Adding BASEPORT_DRV definition to beagle.oby(changeset 002c11474c92) made 'base_beagle.iby' beineg included twice; hence adding conditional include directives.
// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// omap3530/omap3530_drivers/usbcc/omap3530_usbc.h
// Platform-dependent USB client controller layer (USB PSL).
//
#ifndef __OMAP3530_USBC_H__
#define __OMAP3530_USBC_H__
#include <e32cmn.h>
#include <drivers/usbc.h>
#include <assp/omap3530_assp/omap3530_assp_priv.h>
// This is the header file for the implementation of the USB driver PSL layer for an imaginary USB client
// (device) controller.
// For simplicity's sake we assume the following endpoint layout of the controller.
// We have 5 endpoints in total - two Bulk endpoints (IN and OUT), two Isochronous endpoint (IN and OUT),
// one Interrupt endpoint (IN), and of course endpoint zero (Ep0).
//
// This is the mapping of "Hardware Endpoint Numbers" to "Real Endpoints" (and thus is also
// used as the array index for our local TTemplateAsspUsbcc::iEndpoints[]):
//
// 0 - 0 (Ep0 OUT)
// 0 - 1 (Ep0 IN)
// 1 - 3 (Bulk IN, Address 0x11, -> EpAddr2Idx(0x11) = 3)
// 2 - 4 (Bulk OUT, Address 0x02, -> EpAddr2Idx(0x02) = 4)
// 3 - 7 (Iso IN, Address 0x13, -> EpAddr2Idx(0x13) = 7)
// 4 - 8 (Iso OUT, Address 0x04, -> EpAddr2Idx(0x04) = 8)
// 5 - 11 (Int IN, Address 0x15, -> EpAddr2Idx(0x15) = 11)
//
// For the reason why this is so (or rather for the perhaps not so obvious system behind it),
// see the comment at the beginning of \e32\drivers\usbcc\ps_usbc.cpp and also the structure
// DeviceEndpoints[] at the top of pa_usbc.cpp.
// The total number of endpoints in our local endpoint array:
static const TInt KUsbTotalEndpoints = 16; //32; // Disabled due to limited FIFO space
// The numbers used in the following macros are 'aRealEndpoint's (i.e. array indices):
#define IS_VALID_ENDPOINT(x) ((x) > 0 && (x) < KUsbTotalEndpoints)
#define IS_OUT_ENDPOINT(x) IS_VALID_ENDPOINT(x) && ((x) == 0 || (x) == 2 || (x) == 4 || (x) == 6 || (x) == 8 || (x) == 10 || (x) == 12 || (x) == 14 || (x) == 16 || (x) == 18 || (x) == 20 || (x) == 22 ||(x) == 24 || (x) == 26 ||(x) == 28)
#define IS_IN_ENDPOINT(x) IS_VALID_ENDPOINT(x) && ((x) == 1 || (x) == 3 || (x) == 5 || (x) == 7 || (x) == 9 || (x) == 11 || (x) == 13 || (x) == 15 || (x) == 17 || (x) == 19 || (x) == 21 || (x) == 23 ||(x) == 25 || (x) == 27 ||(x) == 29)
#define IS_BULK_IN_ENDPOINT(x) IS_VALID_ENDPOINT(x) && ((x) == 1 || (x) == 3 || (x) == 5 || (x) == 7 || (x) == 9 || (x) == 11 || (x) == 13 || (x) == 15 || (x) == 17 || (x) == 19 || (x) == 21 || (x) == 23 ||(x) == 25 || (x) == 27)
#define IS_BULK_OUT_ENDPOINT(x) IS_VALID_ENDPOINT(x) &&((x) == 2 || (x) == 4 || (x) == 6 || (x) == 8 || (x) == 10 || (x) == 12 || (x) == 14 || (x) == 16 || (x) == 18 || (x) == 20 || (x) == 22 ||(x) == 24 || (x) == 26 ||(x) == 28)
#define IS_BULK_ENDPOINT(x) (IS_BULK_IN_ENDPOINT(x) || IS_BULK_OUT_ENDPOINT(x))
#define IS_ISO_IN_ENDPOINT(x) EFalse
#define IS_ISO_OUT_ENDPOINT(x) EFalse
#define IS_ISO_ENDPOINT(x) (IS_ISO_IN_ENDPOINT(x) || IS_ISO_OUT_ENDPOINT(x))
#define IS_INT_IN_ENDPOINT(x) IS_VALID_ENDPOINT(x) && ((x) == 29)
// This takes as an index the TTemplateAsspUsbcc::iEndpoints index (== aRealEndpoint) 0..11
// and returns the hardware endpoint number 0..5 (note that not all input indices are valid;
// these will return -1):
/*static const TInt TBeagleAsspEndpoints[KUsbTotalEndpoints] =
{0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30};*/
static const TInt TBeagleAsspEndpoints[KUsbTotalEndpoints] =
{0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
// And here is a function to use the above array:
static inline TInt ArrayIdx2TemplateEp(TInt aRealEndpoint)
{
if (IS_VALID_ENDPOINT(aRealEndpoint)) return TBeagleAsspEndpoints[aRealEndpoint];
else return -1;
}
static inline TInt TemplateEp2ArrayIdx(TInt aRealEndpoint)
{
for(TInt x=0; x<KUsbTotalEndpoints; x++)
{
if(TBeagleAsspEndpoints[x]==aRealEndpoint)
return x;
}
return -1;
}
// Access to clocks is reference counted
static TInt iSICLKEnabled;
// Endpoint max packet sizes
static const TInt KEp0MaxPktSz = 64; // Control
static const TInt KIntMaxPktSz = 64; // Interrupt
static const TInt KBlkMaxPktSz = 512; // Bulk
static const TInt KIsoMaxPktSz = 256; // Isochronous
static const TInt KEp0MaxPktSzMask = KUsbEpSize64; // Control
static const TInt KIntMaxPktSzMask = KUsbEpSize64; // Interrupt
static const TInt KBlkMaxPktSzMask = /*KUsbEpSize64 | */KUsbEpSize512; // Bulk
static const TInt KIsoMaxPktSzMask = KUsbEpSize256; // Isochronous
// 1 ms (i.e. the shortest delay possible with the sort of timer used) seems to give
// the best results, both for Bulk and Iso, and also (in the USBRFLCT test program)
// both for loop tests as well as unidirectional transfers.
static const TInt KRxTimerTimeout = 5; // milliseconds
// Used in descriptors
static const TUint16 KUsbVendorId = KUsbVendorId_Symbian; // Symbian
static const TUint16 KUsbProductId = 0x0666; // bogus...
static const TUint16 KUsbDevRelease = 0x0100; // bogus... (BCD!)
static const TUint16 KUsbLangId = 0x0409; // English (US) Language ID
// String descriptor default values
static const wchar_t KStringManufacturer[] = L"Symbian Software Ltd.";
static const wchar_t KStringProduct[] = L"BeagleBoard";
static const wchar_t KStringSerialNo[] = L"0123456789";
static const wchar_t KStringConfig[] = L"First and Last and Always";
// We use our own Ep0 state enum:
enum TEp0State
{
EP0_IDLE = 0, // These identifiers don't conform to
EP0_OUT_DATA_PHASE = 1, // Symbian's coding standard... ;)
EP0_IN_DATA_PHASE = 2,
EP0_END_XFER = 3,
};
class DOmap3530Usbcc;
// The lowest level endpoint abstraction
struct TEndpoint
{
TEndpoint();
static void RxTimerCallback(TAny* aPtr);
// data
DOmap3530Usbcc* iController; // pointer to controller object
union
{
TUint8* iRxBuf; // where to store /
const TUint8* iTxBuf; // from where to send
};
union
{
TInt iReceived; // bytes already rx'ed /
TInt iTransmitted; // bytes already tx'ed
};
TInt iLength; // number of bytes to be transferred
TBool iZlpReqd; // ZeroLengthPacketRequired
TBool iNoBuffer; // no data buffer was available when it was needed
TBool iDisabled; // dto but stronger
TInt iPackets; // number of packets rx'ed or tx'ed
TInt iLastError; //
TUsbcRequestCallback* iRequest; //
NTimer iRxTimer; //
TBool iRxTimerSet; // true if iRxTimer is running
TBool iRxMoreDataRcvd; // true if after setting timer data have arrived
TUsbcPacketArray* iPacketIndex; // actually TUsbcPacketArray (*)[]
TUsbcPacketArray* iPacketSize; // actually TUsbcPacketArray (*)[]
};
// The hardware driver object proper
class Omap3530BoardAssp;
class MOmap3530UsbPhy;
NONSHARABLE_CLASS( DOmap3530Usbcc ) : public DUsbClientController
{
friend void TEndpoint::RxTimerCallback(TAny*);
public:
enum TPHYMode
{
ENormal,
EPowerUp,
EPeripheralChirp,
EUART
};
public:
DOmap3530Usbcc();
TInt Construct();
virtual ~DOmap3530Usbcc();
virtual void DumpRegisters();
private:
virtual TInt SetDeviceAddress(TInt aAddress);
virtual TInt ConfigureEndpoint(TInt aRealEndpoint, const TUsbcEndpointInfo& aEndpointInfo);
virtual TInt DeConfigureEndpoint(TInt aRealEndpoint);
virtual TInt AllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource);
virtual TInt DeAllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource);
virtual TBool QueryEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) const;
virtual TInt OpenDmaChannel(TInt aRealEndpoint);
virtual void CloseDmaChannel(TInt aRealEndpoint);
virtual TInt SetupEndpointRead(TInt aRealEndpoint, TUsbcRequestCallback& aCallback);
virtual TInt SetupEndpointWrite(TInt aRealEndpoint, TUsbcRequestCallback& aCallback);
virtual TInt CancelEndpointRead(TInt aRealEndpoint);
virtual TInt CancelEndpointWrite(TInt aRealEndpoint);
virtual TInt SetupEndpointZeroRead();
virtual TInt SetupEndpointZeroWrite(const TUint8* aBuffer, TInt aLength, TBool aZlpReqd = EFalse);
virtual TInt SendEp0ZeroByteStatusPacket();
virtual TInt StallEndpoint(TInt aRealEndpoint);
virtual TInt ClearStallEndpoint(TInt aRealEndpoint);
virtual TInt EndpointStallStatus(TInt aRealEndpoint) const;
virtual TInt EndpointErrorStatus(TInt aRealEndpoint) const;
virtual TInt ResetDataToggle(TInt aRealEndpoint);
virtual TInt SynchFrameNumber() const;
virtual void SetSynchFrameNumber(TInt aFrameNumber);
virtual TInt StartUdc();
virtual TInt StopUdc();
virtual TInt UdcConnect();
virtual TInt UdcDisconnect();
virtual TBool UsbConnectionStatus() const;
virtual TBool UsbPowerStatus() const;
virtual TBool DeviceSelfPowered() const;
virtual const TUsbcEndpointCaps* DeviceEndpointCaps() const;
virtual TInt DeviceTotalEndpoints() const;
virtual TBool SoftConnectCaps() const;
virtual TBool DeviceStateChangeCaps() const;
virtual void Suspend();
virtual void Resume();
virtual void Reset();
virtual TInt SignalRemoteWakeup();
virtual void Ep0ReadSetupPktProceed();
virtual void Ep0ReceiveProceed();
virtual TDfcQue* DfcQ(TInt aUnit);
virtual TBool CurrentlyUsingHighSpeed();
private:
// general
void EnableEndpointInterrupt(TInt aEndpoint);
void DisableEndpointInterrupt(TInt aEndpoint);
void ClearEndpointInterrupt(TInt aEndpoint);
void InitialiseUdcRegisters();
void UdcEnable();
void UdcDisable();
TInt SetupUdcInterrupt();
void ReleaseUdcInterrupt();
void UdcInterruptService();
void EndpointIntService(TInt aEndpoint);
TInt ResetIntService();
void SuspendIntService();
void ResumeIntService();
void SofIntService();
static void UdcIsr(TAny* aPtr);
static TInt UsbClientConnectorCallback(TAny* aPtr);
// endpoint zero
void Ep0IntService();
void Ep0ReadSetupPkt();
void Ep0Receive();
void Ep0Transmit();
void Ep0EndXfer();
void Ep0Cancel();
void Ep0PrematureStatusOut();
void Ep0StatusIn();
void Ep0NextState(TEp0State aNextState);
// endpoint n with n != 0
void BulkTransmit(TInt aEndpoint);
void BulkReceive(TInt aEndpoint);
void BulkReadRxFifo(TInt aEndpoint);
void IsoTransmit(TInt aEndpoint);
void IsoReceive(TInt aEndpoint);
void IsoReadRxFifo(TInt aEndpoint);
void IntTransmit(TInt aEndpoint);
void RxComplete(TEndpoint* aEndpoint);
void StopRxTimer(TEndpoint* aEndpoint);
private:
void EnableSICLK();
void DisableSICLK();
// Dfc functions
static void SuspendDfcFn(TAny *aPtr);
static void ResumeDfcFn(TAny *aPtr);
static void ResetDfcFn(TAny *aPtr);
public:
TBool DeviceHighSpeedCaps() const;
private:
// general
TBool iSoftwareConnectable;
TBool iCableDetectable;
TBool iCableConnected;
TBool iBusIsPowered;
TBool iInitialized;
TInt (*iUsbClientConnectorCallback)(TAny *);
Omap3530Assp* iAssp;
// endpoint zero
TBool iEp0Configured;
TEp0State iEp0State;
// endpoints n
TEndpoint iEndpoints[KUsbTotalEndpoints]; // for how this is indexed, see top of pa_usbc.cpp
// Dfc's for configuring the Tranceiver when we get a Suspend/Resume/Reset interrupt.
TDfcQue* iDfcQueue;
TDfc iSuspendDfc;
TDfc iResumeDfc;
TDfc iResetDfc;
MOmap3530UsbPhy* iPhy;
TUint iPrmClientId;
};
class MOmap3530UsbPhy
{
public:
IMPORT_C static MOmap3530UsbPhy* New();
virtual void StartPHY() = 0;
virtual void SetPHYMode( DOmap3530Usbcc::TPHYMode aMode ) = 0;
virtual void EnablePHY() = 0;
virtual void DisablePHY() = 0;
};
#endif // __PA_USBC_H__