// Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// \omap3530\omap3530_assp\shared\tps65950\tps65950.cpp
// Access driver for TPS65950
// This file is part of the Beagle Base port
//
#include <e32cmn.h>
#include <kernel.h>
#include <nk_priv.h>
//#include <e32atomics.h>
#include <omap3530_i2c.h>
#include <omap3530_i2creg.h>
#include "tps65950.h"
GLREF_C TInt InitInterrupts();
const TUint KGroupCount = 5;
// One handle per group on TPS65950
static I2c::THandle I2cHandle[ KGroupCount ];
// One DCB per group
static I2c::TConfigPb TheDcb[ KGroupCount ];
// I2C transfer object
enum TPhase
{
EAddressPb,
EDataPb
};
static I2c::TTransferPb TheTransferPb[2];
// Group index to Group number
static const TUint8 KGroupIndexToGroupNumber[ KGroupCount ] =
{ 0x12, 0x48, 0x49, 0x4a, 0x4b };
// Queue of requests
static SDblQue TheQueue;
// Current state
enum TState
{
EIdle,
EPending,
EReading,
EWriting,
EUnprotectPhase0
};
static TState CurrentState;
TPS65950::TReq* CurrentPhaseReq;
TPS65950::TReq* PreviousPhaseReq;
LOCAL_D TUint8 IsInitialized; // auto-cleared to EFalse
const TUint8 KUnprotectPhase0Data = 0xCE;
const TUint8 KUnprotectPhase1Data = 0xEC;
static const TUint8 KUnprotectData[4] =
{
TPS65950::Register::PROTECT_KEY bitand TPS65950::Register::KRegisterMask, KUnprotectPhase0Data,
TPS65950::Register::PROTECT_KEY bitand TPS65950::Register::KRegisterMask, KUnprotectPhase1Data,
};
static const TUint8 KProtectData[2] =
{
TPS65950::Register::PROTECT_KEY bitand TPS65950::Register::KRegisterMask, 0
};
static TUint8 TempWriteBuf[2];
// Spinlock to protect queue when adding or removing items
//static TSpinLock QueueLock(TSpinLock::EOrderGenericIrqLow1+1);
//static TSpinLock QueueLock();
GLDEF_D TDfcQue* TheDfcQue;
const TInt KDfcQuePriority = 27;
_LIT( KDriverNameDes, "tps65950" );
TInt TheProtectionUsageCount = 0;
LOCAL_C void InternalPanic( TInt aLine )
{
Kern::Fault( "tps65950", aLine );
}
#ifdef _DEBUG
LOCAL_C void PanicClient( TPS65950::TPanic aPanic )
{
Kern::PanicCurrentThread( KDriverNameDes, aPanic );
}
#endif
namespace TPS65950
{
void CompletionDfcFunction( TAny* aParam );
void SyncDfcFunction( TAny* aParam );
void DummyDfcFunction( TAny* aParam );
static TDfc CompletionDfc( CompletionDfcFunction, NULL, 1 );
static TDfc DummyDfc( CompletionDfcFunction, NULL, 1 );
FORCE_INLINE TReq& ReqFromLink( SDblQueLink* aLink )
{
return *_LOFF( aLink, TReq, iLink );
}
inline TBool AtomicSetPendingWasIdle()
{
// atomic if (CurrentState == idleState) {CurrentState=EPending, returns TRUE} else {idleState=CurrentState, CurrentState unchanged, return FALSE}
TState idleState = EIdle; // required for atomic comparison
//TBool wasIdle = __e32_atomic_cas_ord32( (TUint32*)&CurrentState, (TUint32*)&idleState, EPending );
//return wasIdle;
if (CurrentState == idleState)
{
CurrentState = EPending;
return ETrue;
}
else
{
idleState = CurrentState;
return EFalse;
}
}
void StartRead( TReq& aReq )
{
__KTRACE_OPT( KTPS65950, Kern::Printf( "+TPS65950:StartRead(@%x) [%x:%x]",
&aReq,
KGroupIndexToGroupNumber[ aReq.iRegister >> Register::KGroupShift ],
aReq.iRegister bitand Register::KRegisterMask ) );
//__e32_atomic_store_ord32( &CurrentState, EReading );
CurrentState = EReading;
TheTransferPb[ EAddressPb ].iData = (TUint8*)&aReq.iRegister; // low byte is register address
TheTransferPb[ EDataPb ].iType = I2c::TTransferPb::ERead;
TheTransferPb[ EDataPb ].iData = &aReq.iReadValue;
__DEBUG_ONLY( aReq.iReadValue = 0xEE );
TheTransferPb[ EDataPb ].iLength = 1;
TheTransferPb[ EAddressPb ].iResult = KErrNone;
TheTransferPb[ EDataPb ].iResult = KErrNone;
TUint groupIndex = aReq.iRegister >> Register::KGroupShift;
I2c::TransferA( I2cHandle[ groupIndex ], TheTransferPb[ EAddressPb ] );
__KTRACE_OPT( KTPS65950, Kern::Printf( "-TPS65950:StartRead(@%x)", &aReq ) );
}
void StartWrite( TReq& aReq )
{
__KTRACE_OPT( KTPS65950, Kern::Printf( "+TPS65950:StartWrite(@%x) [%x:%x]<-%x",
&aReq,
KGroupIndexToGroupNumber[ aReq.iRegister >> Register::KGroupShift ],
aReq.iRegister bitand Register::KRegisterMask,
aReq.iWriteValue ) );
//__e32_atomic_store_ord32( &CurrentState, EWriting );
CurrentState = EWriting;
TempWriteBuf[0] = aReq.iRegister bitand Register::KRegisterMask;
TempWriteBuf[1] = aReq.iWriteValue;
TheTransferPb[ EDataPb ].iType = I2c::TTransferPb::EWrite;
TheTransferPb[ EDataPb ].iData = &TempWriteBuf[0];
TheTransferPb[ EDataPb ].iLength = 2;
TheTransferPb[ EDataPb ].iResult = KErrNone;
TUint groupIndex = aReq.iRegister >> Register::KGroupShift;
I2c::TransferA( I2cHandle[ groupIndex ], TheTransferPb[ EDataPb ] );
__KTRACE_OPT( KTPS65950, Kern::Printf( "-TPS65950:StartWrite(@%x)", &aReq ) );
}
void StartUnprotectPhase0( TReq& aReq )
{
__KTRACE_OPT( KTPS65950, Kern::Printf( "+TPS65950:StartUnprotectPhase0(@%x)", &aReq ) );
//__e32_atomic_store_ord32( &CurrentState, EUnprotectPhase0 );
CurrentState = EUnprotectPhase0;
TheTransferPb[ EDataPb ].iType = I2c::TTransferPb::EWrite;
TheTransferPb[ EDataPb ].iData = &KUnprotectData[0];
TheTransferPb[ EDataPb ].iLength = 2;
TheTransferPb[ EDataPb ].iResult = KErrNone;
const TUint groupIndex = Register::PROTECT_KEY >> Register::KGroupShift;
I2c::TransferA( I2cHandle[ groupIndex ], TheTransferPb[ EDataPb ] );
__KTRACE_OPT( KTPS65950, Kern::Printf( "-TPS65950:StartUnprotectPhase0(@%x)", &aReq ) );
}
void StartUnprotectPhase1( TReq& aReq )
{
__KTRACE_OPT( KTPS65950, Kern::Printf( "+TPS65950:StartUnprotectPhase1(@%x)", &aReq ) );
// Set state to writing so that it will complete as a normal write
//__e32_atomic_store_ord32( &CurrentState, EWriting );
CurrentState = EWriting;
TheTransferPb[ EDataPb ].iData = &KUnprotectData[2];
TheTransferPb[ EDataPb ].iResult = KErrNone;
const TUint groupIndex = Register::PROTECT_KEY >> Register::KGroupShift;
I2c::TransferA( I2cHandle[ groupIndex ], TheTransferPb[ EDataPb ] );
__KTRACE_OPT( KTPS65950, Kern::Printf( "-TPS65950:StartUnprotectPhase1(@%x)", &aReq ) );
}
void StartProtect( TReq& aReq )
{
__KTRACE_OPT( KTPS65950, Kern::Printf( "+TPS65950:StartProtect(@%x)", &aReq ) );
//__e32_atomic_store_ord32( &CurrentState, EWriting );
CurrentState = EWriting;
TheTransferPb[ EDataPb ].iType = I2c::TTransferPb::EWrite;
TheTransferPb[ EDataPb ].iData = &KProtectData[0];
TheTransferPb[ EDataPb ].iLength = 2;
TheTransferPb[ EDataPb ].iResult = KErrNone;
const TUint groupIndex = Register::PROTECT_KEY >> Register::KGroupShift;
I2c::TransferA( I2cHandle[ groupIndex ], TheTransferPb[ EDataPb ] );
__KTRACE_OPT( KTPS65950, Kern::Printf( "-TPS65950:StartWrite(@%x)", &aReq ) );
}
void StartRequest()
{
__KTRACE_OPT( KTPS65950, Kern::Printf( "+TPS65950:StartRequest(%d)", CurrentState ) );
__ASSERT_DEBUG( EPending == CurrentState, InternalPanic( __LINE__ ) );
// We don't need to take lock here because we're currently idle so it's not possible
// for there to be a change in which item is queue head. The link pointers of the
// head item could change if another thread is queueing a new request, but that doesn't
// affect any of the fields we care about here
__ASSERT_DEBUG( !TheQueue.IsEmpty(), InternalPanic( __LINE__ ) );
if( !CurrentPhaseReq )
{
PreviousPhaseReq = NULL;
CurrentPhaseReq = &ReqFromLink( TheQueue.First() );
}
FOREVER
{
if( !CurrentPhaseReq )
{
__ASSERT_DEBUG( PreviousPhaseReq, InternalPanic( __LINE__ ) );
// we didn't find any phases to execute, so complete request
// by faking a write completion on the previous phase
CurrentPhaseReq = PreviousPhaseReq;
//__e32_atomic_store_ord32( &CurrentState, EWriting );
CurrentState = EWriting;
// Queue DFC instead of calling directly to avoid recursion if multiple items on queue
// complete without any action
CompletionDfc.Enque();
break;
}
else
{
TReq::TAction action = CurrentPhaseReq->iAction;
__KTRACE_OPT( KTPS65950, Kern::Printf( "=TPS65950:StartRequest:req@%x:a=%x", CurrentPhaseReq, action ) );
if( (TReq::ERead == action) || (TReq::EClearSet == action) )
{
StartRead( *CurrentPhaseReq );
break;
}
else if( TReq::EWrite == action )
{
StartWrite( *CurrentPhaseReq );
break;
}
else if( TReq::EDisableProtect == action )
{
if( ++TheProtectionUsageCount == 1 )
{
// Currently protected, start an unprotect sequence
StartUnprotectPhase0( *CurrentPhaseReq );
break;
}
else
{
goto move_to_next_phase;
}
}
else if( TReq::ERestoreProtect == action )
{
if( --TheProtectionUsageCount == 0 )
{
StartProtect( *CurrentPhaseReq );
break;
}
else
{
move_to_next_phase:
// already unprotected, skip to next phase
CurrentPhaseReq->iResult = KErrNone;
PreviousPhaseReq = CurrentPhaseReq;
CurrentPhaseReq = CurrentPhaseReq->iNextPhase;
}
}
else
{
InternalPanic( __LINE__ );
}
}
}
__KTRACE_OPT( KTPS65950, Kern::Printf( "-TPS65950:StartRequest(%d)", CurrentState ) );
}
void DummyDfcFunction( TAny* /*aParam*/ )
{
__KTRACE_OPT( KTPS65950, Kern::Printf( "TPS65950:DummyDFC(%d)", CurrentState ) );
}
void CompletionDfcFunction( TAny* /*aParam*/ )
{
__KTRACE_OPT( KTPS65950, Kern::Printf( "+TPS65950:DFC(%d)", CurrentState ) );
__ASSERT_DEBUG( EIdle != CurrentState, InternalPanic( __LINE__ ) );
__ASSERT_DEBUG( CurrentPhaseReq, InternalPanic( __LINE__ ) );
TInt result = TheTransferPb[ EDataPb ].iResult;
if( KErrNone != TheTransferPb[ EAddressPb ].iResult )
{
result = TheTransferPb[ EAddressPb ].iResult;
}
TReq& req = *CurrentPhaseReq;
TBool completed = ETrue;
if( KErrNone == result)
{
if( EReading == CurrentState )
{
__KTRACE_OPT( KTPS65950, Kern::Printf( "=TPS65950:DFC:Read [%x:%x]=%x",
KGroupIndexToGroupNumber[ req.iRegister >> Register::KGroupShift ],
req.iRegister bitand Register::KRegisterMask,
req.iReadValue ) );
if( TReq::EClearSet == req.iAction)
{
// Start write phase of a ClearSet
req.iWriteValue = (req.iReadValue bitand ~req.iClearMask) bitor req.iSetMask;
StartWrite( req );
completed = EFalse;
}
}
else if( EUnprotectPhase0 == CurrentState )
{
StartUnprotectPhase1( req );
completed = EFalse;
}
}
if( completed || (KErrNone != result) )
{
// Read or write, protect has completed, or final write stage of a ClearSet or unprotect, or error
PreviousPhaseReq = CurrentPhaseReq;
CurrentPhaseReq = req.iNextPhase;
if( CurrentPhaseReq )
{
// start next phase
//__e32_atomic_store_ord32( &CurrentState, EPending );
CurrentState = EPending;
StartRequest();
}
else
{
//__e32_atomic_store_ord32( &CurrentState, EIdle );
CurrentState = EIdle;
// From now a concurrent ExecAsync() can start a new request if it adds an item to the queue
// remove item from queue and complete
TUint irq = __SPIN_LOCK_IRQSAVE( QueueLock );
ReqFromLink( TheQueue.First() ).iLink.Deque();
TBool queueEmpty = TheQueue.IsEmpty();
__SPIN_UNLOCK_IRQRESTORE( QueueLock, irq );
// If queue was empty inside spinlock but an ExecAsync() adds an item before the if statement below,
// the ExecAsync() will start the new request
if( !queueEmpty )
{
if( AtomicSetPendingWasIdle() )
{
// ExecAsync didn't start a request
StartRequest();
}
}
// Notify client of completion
req.iResult = result;
if( req.iCompletionDfc )
{
req.iCompletionDfc->Enque();
}
}
}
__KTRACE_OPT( KTPS65950, Kern::Printf( "-TPS65950:DFC(%d)", CurrentState ) );
}
// Used to complete synchronous operations
void SyncDfcFunction( TAny* aParam )
{
NKern::FSSignal( reinterpret_cast<NFastSemaphore*>( aParam ) );
}
EXPORT_C void ExecAsync( TReq& aRequest )
{
__KTRACE_OPT( KTPS65950, Kern::Printf( "+TPS65950:ExecAsync(@%x)", &aRequest ) );
__ASSERT_DEBUG( (TUint)aRequest.iAction <= TReq::ERestoreProtect, PanicClient( EBadAction ) );
__ASSERT_DEBUG( (TReq::EDisableProtect == aRequest.iAction)
|| (TReq::ERestoreProtect == aRequest.iAction)
|| (((TUint)aRequest.iRegister >> Register::KGroupShift) < KGroupCount), PanicClient( EBadGroup ) );
TUint irq = __SPIN_LOCK_IRQSAVE( QueueLock );
TheQueue.Add( &aRequest.iLink );
__SPIN_UNLOCK_IRQRESTORE( QueueLock, irq );
if( AtomicSetPendingWasIdle() )
{
StartRequest();
}
__KTRACE_OPT( KTPS65950, Kern::Printf( "-TPS65950:ExecAsync" ) );
}
EXPORT_C TInt WriteSync( TUint16 aRegister, TUint8 aValue )
{
__ASSERT_NO_FAST_MUTEX;
NFastSemaphore sem;
TDfc dfc( SyncDfcFunction, &sem, TheDfcQue, 2 );
TReq req;
req.iRegister = aRegister;
req.iAction = TReq::EWrite;
req.iCompletionDfc = &dfc;
req.iWriteValue = aValue;
req.iNextPhase = NULL;
NKern::FSSetOwner( &sem, NULL );
ExecAsync( req );
NKern::FSWait( &sem );
return req.iResult;
}
EXPORT_C TInt ReadSync( TUint16 aRegister, TUint8& aValue )
{
__ASSERT_NO_FAST_MUTEX;
NFastSemaphore sem;
TDfc dfc( SyncDfcFunction, &sem, TheDfcQue, 2 );
TReq req;
req.iRegister = aRegister;
req.iAction = TReq::ERead;
req.iCompletionDfc = &dfc;
req.iNextPhase = NULL;
NKern::FSSetOwner( &sem, NULL );
ExecAsync( req );
NKern::FSWait( &sem );
aValue = req.iReadValue;
return req.iResult;
}
EXPORT_C TInt ClearSetSync( TUint16 aRegister, TUint8 aClearMask, TUint8 aSetMask )
{
__ASSERT_NO_FAST_MUTEX;
NFastSemaphore sem;
TDfc dfc( SyncDfcFunction, &sem, TheDfcQue, 2 );
TReq req;
req.iRegister = aRegister;
req.iAction = TReq::EClearSet;
req.iCompletionDfc = &dfc;
req.iClearMask = aClearMask;
req.iSetMask = aSetMask;
req.iNextPhase = NULL;
NKern::FSSetOwner( &sem, NULL );
ExecAsync( req );
NKern::FSWait( &sem );
return req.iResult;
}
EXPORT_C TInt DisableProtect()
{
__ASSERT_NO_FAST_MUTEX;
NFastSemaphore sem;
TDfc dfc( SyncDfcFunction, &sem, TheDfcQue, 2 );
TReq req;
req.iAction = TReq::EDisableProtect;
req.iCompletionDfc = &dfc;
req.iNextPhase = NULL;
NKern::FSSetOwner( &sem, NULL );
ExecAsync( req );
NKern::FSWait( &sem );
return req.iResult;
}
EXPORT_C TInt RestoreProtect()
{
__ASSERT_NO_FAST_MUTEX;
NFastSemaphore sem;
TDfc dfc( SyncDfcFunction, &sem, TheDfcQue, 2 );
TReq req;
req.iAction = TReq::ERestoreProtect;
req.iCompletionDfc = &dfc;
req.iNextPhase = NULL;
NKern::FSSetOwner( &sem, NULL );
ExecAsync( req );
NKern::FSWait( &sem );
return req.iResult;
}
TInt Init()
{
// Create DFC queue
TInt r = Kern::DfcQCreate( TheDfcQue, KDfcQuePriority, &KDriverNameDes );
if( KErrNone != r )
{
return r;
}
TPS65950::CompletionDfc.SetDfcQ( TheDfcQue );
TPS65950::DummyDfc.SetDfcQ( TheDfcQue );
// Open I2c handles
for( TInt i = 0; i < KGroupCount; ++i )
{
TheDcb[i].iUnit = I2c::E1; // Master / slave
TheDcb[i].iRole = I2c::EMaster;
TheDcb[i].iMode = I2c::E7Bit;
TheDcb[i].iExclusiveClient = NULL;
TheDcb[i].iRate = I2c::E400K;
TheDcb[i].iOwnAddress = 0x01;
TheDcb[i].iDfcQueue = TheDfcQue;
TheDcb[i].iDeviceAddress = KGroupIndexToGroupNumber[i];
I2cHandle[i] = I2c::Open( TheDcb[i] );
if( I2cHandle[i] < 0 )
{
return I2cHandle[i];
}
}
// Setup transfer linked list
TheTransferPb[ EAddressPb ].iType = I2c::TTransferPb::EWrite; // address write
TheTransferPb[ EAddressPb ].iLength = 1;
TheTransferPb[ EAddressPb ].iCompletionDfc = &TPS65950::DummyDfc;
TheTransferPb[ EAddressPb ].iNextPhase = &TheTransferPb[ EDataPb ];
TheTransferPb[ EDataPb ].iCompletionDfc = &TPS65950::CompletionDfc;
TheTransferPb[ EDataPb ].iNextPhase = NULL;
return r;
}
inline TInt BcdToDecimal( TUint8 aBcd )
{
return ( aBcd bitand 0xF ) + ( (aBcd >> 4) * 10);
}
inline TUint8 DecimalToBcd( TInt aDecimal )
{
TUint tens = (aDecimal / 10);
return ( tens << 4 ) + ( aDecimal - tens );
}
EXPORT_C TInt GetRtcData( TRtcTime& aTime )
{
__ASSERT_NO_FAST_MUTEX;
NFastSemaphore sem;
TDfc dfc( SyncDfcFunction, &sem, TheDfcQue, 2 );
TReq req[8]; // 9 stages to the operation
req[0].iRegister = RTC_CTRL_REG::Addr;
req[0].iAction = TReq::EClearSet;
req[0].iSetMask = RTC_CTRL_REG::GET_TIME;
req[0].iClearMask = 0;
req[0].iCompletionDfc = NULL;
req[0].iNextPhase = &req[1];
req[1].iRegister = Register::SECONDS_REG;
req[1].iAction = TReq::ERead;
req[1].iCompletionDfc = NULL;
req[1].iNextPhase = &req[2];
req[2].iRegister = Register::MINUTES_REG;
req[2].iAction = TReq::ERead;
req[2].iCompletionDfc = NULL;
req[2].iNextPhase = &req[3];
req[3].iRegister = Register::HOURS_REG;
req[3].iAction = TReq::ERead;
req[3].iCompletionDfc = NULL;
req[3].iNextPhase = &req[4];
req[4].iRegister = Register::DAYS_REG;
req[4].iAction = TReq::ERead;
req[4].iCompletionDfc = NULL;
req[4].iNextPhase = &req[5];
req[5].iRegister = Register::MONTHS_REG;
req[5].iAction = TReq::ERead;
req[5].iCompletionDfc = NULL;
req[5].iNextPhase = &req[6];
req[6].iRegister = Register::YEARS_REG;
req[6].iAction = TReq::ERead;
req[6].iCompletionDfc = NULL;
req[6].iNextPhase = &req[7];
req[7].iRegister = RTC_CTRL_REG::Addr;
req[7].iAction = TReq::EClearSet;
req[7].iSetMask = 0;
req[7].iClearMask = RTC_CTRL_REG::GET_TIME;
req[7].iCompletionDfc = &dfc;
req[7].iNextPhase = NULL;
NKern::FSSetOwner( &sem, NULL );
ExecAsync( req[0] );
NKern::FSWait( &sem );
aTime.iSecond = BcdToDecimal( req[1].iReadValue );
aTime.iMinute = BcdToDecimal( req[2].iReadValue );
aTime.iHour = BcdToDecimal( req[3].iReadValue );
aTime.iDay = BcdToDecimal( req[4].iReadValue );
aTime.iMonth = BcdToDecimal( req[5].iReadValue );
aTime.iYear = BcdToDecimal( req[6].iReadValue );
return KErrNone;
}
#define BCD0(a) ((a)%10)
#define BCD1(a) (((a)/10)<<4)
#define TOBCD(i) (BCD1(i)|BCD0(i))
EXPORT_C TInt SetRtcData( const TRtcTime& aTime )
{
__ASSERT_NO_FAST_MUTEX;
NFastSemaphore sem;
TDfc dfc( SyncDfcFunction, &sem, TheDfcQue, 2 );
TReq req[8]; // 9 stages to the operation
req[0].iRegister = RTC_CTRL_REG::Addr;
req[0].iAction = TReq::EClearSet;
req[0].iSetMask = 0;
req[0].iClearMask = RTC_CTRL_REG::STOP_RTC;
req[0].iCompletionDfc = NULL;
req[0].iNextPhase = &req[1];
req[1].iRegister = Register::SECONDS_REG;
req[1].iAction = TReq::EWrite;
req[1].iWriteValue = DecimalToBcd( aTime.iSecond );
req[1].iCompletionDfc = NULL;
req[1].iNextPhase = &req[2];
req[2].iRegister = Register::MINUTES_REG;
req[2].iAction = TReq::EWrite;
req[2].iWriteValue = DecimalToBcd( aTime.iMinute );
req[2].iCompletionDfc = NULL;
req[2].iNextPhase = &req[3];
req[3].iRegister = Register::HOURS_REG;
req[3].iAction = TReq::EWrite;
req[3].iWriteValue = DecimalToBcd( aTime.iHour );
req[3].iCompletionDfc = NULL;
req[3].iNextPhase = &req[4];
req[4].iRegister = Register::DAYS_REG;
req[4].iAction = TReq::EWrite;
req[4].iWriteValue = DecimalToBcd( aTime.iDay );
req[4].iCompletionDfc = NULL;
req[4].iNextPhase = &req[5];
req[5].iRegister = Register::MONTHS_REG;
req[5].iAction = TReq::EWrite;
req[5].iWriteValue = DecimalToBcd( aTime.iMonth );
req[5].iCompletionDfc = NULL;
req[5].iNextPhase = &req[6];
req[6].iRegister = Register::YEARS_REG;
req[6].iAction = TReq::EWrite;
req[6].iWriteValue = DecimalToBcd( aTime.iYear );
req[6].iCompletionDfc = NULL;
req[6].iNextPhase = &req[7];
req[7].iRegister = RTC_CTRL_REG::Addr;
req[7].iAction = TReq::EClearSet;
req[7].iSetMask = RTC_CTRL_REG::STOP_RTC;
req[7].iClearMask = 0;
req[7].iCompletionDfc = &dfc;
req[7].iNextPhase = NULL;
NKern::FSSetOwner( &sem, NULL );
ExecAsync( req[0] );
NKern::FSWait( &sem );
return KErrNone;
}
EXPORT_C TBool Initialized()
{
return IsInitialized;
}
} // namespace TPS65950
DECLARE_STANDARD_EXTENSION()
{
TInt r = TPS65950::Init();
if( KErrNone == r )
{
r = InitInterrupts();
}
IsInitialized = ( KErrNone == r );
return r;
}