EP 0 is fixed. Size 0x200 (512) for the ISO ep is wrong! FIXME!!!!!!!!!!!! Hacked to make all FIFO's 1024 bytes (ignore ep>16!)
{
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)((n+1)/2));
if(n%2==0)
{
AsspRegister::Write16(KUSBBase+K_TXMAXP_REG, KMaxPayload | 0x1<<11); // Not sure how many packets we want to split into. Use 2 because it is OK for Bulk and INT
AsspRegister::Write8(KUSBBase+K_TXFIFOSZ_REG, 0x7); // No double buffering, FIFO size == 2^(7+3) = 1024
AsspRegister::Write16(KUSBBase+K_TXFIFOADDR_REG, 128*((TInt)n/2)); // We have 16kb of memory and 16 endpoints. Start each fifo on a 1kb boundary
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_DMAMODE | K_TX_ISO | K_TX_DMAEN, K_TX_CLRDATATOG | K_TX_FLUSHFIFO);
}
else
{
AsspRegister::Write16(KUSBBase+K_RXMAXP_REG, KMaxPayload | 0x1<<11); // Not sure how many packets we want to split into. Use 2 because it is OK for Bulk and INT
AsspRegister::Write8(KUSBBase+K_RXFIFOSZ_REG, 0x7); // No double buffering, FIFO size == 2^(7+3) = 1024
AsspRegister::Write16(KUSBBase+K_RXFIFOADDR_REG, 128*((TInt)(n/2)+8)); // We have 16kb of memory and 16 endpoints. Start each fifo on a 1kb boundary
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_ISO | K_RX_DMAEN, K_RX_CLRDATATOG | K_RX_FLUSHFIFO | K_RX_DISNYET);
}
}
// Disable interrupt requests for all endpoints
AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, 0xFFFF, KSetNone);
AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG, 0XFFFE, KSetNone);
AsspRegister::Modify32(KUSBBase+K_OTG_SYSCONFIG_REG, KClearNone, K_ENABLEWAKEUP);
}
void DOmap3530Usbcc::UdcEnable()
//
// Enables the UDC for USB transmission or reception.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcEnable"));
EnableSICLK();
// TO DO: Do whatever is necessary to enable the UDC here. This might include enabling (unmasking)
// the USB Reset interrupt, setting a UDC enable bit, etc.
AsspRegister::Read8(KUSBBase+K_INTRUSB_REG); // Reading this register clears it
AsspRegister::Write8(KUSBBase+K_INTRUSBE_REG, K_INT_SUSPEND | K_INT_RESUME | K_INT_RESET);
DisableSICLK();
}
void DOmap3530Usbcc::UdcDisable()
//
// Disables the UDC.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcDisable"));
EnableSICLK();
// TO DO: Do whatever is necessary to disable the UDC here. This might include disabling (masking)
// the USB Reset interrupt, clearing a UDC enable bit, etc.
AsspRegister::Write8(KUSBBase+K_INTRUSBE_REG, 0x0);
AsspRegister::Read8(KUSBBase+K_INTRUSB_REG); // Reading this register clears it
DisableSICLK();
}
void DOmap3530Usbcc::EnableEndpointInterrupt(TInt aEndpoint)
//
// Enables interrupt requests for an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EnableEndpointInterrupt(%d)", aEndpoint));
// Enable (unmask) interrupt requests for this endpoint:
if(aEndpoint==0)
{
AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG , KClearNone, 1<<(int)(aEndpoint/2));
}
else
{
if(aEndpoint%2==0)
{
AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG , KClearNone, 1<<(int)((aEndpoint)/2));
}
else
{
AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, KClearNone, 1<<(int)((aEndpoint)/2));
}
}
}
void DOmap3530Usbcc::DisableEndpointInterrupt(TInt aEndpoint)
//
// Disables interrupt requests for an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DisableEndpointInterrupt(%d)", aEndpoint));
// Disable (mask) interrupt requests for this endpoint:
if(aEndpoint==0)
{
AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG , 1<<(int)(aEndpoint/2), KSetNone);
}
else
{
if(aEndpoint%2==0)
{
AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG , 1<<(int)((aEndpoint)/2), KSetNone);
}
else
{
AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, 1<<(int)((aEndpoint)/2), KSetNone);
}
}
}
void DOmap3530Usbcc::ClearEndpointInterrupt(TInt aEndpoint)
//
// Clears a pending interrupt request for an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ClearEndpointInterrupt(%d)", aEndpoint));
// Clear (reset) pending interrupt request for this endpoint:
if(aEndpoint==0)
{
AsspRegister::Modify16(KUSBBase+K_INTRTX_REG , 1<<(int)(aEndpoint/2), KSetNone);
}
else
{
if(aEndpoint%2==0)
{
AsspRegister::Modify16(KUSBBase+K_INTRRX_REG , 1<<(int)((aEndpoint)/2), KSetNone);
}
else
{
AsspRegister::Modify16(KUSBBase+K_INTRTX_REG, 1<<(int)((aEndpoint)/2), KSetNone);
}
}
}
void DOmap3530Usbcc::Ep0IntService()
//
// ISR for endpoint zero interrupt.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0IntService"));
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
// Enquire about Ep0 status & the interrupt cause here. Depending on the event and the Ep0 state,
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
TUint ep0 = AsspRegister::Read16(KUSBBase+K_PERI_CSR0_REG);
if(ep0 & K_EP0_SETUPEND)
{
// Setupend is set - A setup transaction ended unexpectedly
Ep0Cancel();
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_SETUPEND);
Ep0NextState(EP0_IDLE);
}
if(ep0&K_EP0_SENTSTALL)
{
// Stalled! Complete the stall handshake
ClearStallEndpoint(0);
}
switch(iEp0State)
{
case EP0_END_XFER:
Ep0EndXfer();
break;
case EP0_IDLE:
if(ep0&K_EP0_RXPKTRDY)
{
Ep0ReadSetupPkt();
}
else
{
Ep0StatusIn();
}
break;
case EP0_OUT_DATA_PHASE:
Ep0Receive();
break;
case EP0_IN_DATA_PHASE:
Ep0Transmit();
break;
default:
break; // Do nothing
}
ClearEndpointInterrupt(0);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
}
void DOmap3530Usbcc::Ep0ReadSetupPkt()
//
// Called from the Ep0 ISR when a new Setup packet has been received.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0ReadSetupPkt"));
TEndpoint* const ep = &iEndpoints[KEp0_Out];
TUint8* buf = ep->iRxBuf;
if (!buf)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Ep0 Rx buffer available (1)"));
StallEndpoint(KEp0_Out);
return;
}
// Read Setup packet data from Rx FIFO into 'buf' here.
// (In this function we don't need to use "ep->iReceived" since Setup packets
// are always 8 bytes long.)
for(TInt x=0; x<KSetupPacketSize; x++)
{
// Should try and check we aren't running out of FIFO!
buf[x] = AsspRegister::Read8(KUSBBase+K_FIFO0_REG);
}
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY); // The packet has been retrieved from the FIFO
// Upcall into PIL to determine next Ep0 state:
TUsbcEp0State state = EnquireEp0NextState(ep->iRxBuf);
if (state == EEp0StateStatusIn)
{
Ep0NextState(EP0_IDLE); // Ep0 No Data
}
else if (state == EEp0StateDataIn)
{
Ep0NextState(EP0_IN_DATA_PHASE); // Ep0 Control Read
}
else
{
Ep0NextState(EP0_OUT_DATA_PHASE); // Ep0 Control Write
}
ep->iRxBuf = NULL;
const TInt r = Ep0RequestComplete(KEp0_Out, KSetupPacketSize, KErrNone);
// Don't finish (proceed) if request completion returned 'KErrNotFound'!
if (!(r == KErrNone || r == KErrGeneral))
{
DisableEndpointInterrupt(0);
}
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
if (iEp0State == EP0_OUT_DATA_PHASE)
{
// Allow for a premature STATUS IN
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
}
#endif
}
void DOmap3530Usbcc::Ep0ReadSetupPktProceed()
//
// Called by the PIL to signal that it has finished processing a received Setup packet and that the PSL can
// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 interrupt).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0ReadSetupPktProceed"));
EnableEndpointInterrupt(0);
}
void DOmap3530Usbcc::Ep0Receive()
//
// Called from the Ep0 ISR when a data packet has been received.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Receive"));
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
TEndpoint* const ep = &iEndpoints[KEp0_Out];
TUint8* buf = ep->iRxBuf;
if (!buf)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Ep0 Rx buffer available (2)"));
StallEndpoint(KEp0_Out);
return;
}
TInt n = 0;
// Read packet data from Rx FIFO into 'buf' and update 'n' (# of received bytes) here.
TInt FIFOCount = AsspRegister::Read8(KUSBBase+K_COUNT0_REG);
for(; n<FIFOCount; n++)
{
// Should try and check we aren't running out of FIFO!
buf[n] = AsspRegister::Read8(KUSBBase+K_FIFO0_REG);
}
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY); // The packet has been retrieved from the FIFO
ep->iReceived = n;
ep->iRxBuf = NULL;
const TInt r = Ep0RequestComplete(KEp0_Out, n, KErrNone);
// Don't finish (proceed) if request was 'KErrNotFound'!
if (!(r == KErrNone || r == KErrGeneral))
{
DisableEndpointInterrupt(0);
}
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
// Allow for a premature STATUS IN
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
#endif
}
void DOmap3530Usbcc::Ep0ReceiveProceed()
//
// Called by the PIL to signal that it has finished processing a received Ep0 data packet and that the PSL can
// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 Ep0ReadSetupPkt).
//
{
Ep0ReadSetupPktProceed();
}
void DOmap3530Usbcc::Ep0Transmit()
//
// Called from either the Ep0 ISR or the PIL when a data packet has been or is to be transmitted.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Transmit"));
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
if (iEp0State != EP0_IN_DATA_PHASE)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: Invalid Ep0 state when trying to handle EP0 IN (0x%x)", iEp0State));
// TO DO (optional): Do something about this warning.
}
TEndpoint* const ep = &iEndpoints[KEp0_In];
const TUint8* buf = ep->iTxBuf;
if (!buf)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > No Tx buffer available: returning"));
return;
}
const TInt t = ep->iTransmitted; // already transmitted
buf += t;
TInt n = 0; // now transmitted
// Write packet data (if any) into Tx FIFO from 'buf' and update 'n' (# of tx'ed bytes) here.
for(; n<ep->iLength-ep->iTransmitted && n<KEp0MaxPktSz; n++)
{
// Should try and check we aren't running out of FIFO!
AsspRegister::Write8(KUSBBase+K_FIFO0_REG, buf[n]);
}
ep->iTransmitted += n;
if (n == KEp0MaxPktSz)
{
if (ep->iTransmitted == ep->iLength && !(ep->iZlpReqd))
{
Ep0NextState(EP0_END_XFER);
}
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY); // TXPKTY,
}
else if (n && n != KEp0MaxPktSz)
{
// Send off the data
__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
Kern::Printf(" > ERROR: Short packet in mid-transfer"));
Ep0NextState(EP0_END_XFER);
// Send off the data here.
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY); // TXPKTRDY,
}
else // if (n == 0)
{
__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
Kern::Printf(" > ERROR: Nothing transmitted but still not finished"));
if (ep->iZlpReqd)
{
// Send a zero length packet
ep->iZlpReqd = EFalse;
Ep0NextState(EP0_END_XFER);
// Arrange for the sending of a ZLP here.
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
}
else
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: nothing transmitted & no ZLP req'd"));
}
}
}
void DOmap3530Usbcc::Ep0EndXfer()
//
// Called at the end of a Ep0 Control transfer.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0EndXfer"));
// Clear Ep0 Rx condition flags here.
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY | K_EP0_DATAEND); // DATAEND
Ep0NextState(EP0_IDLE);
TEndpoint* const ep = &iEndpoints[KEp0_In];
ep->iTxBuf = NULL;
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrNone);
}
void DOmap3530Usbcc::Ep0Cancel()
//
// Called when an ongoing Ep0 Control transfer has to be aborted prematurely (for instance when receiving a
// new Setup packet before the processing of the old one has completed).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Cancel"));
Ep0NextState(EP0_IDLE);
TEndpoint* const ep = &iEndpoints[KEp0_In];
if (ep->iTxBuf)
{
ep->iTxBuf = NULL;
const TInt err = (ep->iTransmitted == ep->iLength) ? KErrNone : KErrCancel;
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, err);
}
}
void DOmap3530Usbcc::Ep0PrematureStatusOut()
//
// Called when an ongoing Ep0 Control transfer encounters a premature Status OUT condition.
//
{
__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::Ep0PrematureStatusOut"));
// Clear Ep0 Rx condition flags here.
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY | K_EP0_DATAEND); // DATAEND
Ep0NextState(EP0_IDLE);
// Flush the Ep0 Tx FIFO here, if possible.
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO);
TEndpoint* const ep = &iEndpoints[KEp0_In];
if (ep->iTxBuf)
{
ep->iTxBuf = NULL;
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrPrematureEnd);
}
}
void DOmap3530Usbcc::Ep0StatusIn()
//
// Called when an ongoing Ep0 Control transfer moves to a Status IN stage.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0StatusIn"));
Ep0NextState(EP0_IDLE);
}
void DOmap3530Usbcc::BulkTransmit(TInt aEndpoint)
//
// Endpoint 1 (BULK IN).
// Called from either the Ep ISR or the PIL when a data packet has been or is to be transmitted.
//
{
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkTransmit(%d)", aEndpoint));
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_TXCSR_REG);
if(status & K_TX_UNDERRUN)
{
// TX UNDERRUN
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_UNDERRUN, KSetNone);
}
if(status & K_TX_SENTSTALL)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Stall Handshake"));
// Complete stall handshake
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_SENTSTALL, KSetNone);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return;
}
if(status & K_TX_SENDSTALL)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Stalled"));
// We are stalled
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return;
}
TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRTX_REG) & 1<<(aEndpoint/2)==1;
const TInt idx = aEndpoint; // only in our special case of course!
TEndpoint* const ep = &iEndpoints[idx];
const TUint8* buf = ep->iTxBuf;
if (!buf)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Tx buffer has been set up"));
DisableEndpointInterrupt(aEndpoint);
ep->iDisabled = ETrue;
ClearEndpointInterrupt(aEndpoint);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return;
}
const TInt t = ep->iTransmitted; // already transmitted
const TInt len = ep->iLength; // to be sent in total
// (len || ep->iPackets): Don't complete for a zero bytes request straight away.
if (t >= len && (len || ep->iPackets))
{
if (ep->iZlpReqd)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" > 'Transmit Short Packet' explicitly"));
// Arrange for the sending of a ZLP here.
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_TXPKTRDY); // FIFO_NOT_EMPTY, TXPKTRDY
ep->iZlpReqd = EFalse;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" > All data sent: %d --> completing", len));
ep->iTxBuf = NULL;
ep->iRequest->iTxBytes = ep->iTransmitted;
ep->iRequest->iError = KErrNone;
EndpointRequestComplete(ep->iRequest);
ep->iRequest = NULL;
}
}
else
{
buf += t;
TInt left = len - t; // left in total
TInt n = (left >= KBlkMaxPktSz) ? KBlkMaxPktSz : left; // now to be transmitted
__KTRACE_OPT(KUSB, Kern::Printf(" > About to send %d bytes (%d bytes left in total)", n, left));
// Write data into Tx FIFO from 'buf' here...
TInt x=0;
TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
for(; x<n; x++) // While FIFO is not full...
{
// Should try and check we aren't running out of FIFO!
AsspRegister::Write8(KUSBBase+FIFOAddr, buf[x]);
}
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, /*K_TX_FIFONOTEMPTY | */K_TX_TXPKTRDY); // TXPKTRDY
ep->iTransmitted += x;
ep->iPackets++; // only used for (len == 0) case
left -= n; // (still) left in total
// If double-buffering is available, it might be possible to stick a second packet
// into the FIFO here.
// TO DO (optional): Send another packet if possible (& available) here.
}
if(calledFromISR)
{
ClearEndpointInterrupt(aEndpoint);
}
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
}
void DOmap3530Usbcc::BulkReceive(TInt aEndpoint)
//
// Endpoint 2 (BULK OUT) (This one is called in an ISR.)
//
{
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkReceive(%d)", aEndpoint));
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
// Start NYETTING packets..
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_DISNYET, KSetNone);
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG);
if(status & K_RX_OVERRUN)
{
// RX OVERRUN
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_OVERRUN, KSetNone);
}
if(status & K_RX_SENTSTALL)
{
// Complete stall handshake
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENTSTALL, K_RX_DISNYET);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return;
}
if(status & K_RX_SENDSTALL)
{
// We are stalled
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_DISNYET);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return;
}
TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRRX_REG) & 1<<(aEndpoint/2)==1;
const TInt idx = aEndpoint; // only in our special case of course!
TEndpoint* const ep = &iEndpoints[idx];
TUint8* buf = ep->iRxBuf;
if (!buf)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > No Rx buffer available: setting iNoBuffer"));
ep->iNoBuffer = ETrue;
DisableEndpointInterrupt(aEndpoint);
ep->iDisabled = ETrue;
ClearEndpointInterrupt(aEndpoint);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_DISNYET);
return;
}
TInt bytes = AsspRegister::Read16(KUSBBase+K_RXCOUNT_REG);
const TInt r = ep->iReceived; // already received
// Check whether a ZLP was received here:
if (bytes==0)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
}
else// if (status & 2) // some other condition
{
__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
if (r + bytes > ep->iLength)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
ep->iNoBuffer = ETrue;
StopRxTimer(ep);
*ep->iPacketSize = ep->iReceived;
RxComplete(ep);
if(calledFromISR)
{
ClearEndpointInterrupt(aEndpoint);
}
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_DISNYET);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return;
}
buf += r; // set buffer pointer
// Read 'bytes' bytes from Rx FIFO into 'buf' here.
TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
for(TInt n=0; n<bytes; n++)
{
// Should try and check we aren't running out of FIFO!
buf[n] = AsspRegister::Read8(KUSBBase+FIFOAddr);
}
ep->iReceived += bytes;
}
if (bytes == 0)
{
// ZLPs must be recorded separately
const TInt i = ep->iReceived ? 1 : 0;
ep->iPacketIndex[i] = r;
ep->iPacketSize[i] = 0;
// If there were data packets before: total packets reported 1 -> 2
ep->iPackets += i;
}
if ((bytes < KBlkMaxPktSz) ||
(ep->iReceived == ep->iLength))
{
StopRxTimer(ep);
*ep->iPacketSize = ep->iReceived;
RxComplete(ep);
// since we have no buffer any longer we disable interrupts:
DisableEndpointInterrupt(aEndpoint);
ep->iDisabled = ETrue;
}
else
{
if (!ep->iRxTimerSet)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
ep->iRxTimerSet = ETrue;
ep->iRxTimer.OneShot(KRxTimerTimeout);
}
else
{
ep->iRxMoreDataRcvd = ETrue;
}
}
if(calledFromISR)
{
ClearEndpointInterrupt(aEndpoint);
}
// Clear Ep Rx condition flags here.
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_RXPKTRDY, K_RX_DISNYET);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
}
void DOmap3530Usbcc::BulkReadRxFifo(TInt aEndpoint)
//
// Endpoint 2 (BULK OUT) (This one is called w/o interrupt to be served.)
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkReadRxFifo(%d)", aEndpoint));
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
// Start NYETTING packets..
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_DISNYET, KSetNone);
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG);
if(status & K_RX_OVERRUN)
{
// RX OVERRUN
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_OVERRUN, KSetNone);
}
if(status & K_RX_SENTSTALL)
{
// Complete stall handshake
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENTSTALL, K_RX_DISNYET);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return;
}
if(status & K_RX_SENTSTALL)
{
// We are stalled
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_DISNYET);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return;
}
TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRRX_REG) & 1<<(aEndpoint/2)==1;
const TInt idx = aEndpoint; // only in our special case of course!
TEndpoint* const ep = &iEndpoints[idx];
TUint8* buf = ep->iRxBuf;
if (!buf)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Rx buffer has been set up"));
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return;
}
TInt bytes = AsspRegister::Read16(KUSBBase+K_RXCOUNT_REG);
const TInt r = ep->iReceived; // already received
// Check whether a ZLP was received here:
if (bytes==0) // some condition
{
__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
}
else //if (status & 2) // some other condition
{
__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
if (r + bytes > ep->iLength)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
ep->iNoBuffer = ETrue;
*ep->iPacketSize = ep->iReceived;
RxComplete(ep);
// Stop NYETting packets
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_DISNYET);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return;
}
buf += r; // set buffer pointer
// TO DO: Read 'bytes' bytes from Rx FIFO into 'buf' here.
TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
for(TInt n=0; n<bytes; n++)
{
// Should try and check we aren't running out of FIFO!
buf[n] = AsspRegister::Read8(KUSBBase+FIFOAddr);
}
ep->iReceived += bytes;
}
if (bytes == 0)
{
// ZLPs must be recorded separately
const TInt i = ep->iReceived ? 1 : 0;
ep->iPacketIndex[i] = r;
ep->iPacketSize[i] = 0;
// If there were data packets before: total packets reported 1 -> 2
ep->iPackets += i;
}
if ((bytes < KBlkMaxPktSz) ||
(ep->iReceived == ep->iLength))
{
*ep->iPacketSize = ep->iReceived;
RxComplete(ep);
}
else
{
if (!ep->iRxTimerSet)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
ep->iRxTimerSet = ETrue;
ep->iRxTimer.OneShot(KRxTimerTimeout);
}
else
{
ep->iRxMoreDataRcvd = ETrue;
}
}
if(calledFromISR)
{
ClearEndpointInterrupt(aEndpoint);
}
// Stop NYETting packets and Clear Ep Rx condition flags here.
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_RXPKTRDY, K_RX_DISNYET);
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
}
void DOmap3530Usbcc::IsoTransmit(TInt aEndpoint)
//
// Endpoint 3 (ISOCHRONOUS IN).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoTransmit(%d)", aEndpoint));
// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
}
void DOmap3530Usbcc::IsoReceive(TInt aEndpoint)
//
// Endpoint 4 (ISOCHRONOUS OUT) (This one is called in an ISR.)
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoReceive(%d)", aEndpoint));
// TO DO: Read data from endpoint FIFO. Might be similar to BulkReceive.
}
void DOmap3530Usbcc::IsoReadRxFifo(TInt aEndpoint)
//
// Endpoint 4 (ISOCHRONOUS OUT) (This one is called w/o interrupt to be served.)
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoReadRxFifo(%d)", aEndpoint));
// TO DO: Read data from endpoint FIFO. Might be similar to BulkReadRxFifo.
}
void DOmap3530Usbcc::IntTransmit(TInt aEndpoint)
//
// Endpoint 5 (INTERRUPT IN).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IntTransmit(%d)", aEndpoint));
// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
}
void DOmap3530Usbcc::RxComplete(TEndpoint* aEndpoint)
//
// Called at the end of an Rx (OUT) transfer to complete to the PIL.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::RxComplete"));
TUsbcRequestCallback* const req = aEndpoint->iRequest;
__ASSERT_DEBUG((req != NULL), Kern::Fault(KUsbPanicCat, __LINE__));
aEndpoint->iRxBuf = NULL;
aEndpoint->iRxTimerSet = EFalse;
aEndpoint->iRxMoreDataRcvd = EFalse;
req->iRxPackets = aEndpoint->iPackets;
req->iError = aEndpoint->iLastError;
EndpointRequestComplete(req);
aEndpoint->iRequest = NULL;
}
void DOmap3530Usbcc::StopRxTimer(TEndpoint* aEndpoint)
//
// Stops (cancels) the Rx timer for an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::StopRxTimer"));
if (aEndpoint->iRxTimerSet)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > stopping rx timer"));
aEndpoint->iRxTimer.Cancel();
aEndpoint->iRxTimerSet = EFalse;
}
}
void DOmap3530Usbcc::EndpointIntService(TInt aEndpoint)
//
// ISR for endpoint interrupts.
// Note: the aEndpoint here is a "hardware endpoint", not a aRealEndpoint.
//
{
switch (aEndpoint)
{
case 0:
Ep0IntService();
break;
case 3:
case 5:
case 7:
case 9:
case 11:
case 13:
case 15:
case 17:
case 19:
case 21:
case 23:
case 25:
case 27:
case 29:
BulkTransmit(aEndpoint);
break;
case 2:
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
case 18:
case 20:
case 22:
case 24:
case 26:
case 28:
BulkReceive(aEndpoint);
break;
case 30:
IntTransmit(aEndpoint);
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
break;
}
}
TInt DOmap3530Usbcc::ResetIntService()
//
// ISR for a USB Reset event interrupt.
// This function returns a value which can be used on the calling end to decide how to proceed.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResetIntService"));
// Clear an interrupt:
// TO DO: Clear reset interrupt flag here.
// TO DO (optional): Enquire about special conditions and possibly return here.
DeviceEventNotification(EUsbEventReset);
return KErrNone;
}
void DOmap3530Usbcc::SuspendIntService()
//
// ISR for a USB Suspend event interrupt.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SuspendIntService"));
// Clear an interrupt:
// TO DO: Clear suspend interrupt flag here.
DeviceEventNotification(EUsbEventSuspend);
}
void DOmap3530Usbcc::ResumeIntService()
//
// ISR for a USB Resume event interrupt.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResumeIntService"));
// Clear an interrupt:
// TO DO: Clear resume interrupt flag here.
DeviceEventNotification(EUsbEventResume);
}
void DOmap3530Usbcc::SofIntService()
//
// ISR for a USB Start-of-Frame event interrupt.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SofIntService"));
// Clear an interrupt:
// TO DO: Clear SOF interrupt flag here.
// TO DO (optional): Do something about the SOF condition.
}
void DOmap3530Usbcc::UdcInterruptService()
//
// Main UDC ISR - determines the cause of the interrupt, clears the condition, dispatches further for service.
//
{
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
TUint status = AsspRegister::Read8(KUSBBase+K_INTRUSB_REG);
// Reset interrupt
if (status & K_INT_RESET)
{
ResetIntService();
}
// Resume interrupt
if (status & K_INT_RESUME)
{
ResumeIntService();
}
// Endpoint interrupt
TUint TxEpInt = AsspRegister::Read16(KUSBBase+K_INTRTX_REG);
TInt ep=0;
for(TInt x=0; TxEpInt!=0 && x<16 ; x++)
{
if(TxEpInt&(1<<x))
{
EndpointIntService(ep);
}
if(ep==0) { ep++; } // TX EP's are odd numbered - numbers are array indicies so we start from 2
ep+=2;
}
TUint RxEpInt = AsspRegister::Read16(KUSBBase+K_INTRRX_REG);
ep=2;
for(TInt x=1; RxEpInt!=0 && x<16; x++)
{
if(RxEpInt&(1<<x))
{
EndpointIntService(ep);
}
ep+=2;
}
// Suspend interrupt should be serviced last
if (status & K_INT_SUSPEND)
{
SuspendIntService();
}
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
}
void DOmap3530Usbcc::Ep0NextState(TEp0State aNextState)
//
// Moves the Ep0 state to aNextState.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0NextState"));
iEp0State = aNextState;
}
void DOmap3530Usbcc::UdcIsr(TAny* aPtr)
//
// This is the static ASSP first-level UDC interrupt service routine. It dispatches the call to the
// actual controller's ISR.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcIsr"));
static_cast<DOmap3530Usbcc*>(aPtr)->UdcInterruptService();
}
TInt DOmap3530Usbcc::UsbClientConnectorCallback(TAny* aPtr)
//
// This function is called in ISR context by the Variant's UsbClientConnectorInterruptService.
// (This function is static.)
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbClientConnectorCallback"));
DOmap3530Usbcc* const ptr = static_cast<DOmap3530Usbcc*>(aPtr);
ptr->iCableConnected = ptr->iAssp->UsbClientConnectorInserted();
#ifdef _DEBUG
_LIT(KIns, "inserted");
_LIT(KRem, "removed");
__KTRACE_OPT(KUSB, Kern::Printf(" > USB cable now %lS", ptr->iCableConnected ? &KIns : &KRem));
#endif
if (ptr->iCableConnected)
{
ptr->DeviceEventNotification(EUsbEventCableInserted);
}
else
{
ptr->DeviceEventNotification(EUsbEventCableRemoved);
}
return KErrNone;
}
TInt DOmap3530Usbcc::SetupUdcInterrupt()
//
// Registers and enables the UDC interrupt (ASSP first level interrupt).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupUdcInterrupt"));
TInt error = Interrupt::Bind(EOmap3530_IRQ92_HSUSB_MC_NINT, UdcIsr, this);
if (error != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Binding UDC interrupt failed"));
return error;
}
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
return KErrNone;
}
void DOmap3530Usbcc::ReleaseUdcInterrupt()
//
// Disables and unbinds the UDC interrupt.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ReleaseUdcInterrupt"));
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
Interrupt::Unbind(EOmap3530_IRQ92_HSUSB_MC_NINT);
}
void DOmap3530Usbcc::EnableSICLK()
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EnableSICLK"));
if(iSICLKEnabled==0)
{
//TInt r = PowerResourceManager::ChangeResourceState( iPrmClientId, Omap3530Prm::EPrmClkHsUsbOtg_I, Prcm::EClkAuto );
// What are we supposed to do with errors from PRM?
AsspRegister::Modify32(KCM_ICLKEN1_CORE, KClearNone, KENHOSTOTGUSB_BIT);
AsspRegister::Modify32(KCM_AUTOIDLE1_CORE, KClearNone, KAUTO_HOSTOTGUSB_BIT);
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc: SICLK Enabled"));
}
iSICLKEnabled++;
}
void DOmap3530Usbcc::DisableSICLK()
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DisableSICLK"));
if(iSICLKEnabled==1)
{
//TInt r = PowerResourceManager::ChangeResourceState( iPrmClientId, Omap3530Prm::EPrmClkHsUsbOtg_I, Prcm::EClkOff );
// What are we supposed to do with errors from PRM?
AsspRegister::Modify32(KCM_ICLKEN1_CORE, KENHOSTOTGUSB_BIT, KSetNone);
AsspRegister::Modify32(KCM_AUTOIDLE1_CORE, KAUTO_HOSTOTGUSB_BIT, KSetNone);
}
if(iSICLKEnabled>0)
{
iSICLKEnabled--;
}
}
TBool DOmap3530Usbcc::CurrentlyUsingHighSpeed()
{
return ETrue;
}
void DOmap3530Usbcc::SuspendDfcFn(TAny *aPtr)
{
}
void DOmap3530Usbcc::ResumeDfcFn(TAny *aPtr)
{
}
void DOmap3530Usbcc::ResetDfcFn(TAny *aPtr)
{
DOmap3530Usbcc* self = reinterpret_cast<DOmap3530Usbcc*>(aPtr);
// Put the Transceiver into normal mode
self->iPhy->EnablePHY();
self->iPhy->SetPHYMode(ENormal);
self->iPhy->DisablePHY();
}
TBool DOmap3530Usbcc::DeviceHighSpeedCaps() const
{
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceHighSpeedCaps()"));
return ETrue;
}
//
// --- DLL Exported Function --------------------------------------------------
//
DECLARE_STANDARD_EXTENSION()
{
__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support (Udcc)..."));
DOmap3530Usbcc* const usbcc = new DOmap3530Usbcc();
if (!usbcc)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for DOmap3530Usbcc failed"));
return KErrNoMemory;
}
Kern::Printf( "$1" );
TInt r;
if ((r = usbcc->Construct()) != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Construction of DOmap3530Usbcc failed (%d)", r));
delete usbcc;
return r;
}
Kern::Printf( "$2" );
if (usbcc->RegisterUdc(0) == NULL)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: PIL registration of PSL failed"));
delete usbcc;
return KErrGeneral;
}
__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support: Done"));
return KErrNone;
}
// --- EOF --------------------------------------------------------------------