hostsupport/hostopenvg/src/src/riImage.cpp
branchbug235_bringup_0
changeset 54 067180f57b12
parent 53 c2ef9095503a
child 55 09263774e342
--- a/hostsupport/hostopenvg/src/src/riImage.cpp	Wed Oct 06 17:59:01 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2835 +0,0 @@
-/*------------------------------------------------------------------------
- *
- * OpenVG 1.1 Reference Implementation
- * -----------------------------------
- *
- * Copyright (c) 2007 The Khronos Group Inc.
- * Portions copyright (c) 2010 Nokia Corporation and/or its subsidiary(-ies).
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and /or associated documentation files
- * (the "Materials "), to deal in the Materials without restriction,
- * including without limitation the rights to use, copy, modify, merge,
- * publish, distribute, sublicense, and/or sell copies of the Materials,
- * and to permit persons to whom the Materials are furnished to do so,
- * subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Materials.
- *
- * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
- * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR
- * THE USE OR OTHER DEALINGS IN THE MATERIALS.
- *
- *//**
- * \file
- * \brief	Implementation of Color and Image functions.
- * \note
- *//*-------------------------------------------------------------------*/
-
-#include "riImage.h"
-#include "riRasterizer.h"
-#include "riContext.h"
-
-#ifndef __SFDYNAMICBLITTER_H
-#   include "sfDynamicBlitter.h"
-#endif
-
-//==============================================================================================
-
-namespace OpenVGRI
-{
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Converts from numBits into a shifted mask
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-static RI_INLINE unsigned int bitsToMask(unsigned int bits, unsigned int shift)
-{
-    return ((1<<bits)-1) << shift;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Converts from color (RIfloat) to an int with 1.0f mapped to the
-*			given maximum with round-to-nearest semantics.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-RI_INLINE int ffloor(RIfloat x)
-{
-    return (x >= 0) ? (int)x : (int)(x-1);
-}
-
-//static const float FLOAT_0	 = 0.0f;
-static const float FLOAT_0_5 = 0.5f;
-
-/* \note Rewrite this if time. */
-static unsigned int colorToInt(RIfloat c, int maxc)
-{
-#if defined RI_USE_SSE
-    /*
-        Registers mapping:
-        c		<->	xmm0,
-        maxc	<-> xmm1
-        0		<-> xmm2
-    */
-    _asm
-    {
-        xorps		xmm2, xmm2					; xmm2 = 0
-
-        ;---------------------------------------------
-        ; Computing: xmm0 = (c * (RIfloat)maxc + 0.5f)
-        ;---------------------------------------------
-        movss		xmm0, dword ptr [c]			; xmm0 = c
-        cvtsi2ss	xmm1, dword ptr [maxc]		; xmm1 = (float)maxc
-        mulss		xmm0, xmm1					; xmm0 = xmm0 * xmm1 = c * (float)maxc
-        addss		xmm0, FLOAT_0_5				; xmm0 = xmm0 + 0.5f = c * (float)maxc + 0.5f
-
-        ;---------------------------------------------
-        ; Computing: xmm0 = floor(xmm0) = floor(c * (RIfloat)maxc + 0.5f)
-        ;---------------------------------------------
-        cvttss2si   ebx, xmm0					; ebx = (int)xmm0
-        mov         eax, ebx					; eax = ebx = (int)xmm0
-        shr         eax, 31						; eax = sign(eax) = sign((int)xmm0)
-        sub         ebx, eax					; ebx = ebx - sign((int)xmm0) = (int)xmm0 - sign((int)xmm0) = (int)floor((int)xmm0)
-        cvtsi2ss    xmm0, ebx					; xmm0 = floor(xmm0)
-
-        pmaxsw		xmm0, xmm2;					; xmm0 = MAX(xmm0, 0)
-        pminsw		xmm0, xmm1					; xmm0 = MIN(xmm0, maxc)
-        cvttss2si   eax, xmm0					; return value = eax = (int)xmm0
-    }
-#else
-    return RI_INT_MIN(RI_INT_MAX((int)ffloor(c * (RIfloat)maxc + 0.5f), 0), maxc);
-#endif
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Converts from int to color (RIfloat) with the given maximum
-*			mapped to 1.0f.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-static RI_INLINE RIfloat intToColor(unsigned int i, unsigned int maxi)
-{
-    return (RIfloat)(i & maxi) / (RIfloat)maxi;
-}
-
-void Color::Descriptor::toSmallDescriptor(Color::SmallDescriptor& smallDesc) const
-{
-    switch (bitsPerPixel)
-    {
-    case 32:
-        smallDesc.size = SIZE_32;
-        break;
-    case 24:
-        smallDesc.size = SIZE_24;
-        break;
-    case 16:
-        smallDesc.size = SIZE_16;
-        break;
-    case 8:
-        smallDesc.size = SIZE_8;
-        break;
-    case 4:
-        smallDesc.size = SIZE_4;
-        break;
-    default:
-        RI_ASSERT(bitsPerPixel == 1);
-        smallDesc.size = SIZE_1;
-        break;
-    }
-    smallDesc.shape = shape;
-    smallDesc.internalFormat = internalFormat;
-}
-
-Color::Descriptor Color::Descriptor::getDummyDescriptor()
-{
-    static const Descriptor dummy = Color::Descriptor(8,0,8,8,8,16,8,24,0,0,sRGBA,32,SHAPE_ABGR);
-    return dummy;
-}
-
-/**
- * \brief   Determine the shape of the color format from other data.
- * \todo    The naming is poor because it may be interpreted as returning the member
- *          "shape".
- */
-Color::Shape Color::Descriptor::getShape() const
-{
-    // \todo There should be some easier way to define the shape so that it does
-    // not need to be determined with so many conditions.
-
-    if (isAlphaOnly())
-    {
-        return SHAPE_A;
-    }
-    else if (isLuminance())
-    {
-        if (alphaBits)
-        {
-            if (alphaShift == 0)
-                return SHAPE_LA;
-            return SHAPE_AL;
-        }
-        return SHAPE_L;
-    } 
-    else if (!alphaBits)
-    {
-        if (bitsPerPixel == 32)
-        {
-            switch(redShift)
-            {
-            case 0:
-                return SHAPE_XBGR;
-            case 8:
-                return SHAPE_BGRX;
-            case 16:
-                return SHAPE_XRGB;
-            default:
-                RI_ASSERT(redShift == 24);
-                return SHAPE_RGBX;
-            }
-        } else if (bitsPerPixel == 24)
-        {
-            if (!redShift)
-                return SHAPE_BGR;
-            else
-            {
-                RI_ASSERT(redShift == 16);
-                return SHAPE_RGB;
-            }
-        } else
-        {
-            RI_ASSERT(redBits == 5 && greenBits == 6 && blueBits == 5);
-            if(redShift)
-                return SHAPE_RGB;
-            else
-                return SHAPE_BGR;
-        }
-    }
-    else
-    {
-        if (bitsPerPixel == 32)
-        {
-            switch(redShift)
-            {
-            case 0:
-                return SHAPE_ABGR;
-            case 8:
-                return SHAPE_BGRA;
-            case 16:
-                return SHAPE_ARGB;
-            default:
-                RI_ASSERT(redShift == 24);
-                return SHAPE_RGBA;
-            }
-        } else
-        {
-            RI_ASSERT(bitsPerPixel == 16);
-            if (redBits == 5)
-            {
-                RI_ASSERT(greenBits == 5 && blueBits == 5 && alphaBits == 1);
-                switch(redShift)
-                {
-                case 0:
-                    return SHAPE_ABGR;
-                case 1:
-                    return SHAPE_BGRA;
-                case 10:
-                    return SHAPE_ARGB;
-                default:
-                    RI_ASSERT(redShift == 11);
-                    return SHAPE_RGBA;
-                }
-            } else
-            {
-                RI_ASSERT(redBits == 4 && greenBits == 4 && alphaBits == 4);
-                switch(redShift)
-                {
-                case 0:
-                    return SHAPE_ABGR;
-                case 4:
-                    return SHAPE_BGRA;
-                case 8:
-                    return SHAPE_ARGB;
-                default:
-                    RI_ASSERT(redShift == 12);
-                    return SHAPE_RGBA;
-                }
-            }
-        }
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Converts from packed integer in a given format to a Color.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Color::unpack(unsigned int inputData, const Color::Descriptor& inputDesc)
-{
-    int rb = inputDesc.redBits;
-    int gb = inputDesc.greenBits;
-    int bb = inputDesc.blueBits;
-    int ab = inputDesc.alphaBits;
-    int lb = inputDesc.luminanceBits;
-    int rs = inputDesc.redShift;
-    int gs = inputDesc.greenShift;
-    int bs = inputDesc.blueShift;
-    int as = inputDesc.alphaShift;
-    int ls = inputDesc.luminanceShift;
-
-    m_format = inputDesc.internalFormat;
-    if(lb)
-    {	//luminance
-        r = g = b = intToColor(inputData >> ls, (1<<lb)-1);
-        a = 1.0f;
-    }
-    else
-    {	//rgba
-        r = rb ? intToColor(inputData >> rs, (1<<rb)-1) : (RIfloat)1.0f;
-        g = gb ? intToColor(inputData >> gs, (1<<gb)-1) : (RIfloat)1.0f;
-        b = bb ? intToColor(inputData >> bs, (1<<bb)-1) : (RIfloat)1.0f;
-        a = ab ? intToColor(inputData >> as, (1<<ab)-1) : (RIfloat)1.0f;
-
-        if(isPremultiplied())
-        {	//clamp premultiplied color to alpha to enforce consistency
-            r = RI_MIN(r, a);
-            g = RI_MIN(g, a);
-            b = RI_MIN(b, a);
-        }
-    }
-
-    assertConsistency();
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Converts from Color to a packed integer in a given format.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-unsigned int Color::pack(const Color::Descriptor& outputDesc) const
-{
-    assertConsistency();
-
-    int rb = outputDesc.redBits;
-    int gb = outputDesc.greenBits;
-    int bb = outputDesc.blueBits;
-    int ab = outputDesc.alphaBits;
-    int lb = outputDesc.luminanceBits;
-    int rs = outputDesc.redShift;
-    int gs = outputDesc.greenShift;
-    int bs = outputDesc.blueShift;
-    int as = outputDesc.alphaShift;
-    int ls = outputDesc.luminanceShift;
-
-    if(lb)
-    {	//luminance
-        RI_ASSERT(isLuminance());
-        return colorToInt(r, (1<<lb)-1) << ls;
-    }
-    else
-    {	//rgb
-        RI_ASSERT(!isLuminance());
-        unsigned int cr = rb ? colorToInt(r, (1<<rb)-1) : 0;
-        unsigned int cg = gb ? colorToInt(g, (1<<gb)-1) : 0;
-        unsigned int cb = bb ? colorToInt(b, (1<<bb)-1) : 0;
-        unsigned int ca = ab ? colorToInt(a, (1<<ab)-1) : 0;
-        return packRGBAInteger(cr, rs, cg, gs, cb, bs, ca, as);
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Converts from the current internal format to another.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-/* \todo Integer & lookup versions */
-
-static RIfloat gamma(RIfloat c)
-{
-    if( c <= 0.00304f )
-        c *= 12.92f;
-    else
-        c = 1.0556f * (RIfloat)pow(c, 1.0f/2.4f) - 0.0556f;
-    return c;
-}
-
-static RIfloat invgamma(RIfloat c)
-{
-    if( c <= 0.03928f )
-        c /= 12.92f;
-    else
-        c = (RIfloat)pow((c + 0.0556f)/1.0556f, 2.4f);
-    return c;
-}
-
-static RIfloat lRGBtoL(RIfloat r, RIfloat g, RIfloat b)
-{
-    return 0.2126f*r + 0.7152f*g + 0.0722f*b;
-}
-
-void Color::convert(InternalFormat outputFormat)
-{
-    /* \todo This should probably be converted to integer code. */
-
-    assertConsistency();
-
-    if( m_format == outputFormat )
-        return;
-
-    if(isPremultiplied())
-    {	//unpremultiply
-        RIfloat ooa = (a != 0.0f) ? 1.0f / a : (RIfloat)0.0f;
-        r *= ooa;
-        g *= ooa;
-        b *= ooa;
-    }
-
-    //From Section 3.4.2 of OpenVG spec
-    //1: sRGB = gamma(lRGB)
-    //2: lRGB = invgamma(sRGB)
-    //3: lL = 0.2126 lR + 0.7152 lG + 0.0722 lB
-    //4: lRGB = lL
-    //5: sL = gamma(lL)
-    //6: lL = invgamma(sL)
-    //7: sRGB = sL
-
-    //Source/Dest lRGB sRGB   lL   sL
-    //lRGB          -    1    3    3,5
-    //sRGB          2    -    2,3  2,3,5
-    //lL            4    4,1  -    5
-    //sL            7,2  7    6    -
-
-    const unsigned int shift = 3;
-    unsigned int conversion = (m_format & (NONLINEAR | LUMINANCE)) | ((outputFormat & (NONLINEAR | LUMINANCE)) << shift);
-
-    switch(conversion)
-    {
-    case lRGBA | (sRGBA << shift): r = gamma(r); g = gamma(g); b = gamma(b); break;							//1
-    case lRGBA | (lLA << shift)  : r = g = b = lRGBtoL(r, g, b); break;										//3
-    case lRGBA | (sLA << shift)  : r = g = b = gamma(lRGBtoL(r, g, b)); break;								//3,5
-    case sRGBA | (lRGBA << shift): r = invgamma(r); g = invgamma(g); b = invgamma(b); break;				//2
-    case sRGBA | (lLA << shift)  : r = g = b = lRGBtoL(invgamma(r), invgamma(g), invgamma(b)); break;		//2,3
-    case sRGBA | (sLA << shift)  : r = g = b = gamma(lRGBtoL(invgamma(r), invgamma(g), invgamma(b))); break;//2,3,5
-    case lLA   | (lRGBA << shift): break;																	//4
-    case lLA   | (sRGBA << shift): r = g = b = gamma(r); break;												//4,1
-    case lLA   | (sLA << shift)  : r = g = b = gamma(r); break;												//5
-    case sLA   | (lRGBA << shift): r = g = b = invgamma(r); break;											//7,2
-    case sLA   | (sRGBA << shift): break;																	//7
-    case sLA   | (lLA << shift)  : r = g = b = invgamma(r); break;											//6
-    default: RI_ASSERT((m_format & (LUMINANCE | NONLINEAR)) == (outputFormat & (LUMINANCE | NONLINEAR))); break;	//nop
-    }
-
-    if(outputFormat & PREMULTIPLIED)
-    {	//premultiply
-        r *= a;
-        g *= a;
-        b *= a;
-    }
-    m_format = outputFormat;
-
-    assertConsistency();
-}
-
-/*------------------------------------------------------------------------*//*!
-* \brief	Creates a pixel format descriptor out of VGImageFormat
-* \param
-* \return
-* \note     Remove this function and use the "const" version for consistency.
-*//*------------------------------------------------------------------------*/
-Color::Descriptor Color::formatToDescriptor(VGImageFormat format)
-{
-    Descriptor desc;
-    memset(&desc, 0, sizeof(Descriptor));
-    RI_ASSERT(isValidImageFormat(format));
-
-    int baseFormat = (int)format & 15;
-    const int numBaseFormats = 15;
-    RI_ASSERT(baseFormat >= 0 && baseFormat < numBaseFormats);
-    int swizzleBits = ((int)format >> 6) & 3;
-
-    /* base formats
-    VG_sRGBX_8888                               =  0,
-    VG_sRGBA_8888                               =  1,
-    VG_sRGBA_8888_PRE                           =  2,
-    VG_sRGB_565                                 =  3,
-    VG_sRGBA_5551                               =  4,
-    VG_sRGBA_4444                               =  5,
-    VG_sL_8                                     =  6,
-    VG_lRGBX_8888                               =  7,
-    VG_lRGBA_8888                               =  8,
-    VG_lRGBA_8888_PRE                           =  9,
-    VG_lL_8                                     = 10,
-    VG_A_8                                      = 11,
-    VG_BW_1                                     = 12,
-    VG_A_1                                      = 13,
-    VG_A_4                                      = 14,
-    */
-
-    static const int redBits[numBaseFormats] =       {8, 8, 8, 5, 5, 4, 0, 8, 8, 8, 0, 0, 0, 0, 0};
-    static const int greenBits[numBaseFormats] =     {8, 8, 8, 6, 5, 4, 0, 8, 8, 8, 0, 0, 0, 0, 0};
-    static const int blueBits[numBaseFormats] =      {8, 8, 8, 5, 5, 4, 0, 8, 8, 8, 0, 0, 0, 0, 0};
-    static const int alphaBits[numBaseFormats] =     {0, 8, 8, 0, 1, 4, 0, 0, 8, 8, 0, 8, 0, 1, 4};
-    static const int luminanceBits[numBaseFormats] = {0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 1, 0, 0};
-
-    static const int redShifts[4*numBaseFormats] = {24, 24, 24, 11, 11, 12, 0, 24, 24, 24, 0, 0, 0, 0, 0,	//RGBA
-                                                    16, 16, 16, 11, 10, 8,  0, 16, 16, 16, 0, 0, 0, 0, 0,	//ARGB
-                                                    8,  8,  8,  0,  1,  4,  0, 8,  8,  8,  0, 0, 0, 0, 0,	//BGRA
-                                                    0,  0,  0,  0,  0,  0,  0, 0,  0,  0,  0, 0, 0, 0, 0};	//ABGR
-
-    static const int greenShifts[4*numBaseFormats] = {16, 16, 16, 5,  6,  8,  0, 16, 16, 16, 0, 0, 0, 0, 0,	//RGBA
-                                                      8,  8,  8,  5,  5,  4,  0, 8,  8,  8,  0, 0, 0, 0, 0,	//ARGB
-                                                      16, 16, 16, 5,  6,  8,  0, 16, 16, 16, 0, 0, 0, 0, 0,	//BGRA
-                                                      8,  8,  8,  5,  5,  4,  0, 8,  8,  8,  0, 0, 0, 0, 0};//ABGR
-
-    static const int blueShifts[4*numBaseFormats] =  {8,  8,  8,  0,  1,  4,  0, 8,  8,  8,  0, 0, 0, 0, 0,	//RGBA
-                                                      0,  0,  0,  0,  0,  0,  0, 0,  0,  0,  0, 0, 0, 0, 0,	//ARGB
-                                                      24, 24, 24, 11, 11, 12, 0, 24, 24, 24, 0, 0, 0, 0, 0,	//BGRA
-                                                      16, 16, 16, 11, 10, 8,  0, 16, 16, 16, 0, 0, 0, 0, 0};//ABGR
-
-    static const int alphaShifts[4*numBaseFormats] = {0,  0,  0,  0,  0,  0,  0, 0,  0,  0,  0, 0, 0, 0, 0,	//RGBA
-                                                      0,  24, 24, 0,  15, 12, 0, 0,  24, 24, 0, 0, 0, 0, 0,	//ARGB
-                                                      0,  0,  0,  0,  0,  0,  0, 0,  0,  0,  0, 0, 0, 0, 0,	//BGRA
-                                                      0,  24, 24, 0,  15, 12, 0, 0,  24, 24, 0, 0, 0, 0, 0};//ABGR
-
-    static const int bpps[numBaseFormats] = {32, 32, 32, 16, 16, 16, 8, 32, 32, 32, 8, 8, 1, 1, 4};
-
-    static const InternalFormat internalFormats[numBaseFormats] = {sRGBA, sRGBA, sRGBA_PRE, sRGBA, sRGBA, sRGBA, sLA, lRGBA, lRGBA, lRGBA_PRE, lLA, lRGBA, lLA, lRGBA, lRGBA};
-
-    desc.redBits = redBits[baseFormat];
-    desc.greenBits = greenBits[baseFormat];
-    desc.blueBits = blueBits[baseFormat];
-    desc.alphaBits = alphaBits[baseFormat];
-    desc.luminanceBits = luminanceBits[baseFormat];
-
-    desc.redShift = redShifts[swizzleBits * numBaseFormats + baseFormat];
-    desc.greenShift = greenShifts[swizzleBits * numBaseFormats + baseFormat];
-    desc.blueShift = blueShifts[swizzleBits * numBaseFormats + baseFormat];
-    desc.alphaShift = alphaShifts[swizzleBits * numBaseFormats + baseFormat];
-    desc.luminanceShift = 0;	//always zero
-
-    desc.vgFormat = format;
-    desc.bitsPerPixel = bpps[baseFormat];
-    desc.bytesPerPixel = desc.bitsPerPixel / 8;
-    desc.internalFormat = internalFormats[baseFormat];
-    desc.shape = desc.getShape();
-
-    if (desc.alphaBits)
-    {
-        desc.maskBits = desc.alphaBits;
-        desc.maskShift = desc.alphaShift;
-    } 
-    else if (!desc.isLuminance())
-    {
-        desc.maskBits = desc.redBits;
-        desc.maskShift = desc.redShift;
-    } 
-    else
-    {
-        desc.maskBits = desc.luminanceBits;
-        desc.maskShift = desc.luminanceShift;
-    }
-
-    return desc;
-}
-
-
-struct DescToFormatMapping
-{
-    Color::Descriptor desc;
-    VGImageFormat format;
-};
-
-RI_INLINE static bool isDescEqualToMapping(const Color::Descriptor& desc, const DescToFormatMapping &mapping)
-{
-    if ((desc.redBits == mapping.desc.redBits) &&
-        (desc.redShift == mapping.desc.redShift) &&
-        (desc.greenBits == mapping.desc.greenBits) &&
-        (desc.greenShift == mapping.desc.greenShift) &&
-        (desc.blueBits == mapping.desc.blueBits) &&
-        (desc.blueShift == mapping.desc.blueShift) &&
-        (desc.alphaBits == mapping.desc.alphaBits) &&
-        (desc.alphaShift == mapping.desc.alphaShift) &&
-        (desc.luminanceBits == mapping.desc.luminanceBits) &&
-        (desc.luminanceShift == mapping.desc.luminanceShift) &&
-        (desc.internalFormat == mapping.desc.internalFormat) &&
-        (desc.bitsPerPixel == mapping.desc.bitsPerPixel))
-        return true;
-
-    return false;
-}
-
-VGImageFormat Color::descriptorToVGImageFormat(const Descriptor& desc)
-{
-//Color::Descriptor::Descriptor(int dredBits, int dredShift, int dgreenBits, int dgreenShift, int dblueBits, int dblueShift, int dalphaBits, int dalphaShift, int dluminanceBits, int dluminanceShift, InternalFormat dinternalFormat, int dbpp) :
-    // \todo These are hardcoded here only to allow constant initialization, they should be generated
-    // using formatToDescriptor!
-    static const DescToFormatMapping map[] = {
-    /* RGB{A,X} channel ordering */
-        { formatToDescriptorConst(VG_sRGBX_8888), VG_sRGBX_8888 },
-        { formatToDescriptorConst(VG_sRGBA_8888), VG_sRGBA_8888 },
-        { formatToDescriptorConst(VG_sRGBA_8888_PRE), VG_sRGBA_8888_PRE },
-        { formatToDescriptorConst(VG_sRGB_565), VG_sRGB_565 },
-        { formatToDescriptorConst(VG_sRGBA_5551), VG_sRGBA_5551 },
-        { formatToDescriptorConst(VG_sRGBA_4444), VG_sRGBA_4444 },
-        { formatToDescriptorConst(VG_sL_8), VG_sL_8 },
-        { formatToDescriptorConst(VG_lRGBX_8888), VG_lRGBX_8888 },
-        { formatToDescriptorConst(VG_lRGBA_8888), VG_lRGBA_8888 },
-        { formatToDescriptorConst(VG_lRGBA_8888_PRE), VG_lRGBA_8888_PRE },
-        { formatToDescriptorConst(VG_lL_8), VG_lL_8 },
-        { formatToDescriptorConst(VG_A_8), VG_A_8 },
-        { formatToDescriptorConst(VG_BW_1), VG_BW_1 },
-        { formatToDescriptorConst(VG_A_1), VG_A_1 },
-        { formatToDescriptorConst(VG_A_4), VG_A_4 },
-
-  /* {A,X}RGB channel ordering */
-        { formatToDescriptorConst(VG_sXRGB_8888), VG_sXRGB_8888 },
-        { formatToDescriptorConst(VG_sARGB_8888), VG_sARGB_8888 },
-        { formatToDescriptorConst(VG_sARGB_8888_PRE), VG_sARGB_8888_PRE },
-        { formatToDescriptorConst(VG_sARGB_1555), VG_sARGB_1555 },
-        { formatToDescriptorConst(VG_sARGB_4444), VG_sARGB_4444 },
-        { formatToDescriptorConst(VG_lXRGB_8888), VG_lXRGB_8888 },
-        { formatToDescriptorConst(VG_lARGB_8888), VG_lARGB_8888 },
-        { formatToDescriptorConst(VG_lARGB_8888_PRE), VG_lARGB_8888_PRE },
-
-  /* BGR{A,X} channel ordering */
-        { formatToDescriptorConst(VG_sBGRX_8888), VG_sBGRX_8888 },
-        { formatToDescriptorConst(VG_sBGRA_8888), VG_sBGRA_8888 },
-        { formatToDescriptorConst(VG_sBGRA_8888_PRE), VG_sBGRA_8888_PRE },
-        { formatToDescriptorConst(VG_sBGR_565), VG_sBGR_565 },
-        { formatToDescriptorConst(VG_sBGRA_5551), VG_sBGRA_5551 },
-        { formatToDescriptorConst(VG_sBGRA_4444), VG_sBGRA_4444 },
-        { formatToDescriptorConst(VG_lBGRX_8888), VG_lBGRX_8888 },
-        { formatToDescriptorConst(VG_lBGRA_8888), VG_lBGRA_8888 },
-        { formatToDescriptorConst(VG_lBGRA_8888_PRE), VG_lBGRA_8888_PRE },
-
-  /* {A,X}BGR channel ordering */
-        { formatToDescriptorConst(VG_sXBGR_8888), VG_sXBGR_8888 },
-        { formatToDescriptorConst(VG_sABGR_8888), VG_sABGR_8888 },
-        { formatToDescriptorConst(VG_sABGR_8888_PRE), VG_sABGR_8888_PRE },
-        { formatToDescriptorConst(VG_sABGR_1555), VG_sABGR_1555 },
-        { formatToDescriptorConst(VG_sABGR_4444), VG_sABGR_4444 },
-        { formatToDescriptorConst(VG_lXBGR_8888), VG_lXBGR_8888 },
-        { formatToDescriptorConst(VG_lABGR_8888), VG_lABGR_8888 },
-        { formatToDescriptorConst(VG_lABGR_8888_PRE), VG_lABGR_8888_PRE },
-    };
-
-    for (size_t i = 0; i < sizeof(map)/sizeof(map[0]); i++)
-    {
-        if (isDescEqualToMapping(desc, map[i]))
-            return map[i].format;
-    }
-    RI_ASSERT(false);
-    return (VGImageFormat)-1;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Checks if the pixel format descriptor is valid (i.e. all the
-*           values are supported by the RI)
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-bool Color::isValidDescriptor(const Color::Descriptor& desc)
-{
-    //A valid descriptor has 1, 2, 4, 8, 16, or 32 bits per pixel, and either luminance or rgba channels, but not both.
-    //Any of the rgba channels can be missing, and not all bits need to be used. Maximum channel bit depth is 8.
-    int rb = desc.redBits;
-    int gb = desc.greenBits;
-    int bb = desc.blueBits;
-    int ab = desc.alphaBits;
-    int lb = desc.luminanceBits;
-    int rs = desc.redShift;
-    int gs = desc.greenShift;
-    int bs = desc.blueShift;
-    int as = desc.alphaShift;
-    int ls = desc.luminanceShift;
-    int bpp = desc.bitsPerPixel;
-
-    int rgbaBits = rb + gb + bb + ab;
-    if(rb < 0 || rb > 8 || rs < 0 || rs + rb > bpp || !(rb || !rs))
-        return false;	//invalid channel description
-    if(gb < 0 || gb > 8 || gs < 0 || gs + gb > bpp || !(gb || !gs))
-        return false;	//invalid channel description
-    if(bb < 0 || bb > 8 || bs < 0 || bs + bb > bpp || !(bb || !bs))
-        return false;	//invalid channel description
-    if(ab < 0 || ab > 8 || as < 0 || as + ab > bpp || !(ab || !as))
-        return false;	//invalid channel description
-    if(lb < 0 || lb > 8 || ls < 0 || ls + lb > bpp || !(lb || !ls))
-        return false;	//invalid channel description
-
-#if 0
-    if(rgbaBits && lb)
-        return false;	//can't have both rgba and luminance
-#endif
-    if(!rgbaBits && !lb)
-        return false;	//must have either rgba or luminance
-    if(rgbaBits)
-    {	//rgba
-        if(rb+gb+bb == 0)
-        {	//alpha only
-            if(rs || gs || bs || as || ls)
-                return false;	//wrong shifts (even alpha shift must be zero)
-            if((ab != 1 && ab != 2  && ab != 4 && ab != 8) || bpp != ab)
-                return false;	//alpha size must be 1, 2, 4, or, 8, bpp must match
-        }
-        else
-        {	//rgba
-            if(rgbaBits > bpp)
-                return false;	//bpp must be greater than or equal to the sum of rgba bits
-            if(!(bpp == 32 || bpp == 16 || bpp == 8))
-                return false;	//only 1, 2, and 4 byte formats are supported for rgba
-
-            unsigned int rm = bitsToMask((unsigned int)rb, (unsigned int)rs);
-            unsigned int gm = bitsToMask((unsigned int)gb, (unsigned int)gs);
-            unsigned int bm = bitsToMask((unsigned int)bb, (unsigned int)bs);
-            unsigned int am = bitsToMask((unsigned int)ab, (unsigned int)as);
-            if((rm & gm) || (rm & bm) || (rm & am) || (gm & bm) || (gm & am) || (bm & am))
-                return false;	//channels overlap
-        }
-    }
-    else
-    {	//luminance
-        if(rs || gs || bs || as || ls)
-            return false;	//wrong shifts (even luminance shift must be zero)
-        if(!(lb == 1 || lb == 8) || bpp != lb)
-            return false;	//luminance size must be either 1 or 8, bpp must match
-    }
-
-    if(desc.vgFormat != -1)
-    {
-        if(!isValidImageFormat(desc.vgFormat))
-            return false;	//invalid image format
-
-        Descriptor d = formatToDescriptor(desc.vgFormat);
-        if(d.redBits != rb || d.greenBits != gb || d.blueBits != bb || d.alphaBits != ab || d.luminanceBits != lb ||
-           d.redShift != rs || d.greenShift != gs || d.blueShift != bs || d.alphaShift != as || d.luminanceShift != ls ||
-           d.bitsPerPixel != bpp)
-           return false;	//if the descriptor has a VGImageFormat, it must match the bits, shifts, and bpp
-    } 
-
-    if((unsigned int)desc.internalFormat & ~(Color::PREMULTIPLIED | Color::NONLINEAR | Color::LUMINANCE))
-        return false;	//invalid internal format
-
-    return true;
-}
-
-//==============================================================================================
-
-//==============================================================================================
-
-IntegerColor::IntegerColor(const Color& color)
-{
-    r = (RIuint32)(color.r * 255.0f + 0.5f);
-    g = (RIuint32)(color.g * 255.0f + 0.5f);
-    b = (RIuint32)(color.b * 255.0f + 0.5f);
-    a = (RIuint32)(color.a * 255.0f + 0.5f);
-}
-
-//==============================================================================================
-
-//==============================================================================================
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Constructs a blank image.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Image::Image(const Color::Descriptor& desc, int width, int height, VGbitfield allowedQuality) :
-    m_desc(desc),
-    m_width(width),
-    m_height(height),
-    m_allowedQuality(allowedQuality),
-    m_inUse(0),
-    m_stride(0),
-    m_data(NULL),
-    m_referenceCount(0),
-    m_ownsData(true),
-    m_parent(NULL),
-    m_storageOffsetX(0),
-    m_storageOffsetY(0),
-    m_unsafeData(false)
-{
-    RI_ASSERT(Color::isValidDescriptor(m_desc));
-    RI_ASSERT(width > 0 && height > 0);
-
-    m_stride = (m_width*m_desc.bitsPerPixel+7)/8;
-
-    m_data = RI_NEW_ARRAY(RIuint8, m_stride*m_height);	//throws bad_alloc
-    memset(m_data, 0, m_stride*m_height);	//clear image
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Constructs an image that uses an external array for its data
-*			storage.
-* \param
-* \return
-* \note		This is meant for internal use to make blitting easier
-* \note     Now this is "tagged" into m_unsafeData if necessary.
-*           Using this constructor may then affect performance.
-*//*-------------------------------------------------------------------*/
-
-Image::Image(const Color::Descriptor& desc, int width, int height, int stride, RIuint8* data) :
-    m_desc(desc),
-    m_width(width),
-    m_height(height),
-    m_allowedQuality(0),
-    m_inUse(0),
-    m_stride(stride),
-    m_data(data),
-    m_referenceCount(0),
-    m_ownsData(false),
-    m_parent(NULL),
-    m_storageOffsetX(0),
-    m_storageOffsetY(0),
-    m_unsafeData(false)
-{
-    RI_ASSERT(Color::isValidDescriptor(m_desc));
-    RI_ASSERT(width > 0 && height > 0);
-    RI_ASSERT(data);
-    setUnsafe(true); // External data always potentially unsafe, see note above.
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Construcs a child image.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Image::Image(Image* parent, int x, int y, int width, int height) :
-    m_desc(Color::formatToDescriptor(VG_sRGBA_8888)),	//dummy initialization, will be overwritten below (can't read from parent->m_desc before knowing the pointer is valid)
-    m_width(width),
-    m_height(height),
-    m_allowedQuality(0),
-    m_inUse(0),
-    m_stride(0),
-    m_data(NULL),
-    m_referenceCount(0),
-    m_ownsData(false),
-    m_parent(parent),
-    m_storageOffsetX(0),
-    m_storageOffsetY(0),
-    m_unsafeData(false)
-{
-    RI_ASSERT(parent);
-    RI_ASSERT(x >= 0 && y >= 0 && width > 0 && height > 0);
-    RI_ASSERT(RI_INT_ADDSATURATE(x,width) <= parent->m_width && RI_INT_ADDSATURATE(y,height) <= parent->m_height);	//child image must be contained in parent
-
-    m_desc = parent->m_desc;
-    RI_ASSERT(Color::isValidDescriptor(m_desc));
-    m_allowedQuality = parent->m_allowedQuality;
-    m_stride = parent->m_stride;
-    m_data = parent->m_data;
-    m_storageOffsetX = parent->m_storageOffsetX + x;
-    m_storageOffsetY = parent->m_storageOffsetY + y;
-
-    //increase the reference and use count of the parent
-    addInUse();
-    parent->addInUse();
-    parent->addReference();
-    m_unsafeData = parent->m_unsafeData;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Image destructor.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Image::~Image()
-{
-    RI_ASSERT(m_referenceCount == 0);
-
-    if(m_parent)
-    {
-        //decrease the reference and use count of the parent
-        removeInUse();
-        m_parent->removeInUse();
-        if(!m_parent->removeReference())
-            RI_DELETE(m_parent);
-    }
-    RI_ASSERT(m_inUse == 0);
-
-
-    if(m_ownsData)
-    {
-        RI_ASSERT(!m_parent);		//can't have parent if owns the data
-        RI_DELETE_ARRAY(m_data);	//delete image data if we own it
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Returns true if the two images share pixels.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-bool Image::overlaps(const Image* src) const
-{
-    RI_ASSERT(src);
-
-    if(m_data != src->m_data)
-        return false;	//images don't share data
-
-    //check if the image storage regions overlap
-    Rectangle r(m_storageOffsetX, m_storageOffsetY, m_width, m_height);
-    r.intersect(Rectangle(src->m_storageOffsetX, src->m_storageOffsetY, src->m_width, src->m_height));
-    if(!r.width || !r.height)
-        return false;	//intersection is empty, images don't overlap
-
-    return true;
-}
-
-/**
- * \brief   Expand log2 bpp packed pixel (single value) to 8 bits. This will
- *          Result in 8, 4, or 2 same pixel values to be packed into the return value.
- */
-RI_INLINE static RIuint32 logExpand8(RIuint32 packedColor, int srcBits)
-{
-    RI_ASSERT(srcBits == 4 || srcBits == 2 || srcBits == 1);
-    RIuint32 ret = packedColor;
-    int n = srcBits;
-    while (n < 8)
-    {
-        ret |= ret << n;
-        n += n;
-    }
-    return ret;
-}
-
-RI_INLINE void Image::fillPacked(RIuint32 packedColor)
-{
-    RIuint32 pc = packedColor;
-    int Bpp = m_desc.bitsPerPixel / 8;
-    int nSetsPerScanline = m_width;
-
-    RI_ASSERT(nSetsPerScanline);
-    // \todo 1bpp and 4bpp mask formats must be supported. fillPackedPixels should
-    // automatically work, but riMemSet32 path needs a bit more logic.
-    // \note < 8bpp formats are always rounded to 8-bit boundaries at scanline end.
-    // It is assumed that the "padding bits" may be filled.
-        
-    if (m_desc.bitsPerPixel < 8)
-    {
-        pc = logExpand8(packedColor, m_desc.bitsPerPixel);
-        Bpp = 1;
-        nSetsPerScanline = (m_width * m_desc.bitsPerPixel + 7) / 8;
-        //nSetsPerScanline /= (8/m_desc.bitsPerPixel);
-    }
-
-    RI_ASSERT(Bpp <= 4 && Bpp >= 1);
-
-    if (m_stride == ((m_desc.bitsPerPixel*m_width+7)/8))
-    {
-        const int nPixels = nSetsPerScanline * m_height;
-        riMemSet32(m_data, pc, nPixels, Bpp);
-    } else
-    {
-        RIuint8 *ptr = (RIuint8*)m_data;
-        // set per-scanline
-        for (int y = 0; y < m_height; y++)
-        {
-            riMemSet32(ptr, pc, nSetsPerScanline, Bpp); 
-            ptr += m_stride;
-        }
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Clears a rectangular portion of an image with the given clear color.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Image::clear(const Color& clearColor, int x, int y, int w, int h)
-{
-    RI_ASSERT(m_data);
-    RI_ASSERT(m_referenceCount > 0);
-
-
-    //intersect clear region with image bounds
-    Rectangle r(0,0,m_width,m_height);
-    r.intersect(Rectangle(x,y,w,h));
-    if(!r.width || !r.height)
-        return;		//intersection is empty or one of the rectangles is invalid
-
-    Color col = clearColor;
-    col.clamp();
-    col.convert(getDescriptor().internalFormat);
-
-    IntegerColor ic = IntegerColor(col);
-    ic.truncateColor(getDescriptor());
-    const RIuint32 c = ic.getPackedColor(getDescriptor());
-
-    if (r.width == getWidth() && r.height == getHeight() && !m_parent)
-        fillPacked(c);
-    else
-    {
-        fillPackedRectangle(r.x, r.y, r.width, r.height, c);
-    }
-}
-
-#if 0
-static RIfloat ditherChannel(RIfloat c, int bits, RIfloat m)
-{
-    RIfloat fc = c * (RIfloat)((1<<bits)-1);
-    RIfloat ic = (RIfloat)floor(fc);
-    if(fc - ic > m) ic += 1.0f;
-    return RI_MIN(ic / (RIfloat)((1<<bits)-1), 1.0f);
-}
-#endif
-
-static void computeBlitRegion(int& sx, int& sy, int& dx, int& dy, int& w, int& h, int srcWidth, int srcHeight, int dstWidth, int dstHeight)
-{
-    RI_ASSERT(w > 0 && h > 0);
-    sx = RI_INT_MIN(RI_INT_MAX(sx, (int)(RI_INT32_MIN>>2)), (int)(RI_INT32_MAX>>2));
-    sy = RI_INT_MIN(RI_INT_MAX(sy, (int)(RI_INT32_MIN>>2)), (int)(RI_INT32_MAX>>2));
-    dx = RI_INT_MIN(RI_INT_MAX(dx, (int)(RI_INT32_MIN>>2)), (int)(RI_INT32_MAX>>2));
-    dy = RI_INT_MIN(RI_INT_MAX(dy, (int)(RI_INT32_MIN>>2)), (int)(RI_INT32_MAX>>2));
-    w = RI_INT_MIN(w, (int)(RI_INT32_MAX>>2));
-    h = RI_INT_MIN(h, (int)(RI_INT32_MAX>>2));
-    int srcsx = sx, srcex = sx + w, dstsx = dx, dstex = dx + w;
-    if(srcsx < 0)
-    {
-        dstsx -= srcsx;
-        srcsx = 0;
-    }
-    if(srcex > srcWidth)
-    {
-        dstex -= srcex - srcWidth;
-        srcex = srcWidth;
-    }
-    if(dstsx < 0)
-    {
-        srcsx -= dstsx;
-        dstsx = 0;
-    }
-    if(dstex > dstWidth)
-    {
-        srcex -= dstex - dstWidth;
-        dstex = dstWidth;
-    }
-    RI_ASSERT(srcsx >= 0 && dstsx >= 0 && srcex <= srcWidth && dstex <= dstWidth);
-    w = srcex - srcsx;
-    RI_ASSERT(w == dstex - dstsx);
-
-    int srcsy = sy, srcey = sy + h, dstsy = dy, dstey = dy + h;
-    if(srcsy < 0)
-    {
-        dstsy -= srcsy;
-        srcsy = 0;
-    }
-    if(srcey > srcHeight)
-    {
-        dstey -= srcey - srcHeight;
-        srcey = srcHeight;
-    }
-    if(dstsy < 0)
-    {
-        srcsy -= dstsy;
-        dstsy = 0;
-    }
-    if(dstey > dstHeight)
-    {
-        srcey -= dstey - dstHeight;
-        dstey = dstHeight;
-    }
-    RI_ASSERT(srcsy >= 0 && dstsy >= 0 && srcey <= srcHeight && dstey <= dstHeight);
-    h = srcey - srcsy;
-    RI_ASSERT(h == dstey - dstsy);
-    sx = srcsx;
-    sy = srcsy;
-    dx = dstsx;
-    dy = dstsy;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Blits a source region to destination. Source and destination
-*			can overlap.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-// \todo Extract dithering kernel and put it into the blitter
-#if 0
-void Image::blit(VGContext* context, const Image* src, int sx, int sy, int dx, int dy, int w, int h, bool dither)
-{
-    //img=>img: vgCopyImage
-    //img=>user: vgGetImageSubData
-    //user=>img: vgImageSubData
-    
-    // \todo Implement dither to blitter.
-    this->blit(context, src, sx, sy, dx, dy, w, h, NULL, dither);
-    RI_ASSERT(src.m_data);	//source exists
-    RI_ASSERT(m_data);	//destination exists
-    RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
-
-    computeBlitRegion(sx, sy, dx, dy, w, h, src.m_width, src.m_height, m_width, m_height);
-    if(w <= 0 || h <= 0)
-        return;	//zero area
-
-    Array<Color> tmp;
-    tmp.resize(w*h);	//throws bad_alloc
-
-    //copy source region to tmp
-    for(int j=0;j<h;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            Color c = src.readPixel(sx + i, sy + j);
-            c.convert(m_desc.internalFormat);
-            tmp[j*w+i] = c;
-        }
-    }
-
-    int rbits = m_desc.redBits, gbits = m_desc.greenBits, bbits = m_desc.blueBits, abits = m_desc.alphaBits;
-    if(m_desc.isLuminance())
-    {
-        rbits = gbits = bbits = m_desc.luminanceBits;
-        abits = 0;
-    }
-
-    //write tmp to destination region
-    for(int j=0;j<h;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            Color col = tmp[j*w+i];
-
-            if(dither)
-            {
-                static const int matrix[16] = {
-                    0,  8,  2,  10,
-                    12, 4,  14, 6,
-                    3,  11, 1,  9,
-                    15, 7,  13, 5};
-                int x = i & 3;
-                int y = j & 3;
-                RIfloat m = matrix[y*4+x] / 16.0f;
-
-                if(rbits) col.r = ditherChannel(col.r, rbits, m);
-                if(gbits) col.g = ditherChannel(col.g, gbits, m);
-                if(bbits) col.b = ditherChannel(col.b, bbits, m);
-                if(abits) col.a = ditherChannel(col.a, abits, m);
-            }
-
-            writePixel(dx + i, dy + j, col);
-        }
-    }
-}
-#endif
-
-/**
- * \brief   Common body for drawImage-functions (one is the actual drawImage, and the
- *          other one is used for scissored image-set operations.
- * \todo    Reorganize all image draw operations to use this function. 
- */
-static bool drawImageBody(VGContext* context, Image* image, const Matrix3x3& userToSurfaceMatrix,
-    VGImageQuality imageQuality,
-    VGBlendMode blendMode,
-    bool hasMasking,
-    bool hasColorTransform,
-    VGImageMode imageMode)
-{
-    Drawable* drawable = context->getCurrentDrawable();
-    if(!drawable)
-        return false;   //no EGL surface is current at the moment
-
-    Image* img = (Image*)image;
-    //transform image corners into the surface space
-    Vector3 p0(0, 0, 1);
-    Vector3 p1(0, (RIfloat)img->getHeight(), 1);
-    Vector3 p2((RIfloat)img->getWidth(), (RIfloat)img->getHeight(), 1);
-    Vector3 p3((RIfloat)img->getWidth(), 0, 1);
-
-    p0 = userToSurfaceMatrix * p0;
-    p1 = userToSurfaceMatrix * p1;
-    p2 = userToSurfaceMatrix * p2;
-    p3 = userToSurfaceMatrix * p3;
-    if(p0.z <= 0.0f || p1.z <= 0.0f || p2.z <= 0.0f || p3.z <= 0.0f)
-        return false;
-
-    //projection
-    p0 *= 1.0f/p0.z;
-    p1 *= 1.0f/p1.z;
-    p2 *= 1.0f/p2.z;
-    p3 *= 1.0f/p3.z;
-
-    Rasterizer& rasterizer = context->m_rasterizer;
-    rasterizer.clear();
-
-    if(context->m_scissoring)
-        rasterizer.setScissor(context->m_scissor);	//throws bad_alloc
-
-    PixelPipe& pixelPipe = context->m_pixelPipe;
-    pixelPipe.setTileFillColor(context->m_tileFillColor);
-    pixelPipe.setPaint((Paint*)context->m_fillPaint);
-    const bool aa = imageQuality == VG_IMAGE_QUALITY_NONANTIALIASED ? false : true;
-    rasterizer.setAntiAliasing(aa);
-    pixelPipe.setImageQuality(imageQuality);
-    pixelPipe.setBlendMode(blendMode);
-    pixelPipe.setRenderToMask(false);
-    pixelPipe.setDrawable(drawable);
-    pixelPipe.setMask(hasMasking);
-    pixelPipe.setColorTransform(hasColorTransform, context->m_colorTransformValues);
-
-    Matrix3x3 surfaceToImageMatrix = userToSurfaceMatrix;
-    Matrix3x3 surfaceToPaintMatrix = userToSurfaceMatrix * context->m_fillPaintToUser;
-    if(surfaceToImageMatrix.invert() && surfaceToPaintMatrix.invert())
-    {
-        VGImageMode imode = imageMode;
-
-        if(!surfaceToPaintMatrix.isAffine())
-            imode = VG_DRAW_IMAGE_NORMAL;	//if paint matrix is not affine, always use normal image mode
-
-        surfaceToPaintMatrix[2].set(0,0,1);	//force affine
-
-        pixelPipe.setImage(img, imode);
-        pixelPipe.setSurfaceToPaintMatrix(surfaceToPaintMatrix);
-        pixelPipe.setSurfaceToImageMatrix(surfaceToImageMatrix);
-        pixelPipe.prepareSpanUniforms(aa);
-        rasterizer.setup(0, 0, drawable->getWidth(), drawable->getHeight(), VG_EVEN_ODD, &pixelPipe);
-
-        rasterizer.addEdge(Vector2(p0.x,p0.y), Vector2(p1.x,p1.y));	//throws bad_alloc
-        rasterizer.addEdge(Vector2(p1.x,p1.y), Vector2(p2.x,p2.y));	//throws bad_alloc
-        rasterizer.addEdge(Vector2(p2.x,p2.y), Vector2(p3.x,p3.y));	//throws bad_alloc
-        rasterizer.addEdge(Vector2(p3.x,p3.y), Vector2(p0.x,p0.y));	//throws bad_alloc
-
-        rasterizer.fill();	//throws bad_alloc
-    }
-
-    return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Converts from multisampled format to display format.
-* \param    unsafeInput     Data may contain incorrect values (user data)     
-* \return
-* \note     May throw std::bad_alloc on cases where blitting within the
-*           same buffer and overlapping regions (this may change in the
-*           future).
-*//*-------------------------------------------------------------------*/
-
-void Image::blit(VGContext* context, const Image* src, 
-    int sx, int sy, int dx, int dy, int w, int h, 
-    Array<Rectangle>* scissors,
-    bool dither)
-{
-    bool overlap = false;
-    (void)dither;
-    DynamicBlitter& blitter = context->getBlitter();
-
-    //RI_ASSERT(!src->isInUse(this));
-    //int isx = sx, isy = sy, idx = dx, idy = dy, iw = w, ih = h;
-
-    computeBlitRegion(sx, sy, dx, dy, w, h, src->getWidth(), src->getHeight(), m_width, m_height);
-
-    if(w <= 0 || h <= 0)
-        return;	//zero area
-
-    if (this->m_data == src->m_data)
-    {
-        // The images may overlap.
-        int minsx = RI_INT_MIN(sx, dx);
-        int minsy = RI_INT_MIN(sy, dy);
-        int maxsx = RI_INT_MAX(sx, dx);
-        int maxsy = RI_INT_MAX(sy, dy);
-
-        if ((maxsx < (minsx + w)) && (maxsy < (minsy + h)))
-        {
-            overlap = true;
-        }
-    }
-
-    if (!scissors)
-    {
-        // Currently the blitter does not support scissors
-        if (!overlap)
-        {
-            blitter.prepareBlit(this, src, sx+src->m_storageOffsetX, sy+src->m_storageOffsetY, 
-                dx+m_storageOffsetX, dy+m_storageOffsetY, w, h);
-            blitter.blit();
-        } else
-        {
-            Image temp(src->getDescriptor(), w, h, VG_IMAGE_QUALITY_NONANTIALIASED);
-            blitter.prepareBlit(&temp, src, sx+src->m_storageOffsetX, sy+src->m_storageOffsetY, 0, 0, w, h);
-            blitter.blit();
-            blitter.prepareBlit(this, &temp, 0, 0, dx+m_storageOffsetX, dy+m_storageOffsetY, w, h);
-            blitter.blit();
-        }
-    } else
-    {
-        // For the moment, use the generic poly-rasterizer for scissored images.
-        if (!overlap)
-        {
-            // Create a child image
-            Image blitImage((Image*)src, sx, sy, w, h);
-            Matrix3x3 tx;
-            tx.set(1, 0, dx, 0, 1, dy, 0, 0, 1);
-
-            drawImageBody(context, &blitImage, tx,
-                        VG_IMAGE_QUALITY_NONANTIALIASED,
-                        VG_BLEND_SRC,
-                        false,
-                        false,
-                        VG_DRAW_IMAGE_NORMAL);
-        } else
-        {
-            // Create a copy of the source region
-            Image temp(src->getDescriptor(), w, h, VG_IMAGE_QUALITY_NONANTIALIASED);
-            blitter.prepareBlit(&temp, src, sx, sy, 0, 0, w, h);
-            blitter.blit();
-
-            Image blitImage((Image*)src, sx, sy, w, h);
-            Matrix3x3 tx;
-            tx.set(1, 0, dx, 0, 1, dy, 0, 0, 1);
-
-            drawImageBody(context, &blitImage, tx,
-                        VG_IMAGE_QUALITY_NONANTIALIASED,
-                        VG_BLEND_SRC,
-                        false,
-                        false,
-                        VG_DRAW_IMAGE_NORMAL);
-        }
-    }
-
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Returns the color at pixel (x,y).
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Color Image::readPixel(int x, int y) const
-{
-    const RIuint32 p = readPackedPixel(x, y);
-
-    Color c;
-    c.unpack(p, m_desc);
-    return c;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Writes the color to pixel (x,y). Internal color formats must
-*			match.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Image::writePixel(int x, int y, const Color& c)
-{
-    RI_ASSERT(c.getInternalFormat() == m_desc.internalFormat);
-
-    RIuint32 p = c.pack(m_desc);
-    writePackedPixel(x, y, p);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Writes a filtered color to destination surface
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Image::writeFilteredPixel(int i, int j, const Color& color, VGbitfield channelMask)
-{
-    //section 3.4.4: before color space conversion, premultiplied colors are
-    //clamped to alpha, and the color is converted to nonpremultiplied format
-    //section 11.2: how to deal with channel mask
-    //step 1
-    Color f = color;
-    f.clamp();			//vgColorMatrix and vgLookups can produce colors that exceed alpha or [0,1] range
-
-    //step 2: color space conversion
-    f.convert((Color::InternalFormat)(m_desc.internalFormat & (Color::NONLINEAR | Color::LUMINANCE)));
-
-    //step 3: read the destination color and convert it to nonpremultiplied
-    Color d = readPixel(i,j);
-    d.unpremultiply();
-    RI_ASSERT(d.getInternalFormat() == f.getInternalFormat());
-
-    //step 4: replace the destination channels specified by the channelMask (channelmask is ignored for luminance formats)
-    if(!m_desc.isLuminance())
-    {   //rgba format => use channelmask
-        if(channelMask & VG_RED)
-            d.r = f.r;
-        if(channelMask & VG_GREEN)
-            d.g = f.g;
-        if(channelMask & VG_BLUE)
-            d.b = f.b;
-        if(channelMask & VG_ALPHA)
-            d.a = f.a;
-    }
-    else d = f;
-
-    //step 5: if destination is premultiplied, convert to premultiplied format
-    if(m_desc.isPremultiplied())
-        d.premultiply();
-    //write the color to destination
-    writePixel(i,j,d);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Reads the pixel (x,y) and converts it into an alpha mask value.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-RIfloat Image::readMaskPixel(int x, int y) const
-{
-    RI_ASSERT(m_data);
-    RI_ASSERT(x >= 0 && x < m_width);
-    RI_ASSERT(y >= 0 && y < m_height);
-    RI_ASSERT(m_referenceCount > 0);
-
-    Color c = readPixel(x,y);
-    if(m_desc.isLuminance())
-    {
-        return c.r;
-    }
-    else
-    {	//rgba
-        if(m_desc.alphaBits)
-            return c.a;
-        return c.r;
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Writes the alpha mask to pixel (x,y).
-* \param
-* \return
-* \note		Overwrites color.
-*//*-------------------------------------------------------------------*/
-
-void Image::writeMaskPixel(int x, int y, RIfloat m)
-{
-    RI_ASSERT(m_data);
-    RI_ASSERT(x >= 0 && x < m_width);
-    RI_ASSERT(y >= 0 && y < m_height);
-    RI_ASSERT(m_referenceCount > 0);
-
-    //if luminance or no alpha, red channel will be used, otherwise alpha channel will be used
-    writePixel(x, y, Color(m,m,m,m,m_desc.internalFormat));
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Reads a texel (u,v) at the given mipmap level. Tiling modes and
-*			color space conversion are applied. Outputs color in premultiplied
-*			format.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Color Image::readTexel(int u, int v, int level, VGTilingMode tilingMode, const Color& tileFillColor) const
-{
-    const Image* image = this;
-    if( level > 0 )
-    {
-        RI_ASSERT(false);
-    }
-    RI_ASSERT(image);
-
-    Color p;
-    if(tilingMode == VG_TILE_FILL)
-    {
-        if(u < 0 || v < 0 || u >= image->m_width || v >= image->m_height)
-            p = tileFillColor;
-        else
-            p = image->readPixel(u, v);
-    }
-    else if(tilingMode == VG_TILE_PAD)
-    {
-        u = RI_INT_MIN(RI_INT_MAX(u,0),image->m_width-1);
-        v = RI_INT_MIN(RI_INT_MAX(v,0),image->m_height-1);
-        p = image->readPixel(u, v);
-    }
-    else if(tilingMode == VG_TILE_REPEAT)
-    {
-        u = RI_INT_MOD(u, image->m_width);
-        v = RI_INT_MOD(v, image->m_height);
-        p = image->readPixel(u, v);
-    }
-    else
-    {
-        RI_ASSERT(tilingMode == VG_TILE_REFLECT);
-
-        u = RI_INT_MOD(u, image->m_width*2);
-        v = RI_INT_MOD(v, image->m_height*2);
-        if( u >= image->m_width ) u = image->m_width*2-1 - u;
-        if( v >= image->m_height ) v = image->m_height*2-1 - v;
-        p = image->readPixel(u, v);
-    }
-
-    p.premultiply();    //interpolate in premultiplied format
-    return p;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Maps point (x,y) to an image and returns a filtered,
-*			premultiplied color value.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Color Image::resample(RIfloat x, RIfloat y, const Matrix3x3& surfaceToImage, VGImageQuality quality, VGTilingMode tilingMode, const Color& tileFillColor)	//throws bad_alloc
-{
-    RI_ASSERT(m_referenceCount > 0);
-
-    VGbitfield aq = getAllowedQuality();
-    aq &= (VGbitfield)quality;
-
-    Vector3 uvw(x,y,1.0f);
-    uvw = surfaceToImage * uvw;
-    RIfloat oow = 1.0f / uvw.z;
-    uvw *= oow;
-
-#if 0
-    if(aq & VG_IMAGE_QUALITY_BETTER)
-    {	//EWA on mipmaps
-        makeMipMaps();	//throws bad_alloc
-
-        Color::InternalFormat procFormat = (Color::InternalFormat)(m_desc.internalFormat | Color::PREMULTIPLIED);
-
-        RIfloat m_pixelFilterRadius = 1.25f;
-        RIfloat m_resamplingFilterRadius = 1.25f;
-
-        RIfloat Ux = (surfaceToImage[0][0] - uvw.x * surfaceToImage[2][0]) * oow * m_pixelFilterRadius;
-        RIfloat Vx = (surfaceToImage[1][0] - uvw.y * surfaceToImage[2][0]) * oow * m_pixelFilterRadius;
-        RIfloat Uy = (surfaceToImage[0][1] - uvw.x * surfaceToImage[2][1]) * oow * m_pixelFilterRadius;
-        RIfloat Vy = (surfaceToImage[1][1] - uvw.y * surfaceToImage[2][1]) * oow * m_pixelFilterRadius;
-        RIfloat U0 = uvw.x;
-        RIfloat V0 = uvw.y;
-
-        //calculate mip level
-        int level = 0;
-        RIfloat axis1sq = Ux*Ux + Vx*Vx;
-        RIfloat axis2sq = Uy*Uy + Vy*Vy;
-        RIfloat minorAxissq = RI_MIN(axis1sq,axis2sq);
-        while(minorAxissq > 9.0f && level < m_mipmaps.size())	//half the minor axis must be at least three texels
-        {
-            level++;
-            minorAxissq *= 0.25f;
-        }
-
-        RIfloat sx = 1.0f;
-        RIfloat sy = 1.0f;
-        if(level > 0)
-        {
-            sx = (RIfloat)m_mipmaps[level-1]->m_width / (RIfloat)m_width;
-            sy = (RIfloat)m_mipmaps[level-1]->m_height / (RIfloat)m_height;
-        }
-        Ux *= sx;
-        Vx *= sx;
-        U0 *= sx;
-        Uy *= sy;
-        Vy *= sy;
-        V0 *= sy;
-
-        //clamp filter size so that filtering doesn't take excessive amount of time (clamping results in aliasing)
-        RIfloat lim = 100.0f;
-        axis1sq = Ux*Ux + Vx*Vx;
-        axis2sq = Uy*Uy + Vy*Vy;
-        if( axis1sq > lim*lim )
-        {
-            RIfloat s = lim / (RIfloat)sqrt(axis1sq);
-            Ux *= s;
-            Vx *= s;
-        }
-        if( axis2sq > lim*lim )
-        {
-            RIfloat s = lim / (RIfloat)sqrt(axis2sq);
-            Uy *= s;
-            Vy *= s;
-        }
-
-
-        //form elliptic filter by combining texel and pixel filters
-        RIfloat A = Vx*Vx + Vy*Vy + 1.0f;
-        RIfloat B = -2.0f*(Ux*Vx + Uy*Vy);
-        RIfloat C = Ux*Ux + Uy*Uy + 1.0f;
-        //scale by the user-defined size of the kernel
-        A *= m_resamplingFilterRadius;
-        B *= m_resamplingFilterRadius;
-        C *= m_resamplingFilterRadius;
-
-        //calculate bounding box in texture space
-        RIfloat usize = (RIfloat)sqrt(C);
-        RIfloat vsize = (RIfloat)sqrt(A);
-        int u1 = (int)floor(U0 - usize + 0.5f);
-        int u2 = (int)floor(U0 + usize + 0.5f);
-        int v1 = (int)floor(V0 - vsize + 0.5f);
-        int v2 = (int)floor(V0 + vsize + 0.5f);
-        if( u1 == u2 || v1 == v2 )
-            return Color(0,0,0,0,procFormat);
-
-        //scale the filter so that Q = 1 at the cutoff radius
-        RIfloat F = A*C - 0.25f * B*B;
-        if( F <= 0.0f )
-            return Color(0,0,0,0,procFormat);	//invalid filter shape due to numerical inaccuracies => return black
-        RIfloat ooF = 1.0f / F;
-        A *= ooF;
-        B *= ooF;
-        C *= ooF;
-
-        //evaluate filter by using forward differences to calculate Q = A*U^2 + B*U*V + C*V^2
-        Color color(0,0,0,0,procFormat);
-        RIfloat sumweight = 0.0f;
-        RIfloat DDQ = 2.0f * A;
-        RIfloat U = (RIfloat)u1 - U0 + 0.5f;
-        for(int v=v1;v<v2;v++)
-        {
-            RIfloat V = (RIfloat)v - V0 + 0.5f;
-            RIfloat DQ = A*(2.0f*U+1.0f) + B*V;
-            RIfloat Q = (C*V+B*U)*V + A*U*U;
-            for(int u=u1;u<u2;u++)
-            {
-                if( Q >= 0.0f && Q < 1.0f )
-                {	//Q = r^2, fit gaussian to the range [0,1]
-                    RIfloat weight = (RIfloat)exp(-0.5f * 10.0f * Q);	//gaussian at radius 10 equals 0.0067
-                    color += weight * readTexel(u, v, level, tilingMode, tileFillColor);
-                    sumweight += weight;
-                }
-                Q += DQ;
-                DQ += DDQ;
-            }
-        }
-        if( sumweight == 0.0f )
-            return Color(0,0,0,0,procFormat);
-        RI_ASSERT(sumweight > 0.0f);
-        sumweight = 1.0f / sumweight;
-        return color * sumweight;
-    }
-    else
-#endif
-        //if(aq & VG_IMAGE_QUALITY_FASTER)
-    if(aq & VG_IMAGE_QUALITY_BETTER)
-    {	//bilinear
-        uvw.x -= 0.5f;
-        uvw.y -= 0.5f;
-        int u = (int)floor(uvw.x);
-        int v = (int)floor(uvw.y);
-        Color c00 = readTexel(u,v, 0, tilingMode, tileFillColor);
-        Color c10 = readTexel(u+1,v, 0, tilingMode, tileFillColor);
-        Color c01 = readTexel(u,v+1, 0, tilingMode, tileFillColor);
-        Color c11 = readTexel(u+1,v+1, 0, tilingMode, tileFillColor);
-        RIfloat fu = uvw.x - (RIfloat)u;
-        RIfloat fv = uvw.y - (RIfloat)v;
-        Color c0 = c00 * (1.0f - fu) + c10 * fu;
-        Color c1 = c01 * (1.0f - fu) + c11 * fu;
-        return c0 * (1.0f - fv) + c1 * fv;
-    }
-    else //VG_IMAGE_QUALITY_FASTER and VG_IMAGE_QUALITY_NONANTIALIASED
-    {	//point sampling
-        return readTexel((int)floor(uvw.x), (int)floor(uvw.y), 0, tilingMode, tileFillColor);
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Applies color matrix filter.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Image::colorMatrix(const Image& src, const RIfloat* matrix, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
-{
-    RI_ASSERT(src.m_data);	//source exists
-    RI_ASSERT(m_data);	//destination exists
-    RI_ASSERT(matrix);
-    RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
-
-    int w = RI_INT_MIN(m_width, src.m_width);
-    int h = RI_INT_MIN(m_height, src.m_height);
-    RI_ASSERT(w > 0 && h > 0);
-
-    Color::InternalFormat srcFormat = src.m_desc.internalFormat;
-    Color::InternalFormat procFormat = (Color::InternalFormat)(srcFormat & ~Color::LUMINANCE);	//process in RGB, not luminance
-    if(filterFormatLinear)
-        procFormat = (Color::InternalFormat)(procFormat & ~Color::NONLINEAR);
-    else
-        procFormat = (Color::InternalFormat)(procFormat | Color::NONLINEAR);
-
-    if(filterFormatPremultiplied)
-        procFormat = (Color::InternalFormat)(procFormat | Color::PREMULTIPLIED);
-    else
-        procFormat = (Color::InternalFormat)(procFormat & ~Color::PREMULTIPLIED);
-
-    for(int j=0;j<h;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            Color s = src.readPixel(i,j);	//convert to RGBA [0,1]
-            s.convert(procFormat);
-
-            Color d(0,0,0,0,procFormat);
-            d.r = matrix[0+4*0] * s.r + matrix[0+4*1] * s.g + matrix[0+4*2] * s.b + matrix[0+4*3] * s.a + matrix[0+4*4];
-            d.g = matrix[1+4*0] * s.r + matrix[1+4*1] * s.g + matrix[1+4*2] * s.b + matrix[1+4*3] * s.a + matrix[1+4*4];
-            d.b = matrix[2+4*0] * s.r + matrix[2+4*1] * s.g + matrix[2+4*2] * s.b + matrix[2+4*3] * s.a + matrix[2+4*4];
-            d.a = matrix[3+4*0] * s.r + matrix[3+4*1] * s.g + matrix[3+4*2] * s.b + matrix[3+4*3] * s.a + matrix[3+4*4];
-
-            writeFilteredPixel(i, j, d, channelMask);
-        }
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Reads a pixel from image with tiling mode applied.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-static Color readTiledPixel(int x, int y, int w, int h, VGTilingMode tilingMode, const Array<Color>& image, const Color& edge)
-{
-    Color s;
-    if(x < 0 || x >= w || y < 0 || y >= h)
-    {	//apply tiling mode
-        switch(tilingMode)
-        {
-        case VG_TILE_FILL:
-            s = edge;
-            break;
-        case VG_TILE_PAD:
-            x = RI_INT_MIN(RI_INT_MAX(x, 0), w-1);
-            y = RI_INT_MIN(RI_INT_MAX(y, 0), h-1);
-            RI_ASSERT(x >= 0 && x < w && y >= 0 && y < h);
-            s = image[y*w+x];
-            break;
-        case VG_TILE_REPEAT:
-            x = RI_INT_MOD(x, w);
-            y = RI_INT_MOD(y, h);
-            RI_ASSERT(x >= 0 && x < w && y >= 0 && y < h);
-            s = image[y*w+x];
-            break;
-        default:
-            RI_ASSERT(tilingMode == VG_TILE_REFLECT);
-            x = RI_INT_MOD(x, w*2);
-            y = RI_INT_MOD(y, h*2);
-            if(x >= w) x = w*2-1-x;
-            if(y >= h) y = h*2-1-y;
-            RI_ASSERT(x >= 0 && x < w && y >= 0 && y < h);
-            s = image[y*w+x];
-            break;
-        }
-    }
-    else
-    {
-        RI_ASSERT(x >= 0 && x < w && y >= 0 && y < h);
-        s = image[y*w+x];
-    }
-    return s;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Returns processing format for filtering.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-static Color::InternalFormat getProcessingFormat(Color::InternalFormat srcFormat, bool filterFormatLinear, bool filterFormatPremultiplied)
-{
-    Color::InternalFormat procFormat = (Color::InternalFormat)(srcFormat & ~Color::LUMINANCE);	//process in RGB, not luminance
-    if(filterFormatLinear)
-        procFormat = (Color::InternalFormat)(procFormat & ~Color::NONLINEAR);
-    else
-        procFormat = (Color::InternalFormat)(procFormat | Color::NONLINEAR);
-
-    if(filterFormatPremultiplied)
-        procFormat = (Color::InternalFormat)(procFormat | Color::PREMULTIPLIED);
-    else
-        procFormat = (Color::InternalFormat)(procFormat & ~Color::PREMULTIPLIED);
-    return procFormat;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Applies convolution filter.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Image::convolve(const Image& src, int kernelWidth, int kernelHeight, int shiftX, int shiftY, const RIint16* kernel, RIfloat scale, RIfloat bias, VGTilingMode tilingMode, const Color& edgeFillColor, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
-{
-    RI_ASSERT(src.m_data);	//source exists
-    RI_ASSERT(m_data);	//destination exists
-    RI_ASSERT(kernel && kernelWidth > 0 && kernelHeight > 0);
-    RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
-
-    //the area to be written is an intersection of source and destination image areas.
-    //lower-left corners of the images are aligned.
-    int w = RI_INT_MIN(m_width, src.m_width);
-    int h = RI_INT_MIN(m_height, src.m_height);
-    RI_ASSERT(w > 0 && h > 0);
-
-    Color::InternalFormat procFormat = getProcessingFormat(src.m_desc.internalFormat, filterFormatLinear, filterFormatPremultiplied);
-
-    Color edge = edgeFillColor;
-    edge.clamp();
-    edge.convert(procFormat);
-
-    Array<Color> tmp;
-    tmp.resize(src.m_width*src.m_height);	//throws bad_alloc
-
-    //copy source region to tmp and do conversion
-    for(int j=0;j<src.m_height;j++)
-    {
-        for(int i=0;i<src.m_width;i++)
-        {
-            Color s = src.readPixel(i, j);
-            s.convert(procFormat);
-            tmp[j*src.m_width+i] = s;
-        }
-    }
-
-    for(int j=0;j<h;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            Color sum(0,0,0,0,procFormat);
-
-            for(int kj=0;kj<kernelHeight;kj++)
-            {
-                for(int ki=0;ki<kernelWidth;ki++)
-                {
-                    int x = i+ki-shiftX;
-                    int y = j+kj-shiftY;
-                    Color s = readTiledPixel(x, y, src.m_width, src.m_height, tilingMode, tmp, edge);
-
-                    int kx = kernelWidth-ki-1;
-                    int ky = kernelHeight-kj-1;
-                    RI_ASSERT(kx >= 0 && kx < kernelWidth && ky >= 0 && ky < kernelHeight);
-
-                    sum += (RIfloat)kernel[kx*kernelHeight+ky] * s;
-                }
-            }
-
-            sum *= scale;
-            sum.r += bias;
-            sum.g += bias;
-            sum.b += bias;
-            sum.a += bias;
-
-            writeFilteredPixel(i, j, sum, channelMask);
-        }
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Applies separable convolution filter.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Image::separableConvolve(const Image& src, int kernelWidth, int kernelHeight, int shiftX, int shiftY, const RIint16* kernelX, const RIint16* kernelY, RIfloat scale, RIfloat bias, VGTilingMode tilingMode, const Color& edgeFillColor, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
-{
-    RI_ASSERT(src.m_data);	//source exists
-    RI_ASSERT(m_data);	//destination exists
-    RI_ASSERT(kernelX && kernelY && kernelWidth > 0 && kernelHeight > 0);
-    RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
-
-    //the area to be written is an intersection of source and destination image areas.
-    //lower-left corners of the images are aligned.
-    int w = RI_INT_MIN(m_width, src.m_width);
-    int h = RI_INT_MIN(m_height, src.m_height);
-    RI_ASSERT(w > 0 && h > 0);
-
-    Color::InternalFormat procFormat = getProcessingFormat(src.m_desc.internalFormat, filterFormatLinear, filterFormatPremultiplied);
-
-    Color edge = edgeFillColor;
-    edge.clamp();
-    edge.convert(procFormat);
-
-    Array<Color> tmp;
-    tmp.resize(src.m_width*src.m_height);	//throws bad_alloc
-
-    //copy source region to tmp and do conversion
-    for(int j=0;j<src.m_height;j++)
-    {
-        for(int i=0;i<src.m_width;i++)
-        {
-            Color s = src.readPixel(i, j);
-            s.convert(procFormat);
-            tmp[j*src.m_width+i] = s;
-        }
-    }
-
-    Array<Color> tmp2;
-    tmp2.resize(w*src.m_height);	//throws bad_alloc
-    for(int j=0;j<src.m_height;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            Color sum(0,0,0,0,procFormat);
-            for(int ki=0;ki<kernelWidth;ki++)
-            {
-                int x = i+ki-shiftX;
-                Color s = readTiledPixel(x, j, src.m_width, src.m_height, tilingMode, tmp, edge);
-
-                int kx = kernelWidth-ki-1;
-                RI_ASSERT(kx >= 0 && kx < kernelWidth);
-
-                sum += (RIfloat)kernelX[kx] * s;
-            }
-            tmp2[j*w+i] = sum;
-        }
-    }
-
-    if(tilingMode == VG_TILE_FILL)
-    {	//convolve the edge color
-        Color sum(0,0,0,0,procFormat);
-        for(int ki=0;ki<kernelWidth;ki++)
-        {
-            sum += (RIfloat)kernelX[ki] * edge;
-        }
-        edge = sum;
-    }
-
-    for(int j=0;j<h;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            Color sum(0,0,0,0,procFormat);
-            for(int kj=0;kj<kernelHeight;kj++)
-            {
-                int y = j+kj-shiftY;
-                Color s = readTiledPixel(i, y, w, src.m_height, tilingMode, tmp2, edge);
-
-                int ky = kernelHeight-kj-1;
-                RI_ASSERT(ky >= 0 && ky < kernelHeight);
-
-                sum += (RIfloat)kernelY[ky] * s;
-            }
-
-            sum *= scale;
-            sum.r += bias;
-            sum.g += bias;
-            sum.b += bias;
-            sum.a += bias;
-
-            writeFilteredPixel(i, j, sum, channelMask);
-        }
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Applies Gaussian blur filter.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Image::gaussianBlur(const Image& src, RIfloat stdDeviationX, RIfloat stdDeviationY, VGTilingMode tilingMode, const Color& edgeFillColor, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
-{
-    RI_ASSERT(src.m_data);	//source exists
-    RI_ASSERT(m_data);	//destination exists
-    RI_ASSERT(stdDeviationX > 0.0f && stdDeviationY > 0.0f);
-    RI_ASSERT(stdDeviationX <= RI_MAX_GAUSSIAN_STD_DEVIATION && stdDeviationY <= RI_MAX_GAUSSIAN_STD_DEVIATION);
-    RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
-
-    //the area to be written is an intersection of source and destination image areas.
-    //lower-left corners of the images are aligned.
-    int w = RI_INT_MIN(m_width, src.m_width);
-    int h = RI_INT_MIN(m_height, src.m_height);
-    RI_ASSERT(w > 0 && h > 0);
-
-    Color::InternalFormat procFormat = getProcessingFormat(src.m_desc.internalFormat, filterFormatLinear, filterFormatPremultiplied);
-
-    Color edge = edgeFillColor;
-    edge.clamp();
-    edge.convert(procFormat);
-
-    Array<Color> tmp;
-    tmp.resize(src.m_width*src.m_height);	//throws bad_alloc
-
-    //copy source region to tmp and do conversion
-    for(int j=0;j<src.m_height;j++)
-    {
-        for(int i=0;i<src.m_width;i++)
-        {
-            Color s = src.readPixel(i, j);
-            s.convert(procFormat);
-            tmp[j*src.m_width+i] = s;
-        }
-    }
-
-    RIfloat expScaleX = -1.0f / (2.0f*stdDeviationX*stdDeviationX);
-    RIfloat expScaleY = -1.0f / (2.0f*stdDeviationY*stdDeviationY);
-
-    int kernelWidth = (int)(stdDeviationX * 4.0f + 1.0f);
-    int kernelHeight = (int)(stdDeviationY * 4.0f + 1.0f);
-
-    //make a separable kernel
-    Array<RIfloat> kernelX;
-    kernelX.resize(kernelWidth*2+1);
-    int shiftX = kernelWidth;
-    RIfloat scaleX = 0.0f;
-    for(int i=0;i<kernelX.size();i++)
-    {
-        int x = i-shiftX;
-        kernelX[i] = (RIfloat)exp((RIfloat)x*(RIfloat)x * expScaleX);
-        scaleX += kernelX[i];
-    }
-    scaleX = 1.0f / scaleX;	//NOTE: using the mathematical definition of the scaling term doesn't work since we cut the filter support early for performance
-
-    Array<RIfloat> kernelY;
-    kernelY.resize(kernelHeight*2+1);
-    int shiftY = kernelHeight;
-    RIfloat scaleY = 0.0f;
-    for(int i=0;i<kernelY.size();i++)
-    {
-        int y = i-shiftY;
-        kernelY[i] = (RIfloat)exp((RIfloat)y*(RIfloat)y * expScaleY);
-        scaleY += kernelY[i];
-    }
-    scaleY = 1.0f / scaleY;	//NOTE: using the mathematical definition of the scaling term doesn't work since we cut the filter support early for performance
-
-    Array<Color> tmp2;
-    tmp2.resize(w*src.m_height);	//throws bad_alloc
-    //horizontal pass
-    for(int j=0;j<src.m_height;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            Color sum(0,0,0,0,procFormat);
-            for(int ki=0;ki<kernelX.size();ki++)
-            {
-                int x = i+ki-shiftX;
-                sum += kernelX[ki] * readTiledPixel(x, j, src.m_width, src.m_height, tilingMode, tmp, edge);
-            }
-            tmp2[j*w+i] = sum * scaleX;
-        }
-    }
-    //vertical pass
-    for(int j=0;j<h;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            Color sum(0,0,0,0,procFormat);
-            for(int kj=0;kj<kernelY.size();kj++)
-            {
-                int y = j+kj-shiftY;
-                sum += kernelY[kj] * readTiledPixel(i, y, w, src.m_height, tilingMode, tmp2, edge);
-            }
-            writeFilteredPixel(i, j, sum * scaleY, channelMask);
-        }
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Returns lookup table format for lookup filters.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-static Color::InternalFormat getLUTFormat(bool outputLinear, bool outputPremultiplied)
-{
-    Color::InternalFormat lutFormat = Color::lRGBA;
-    if(outputLinear && outputPremultiplied)
-        lutFormat = Color::lRGBA_PRE;
-    else if(!outputLinear && !outputPremultiplied)
-        lutFormat = Color::sRGBA;
-    else if(!outputLinear && outputPremultiplied)
-        lutFormat = Color::sRGBA_PRE;
-    return lutFormat;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Applies multi-channel lookup table filter.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Image::lookup(const Image& src, const RIuint8 * redLUT, const RIuint8 * greenLUT, const RIuint8 * blueLUT, const RIuint8 * alphaLUT, bool outputLinear, bool outputPremultiplied, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
-{
-    RI_ASSERT(src.m_data);	//source exists
-    RI_ASSERT(m_data);	//destination exists
-    RI_ASSERT(redLUT && greenLUT && blueLUT && alphaLUT);
-    RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
-
-    //the area to be written is an intersection of source and destination image areas.
-    //lower-left corners of the images are aligned.
-    int w = RI_INT_MIN(m_width, src.m_width);
-    int h = RI_INT_MIN(m_height, src.m_height);
-    RI_ASSERT(w > 0 && h > 0);
-
-    Color::InternalFormat procFormat = getProcessingFormat(src.m_desc.internalFormat, filterFormatLinear, filterFormatPremultiplied);
-    Color::InternalFormat lutFormat = getLUTFormat(outputLinear, outputPremultiplied);
-
-    for(int j=0;j<h;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            Color s = src.readPixel(i,j);	//convert to RGBA [0,1]
-            s.convert(procFormat);
-
-            Color d(0,0,0,0,lutFormat);
-            d.r = intToColor(  redLUT[colorToInt(s.r, 255)], 255);
-            d.g = intToColor(greenLUT[colorToInt(s.g, 255)], 255);
-            d.b = intToColor( blueLUT[colorToInt(s.b, 255)], 255);
-            d.a = intToColor(alphaLUT[colorToInt(s.a, 255)], 255);
-
-            writeFilteredPixel(i, j, d, channelMask);
-        }
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Applies single channel lookup table filter.
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Image::lookupSingle(const Image& src, const RIuint32 * lookupTable, VGImageChannel sourceChannel, bool outputLinear, bool outputPremultiplied, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
-{
-    RI_ASSERT(src.m_data);	//source exists
-    RI_ASSERT(m_data);	//destination exists
-    RI_ASSERT(lookupTable);
-    RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
-
-    //the area to be written is an intersection of source and destination image areas.
-    //lower-left corners of the images are aligned.
-    int w = RI_INT_MIN(m_width, src.m_width);
-    int h = RI_INT_MIN(m_height, src.m_height);
-    RI_ASSERT(w > 0 && h > 0);
-
-    if(src.m_desc.isLuminance())
-        sourceChannel = VG_RED;
-    else if(src.m_desc.redBits + src.m_desc.greenBits + src.m_desc.blueBits == 0)
-    {
-        RI_ASSERT(src.m_desc.alphaBits);
-        sourceChannel = VG_ALPHA;
-    }
-
-    Color::InternalFormat procFormat = getProcessingFormat(src.m_desc.internalFormat, filterFormatLinear, filterFormatPremultiplied);
-    Color::InternalFormat lutFormat = getLUTFormat(outputLinear, outputPremultiplied);
-
-    for(int j=0;j<h;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            Color s = src.readPixel(i,j);	//convert to RGBA [0,1]
-            s.convert(procFormat);
-            int e;
-            switch(sourceChannel)
-            {
-            case VG_RED:
-                e = colorToInt(s.r, 255);
-                break;
-            case VG_GREEN:
-                e = colorToInt(s.g, 255);
-                break;
-            case VG_BLUE:
-                e = colorToInt(s.b, 255);
-                break;
-            default:
-                RI_ASSERT(sourceChannel == VG_ALPHA);
-                e = colorToInt(s.a, 255);
-                break;
-            }
-
-            RIuint32 l = ((const RIuint32*)lookupTable)[e];
-            Color d(0,0,0,0,lutFormat);
-            d.r = intToColor((l>>24), 255);
-            d.g = intToColor((l>>16), 255);
-            d.b = intToColor((l>> 8), 255);
-            d.a = intToColor((l    ), 255);
-
-            writeFilteredPixel(i, j, d, channelMask);
-        }
-    }
-}
-
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Surface::Surface(const Color::Descriptor& desc, int width, int height, int numSamples) :
-    m_width(width),
-    m_height(height),
-    m_numSamples(numSamples),
-    m_referenceCount(0),
-    m_image(NULL)
-{
-    RI_ASSERT(width > 0 && height > 0 && numSamples > 0 && numSamples <= 32);
-    m_image = RI_NEW(Image, (desc, width*numSamples, height, 0));	//throws bad_alloc
-    m_image->addReference();
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Surface::Surface(Image* image) :
-    m_width(0),
-    m_height(0),
-    m_numSamples(1),
-    m_referenceCount(0),
-    m_image(image)
-{
-    RI_ASSERT(image);
-    m_width = image->getWidth();
-    m_height = image->getHeight();
-    m_image->addReference();
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Surface::Surface(const Color::Descriptor& desc, int width, int height, int stride, RIuint8* data) :
-    m_width(width),
-    m_height(height),
-    m_numSamples(1),
-    m_referenceCount(0),
-    m_image(NULL)
-{
-    RI_ASSERT(width > 0 && height > 0);
-    m_image = RI_NEW(Image, (desc, width, height, stride, data));	//throws bad_alloc
-    m_image->addReference();
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Surface::~Surface()
-{
-    RI_ASSERT(m_referenceCount == 0);
-    if(!m_image->removeReference())
-        RI_DELETE(m_image);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Surface::clear(const Color& clearColor, int x, int y, int w, int h, const Array<Rectangle>* scissors)
-{
-    RI_ASSERT(m_numSamples == 1);
-
-    Image* image = m_image;
-
-    Color col = clearColor;
-    col.clamp();
-    col.convert(m_image->getDescriptor().internalFormat);
-
-    IntegerColor ic = IntegerColor(col);
-    ic.truncateColor(m_image->getDescriptor());
-    const RIuint32 c = ic.getPackedColor(m_image->getDescriptor());
-
-    if (x != 0 || y != 0 || w != image->getWidth() || h != image->getHeight() || scissors)
-    {
-        // Simple implementation: intersect with surface and clip rects -> may clear the
-        // same area several times. Best if scissors are non-overlapping
-        Rectangle r(0,0,getWidth(),getHeight());
-        r.intersect(Rectangle(x,y,w,h));
-
-        if (r.isEmpty() || (scissors && scissors->size() == 0))
-            return;
-
-        if (scissors && scissors->size())
-        {
-            for (int i = 0; i < scissors->size(); i++)
-            {
-                Rectangle s = (*scissors)[i];
-                s.intersect(r);
-
-                if (s.isEmpty())
-                    continue;
-
-                image->fillPackedRectangle(s.x, s.y, s.width, s.height, c);
-            }
-        }
-        else
-        {
-            image->fillPackedRectangle(r.x, r.y, r.width, r.height, c);
-        }
-    }
-    else
-    {
-        // Clear the whole buffer
-
-        m_image->fillPacked(c);
-   }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-#if 0
-void Surface::blit(const Image& src, int sx, int sy, int dx, int dy, int w, int h)
-{
-    Rectangle rect;
-    rect.x = 0;
-    rect.y = 0;
-    rect.width = getWidth();
-    rect.height = getHeight();
-    Array<Rectangle> scissors;
-    scissors.push_back(rect);
-    blit(src, sx, sy, dx, dy, w, h, scissors);
-}
-#endif
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note		no overlap is possible. Single sample to single or multisample (replicate)
-*//*-------------------------------------------------------------------*/
-
-#if 0
-void Surface::blit(const Image& src, int sx, int sy, int dx, int dy, int w, int h, const Array<Rectangle>& scissors)
-{
-    //img=>fb: vgSetPixels
-    //user=>fb: vgWritePixels
-    computeBlitRegion(sx, sy, dx, dy, w, h, src.getWidth(), src.getHeight(), getWidth(), getHeight());
-    if(w <= 0 || h <= 0)
-        return;	//zero area
-
-    Array<ScissorEdge> scissorEdges;
-    for(int i=0;i<scissors.size();i++)
-    {
-        if(scissors[i].width > 0 && scissors[i].height > 0)
-        {
-            ScissorEdge e;
-            e.miny = scissors[i].y;
-            e.maxy = RI_INT_ADDSATURATE(scissors[i].y, scissors[i].height);
-
-            e.x = scissors[i].x;
-            e.direction = 1;
-            scissorEdges.push_back(e);	//throws bad_alloc
-            e.x = RI_INT_ADDSATURATE(scissors[i].x, scissors[i].width);
-            e.direction = -1;
-            scissorEdges.push_back(e);	//throws bad_alloc
-        }
-    }
-    if(!scissorEdges.size())
-        return;	//there are no scissor rectangles => nothing is visible
-
-    //sort scissor edges by edge x
-    scissorEdges.sort();
-
-    Array<ScissorEdge> scissorAet;
-    for(int j=0;j<h;j++)
-    {
-        //gather scissor edges intersecting this scanline
-        scissorAet.clear();
-        for(int e=0;e<scissorEdges.size();e++)
-        {
-            const ScissorEdge& se = scissorEdges[e];
-            if(dy + j >= se.miny && dy + j < se.maxy)
-                scissorAet.push_back(scissorEdges[e]);	//throws bad_alloc
-        }
-        if(!scissorAet.size())
-            continue;	//scissoring is on, but there are no scissor rectangles on this scanline
-
-        //blit a scanline
-        int scissorWinding = 0;
-        int scissorIndex = 0;
-        for(int i=0;i<w;i++)
-        {
-            while(scissorIndex < scissorAet.size() && scissorAet[scissorIndex].x <= dx + i)
-                scissorWinding += scissorAet[scissorIndex++].direction;
-            RI_ASSERT(scissorWinding >= 0);
-
-            if(scissorWinding)
-            {
-                Color c = src.readPixel(sx + i, sy + j);
-                c.convert(getDescriptor().internalFormat);
-                for(int s=0;s<m_numSamples;s++)
-                    writeSample(dx + i, dy + j, s, c);
-            }
-        }
-    }
-}
-#endif
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-#if 0
-void Surface::blit(const Surface* src, int sx, int sy, int dx, int dy, int w, int h)
-{
-    Rectangle rect;
-    rect.x = 0;
-    rect.y = 0;
-    rect.width = getWidth();
-    rect.height = getHeight();
-    Array<Rectangle> scissors;
-    scissors.push_back(rect);
-    blit(src, sx, sy, dx, dy, w, h, scissors);
-}
-#endif
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-#if 0
-void Surface::blit(const Surface* src, int sx, int sy, int dx, int dy, int w, int h, const Array<Rectangle>& scissors)
-{
-    RI_ASSERT(m_numSamples == src->m_numSamples);
-
-    //fb=>fb: vgCopyPixels
-    computeBlitRegion(sx, sy, dx, dy, w, h, src->getWidth(), src->getHeight(), getWidth(), getHeight());
-    if(w <= 0 || h <= 0)
-        return;	//zero area
-
-    Array<ScissorEdge> scissorEdges;
-    for(int i=0;i<scissors.size();i++)
-    {
-        if(scissors[i].width > 0 && scissors[i].height > 0)
-        {
-            ScissorEdge e;
-            e.miny = scissors[i].y;
-            e.maxy = RI_INT_ADDSATURATE(scissors[i].y, scissors[i].height);
-
-            e.x = scissors[i].x;
-            e.direction = 1;
-            scissorEdges.push_back(e);	//throws bad_alloc
-            e.x = RI_INT_ADDSATURATE(scissors[i].x, scissors[i].width);
-            e.direction = -1;
-            scissorEdges.push_back(e);	//throws bad_alloc
-        }
-    }
-    if(!scissorEdges.size())
-        return;	//there are no scissor rectangles => nothing is visible
-
-    //sort scissor edges by edge x
-    scissorEdges.sort();
-
-    Array<Color> tmp;
-    tmp.resize(w*m_numSamples*h);	//throws bad_alloc
-
-    //copy source region to tmp
-    for(int j=0;j<h;j++)
-    {
-        for(int i=0;i<w;i++)
-        {
-            int numSamples = m_numSamples;
-            for(int s=0;s<numSamples;s++)
-            {
-                Color c = src->m_image->readPixel((sx + i)*m_numSamples+s, sy + j);
-                c.convert(m_image->getDescriptor().internalFormat);
-                tmp[(j*w+i)*m_numSamples+s] = c;
-            }
-        }
-    }
-
-    Array<ScissorEdge> scissorAet;
-    for(int j=0;j<h;j++)
-    {
-        //gather scissor edges intersecting this scanline
-        scissorAet.clear();
-        for(int e=0;e<scissorEdges.size();e++)
-        {
-            const ScissorEdge& se = scissorEdges[e];
-            if(dy + j >= se.miny && dy + j < se.maxy)
-                scissorAet.push_back(scissorEdges[e]);	//throws bad_alloc
-        }
-        if(!scissorAet.size())
-            continue;	//scissoring is on, but there are no scissor rectangles on this scanline
-
-        //blit a scanline
-        int scissorWinding = 0;
-        int scissorIndex = 0;
-        for(int i=0;i<w;i++)
-        {
-            while(scissorIndex < scissorAet.size() && scissorAet[scissorIndex].x <= dx + i)
-                scissorWinding += scissorAet[scissorIndex++].direction;
-            RI_ASSERT(scissorWinding >= 0);
-
-            if(scissorWinding)
-            {
-                int numSamples = m_numSamples;
-                for(int s=0;s<numSamples;s++)
-                {
-                    m_image->writePixel((dx + i)*m_numSamples+s, dy + j, tmp[(j*w+i)*m_numSamples+s]);
-                }
-            }
-        }
-    }
-}
-#endif
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Surface::mask(DynamicBlitter& blitter, const Image* src, VGMaskOperation operation, int x, int y, int w, int h)
-{
-    RI_ASSERT(w > 0 && h > 0);
-    RI_ASSERT(m_numSamples == 1);
-
-    if(operation == VG_CLEAR_MASK || operation == VG_FILL_MASK)
-    {
-        //intersect clear region with image bounds
-        Rectangle r(0,0,getWidth(),getHeight());
-        r.intersect(Rectangle(x,y,w,h));
-
-        if(!r.width || !r.height)
-            return;		//intersection is empty or one of the rectangles is invalid
-
-        {
-            Color mcolor(1.0f, 1.0f, 1.0f, 1.0f, Color::sRGBA_PRE);
-            if (operation == VG_CLEAR_MASK)
-                mcolor = Color(0,0,0,0, Color::sRGBA_PRE);
-            IntegerColor ic = IntegerColor(mcolor);
-            RIuint32 p = ic.getPackedMaskColor(m_image->getDescriptor());
-            m_image->fillPackedRectangle(r.x, r.y, r.width, r.height, p);
-        }
-    }
-    else
-    {
-        int sx = 0, sy = 0, dx = x, dy = y;
-
-        computeBlitRegion(sx, sy, dx, dy, w, h, src->getWidth(), src->getHeight(), getWidth(), getHeight());
-
-        if(w <= 0 || h <= 0)
-            return;	//zero area
-
-        blitter.enableMaskOperation(true);
-        blitter.setMaskOperation(operation);
-        blitter.prepareBlit(this->m_image, src, sx, sy, dx, dy, w, h);
-        blitter.blit();
-        blitter.enableMaskOperation(false);
-#if 0
-        RI_ASSERT(src);
-
-        int sx = 0, sy = 0, dx = x, dy = y;
-        computeBlitRegion(sx, sy, dx, dy, w, h, src->getWidth(), src->getHeight(), getWidth(), getHeight());
-        if(w <= 0 || h <= 0)
-            return;	//zero area
-
-        {
-            for(int j=0;j<h;j++)
-            {
-                for(int i=0;i<w;i++)
-                {
-                    RIfloat amask = src->readMaskPixel(sx + i, sy + j);
-                    if(operation == VG_SET_MASK)
-                        writeMaskCoverage(dx + i, dy + j, amask);
-                    else
-                    {
-                        RIfloat aprev = readMaskCoverage(dx + i, dy + j);
-                        RIfloat anew = 0.0f;
-                        switch(operation)
-                        {
-                        case VG_UNION_MASK:		anew = 1.0f - (1.0f - amask)*(1.0f - aprev); break;
-                        case VG_INTERSECT_MASK:	anew = amask * aprev; break;
-                        default:				anew = aprev * (1.0f - amask); RI_ASSERT(operation == VG_SUBTRACT_MASK); break;
-                        }
-                        writeMaskCoverage(dx + i, dy + j, anew);
-                    }
-                }
-            }
-        }
-#endif
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-RIfloat Surface::readMaskCoverage(int x, int y) const
-{
-    RI_ASSERT(x >= 0 && x < m_width && y >= 0 && y < m_height);
-    RI_ASSERT(m_numSamples == 1);
-    return m_image->readMaskPixel(x, y);
-}
-
-void Surface::writeMaskCoverage(int x, int y, RIfloat m)
-{
-    RI_ASSERT(x >= 0 && x < m_width && y >= 0 && y < m_height);
-    RI_ASSERT(m_numSamples == 1);
-    m_image->writeMaskPixel(x, y, m);    //TODO support other than alpha formats but don't write to color channels?
-}
-
-unsigned int Surface::readMaskMSAA(int x, int y) const
-{
-    RI_ASSERT(x >= 0 && x < m_width && y >= 0 && y < m_height);
-    RI_ASSERT(m_numSamples > 1);
-    unsigned int m = 0;
-    for(int i=0;i<m_numSamples;i++)
-    {
-        if(m_image->readMaskPixel(x*m_numSamples+i, y) > 0.5f)   //TODO is this the right formula for converting alpha to bit mask? does it matter?
-            m |= 1<<i;
-    }
-    return m;
-}
-
-void Surface::writeMaskMSAA(int x, int y, unsigned int m)
-{
-    RI_ASSERT(x >= 0 && x < m_width && y >= 0 && y < m_height);
-    RI_ASSERT(m_numSamples > 1);
-    for(int i=0;i<m_numSamples;i++)
-    {
-        RIfloat a = 0.0f;
-        if(m & (1<<i))
-            a = 1.0f;
-        m_image->writeMaskPixel(x*m_numSamples+i, y, a);    //TODO support other than alpha formats but don't write to color channels?
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Color Surface::FSAAResolve(int x, int y) const
-{
-    if(m_numSamples == 1)
-        return readSample(x, y, 0);
-
-    Color::InternalFormat aaFormat = getDescriptor().isLuminance() ? Color::lLA_PRE : Color::lRGBA_PRE;	//antialias in linear color space
-    Color r(0.0f, 0.0f, 0.0f, 0.0f, aaFormat);
-    for(int i=0;i<m_numSamples;i++)
-    {
-        Color d = readSample(x, y, i);
-        d.convert(aaFormat);
-        r += d;
-    }
-    r *= 1.0f/m_numSamples;
-    return r;
-}
-
-
-/**
- *	\brief	Return a resolved sample in packed format.
- *	\note	Further operations on color may require unpack.
- */
-RI_INLINE RIuint32 Surface::FSAAResolvePacked(int x, int y) const
-{
-    if (m_numSamples == 1)
-        return readPackedSample(x, y, 0);
-
-    RI_ASSERT(false); /* Not implemented yet. */
-    return 0xffffffffu;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Drawable::Drawable(const Color::Descriptor& desc, int width, int height, int numSamples, int maskBits) :
-    m_referenceCount(0),
-    m_color(NULL),
-    m_mask(NULL)
-{
-    RI_ASSERT(width > 0 && height > 0 && numSamples > 0 && numSamples <= 32);
-    RI_ASSERT(maskBits == 0 || maskBits == 1 || maskBits == 4 || maskBits == 8);
-    m_color = RI_NEW(Surface, (desc, width, height, numSamples));	//throws bad_alloc
-    m_color->addReference();
-    if(maskBits)
-    {
-        VGImageFormat mf = VG_A_1;
-        if(maskBits == 4)
-            mf = VG_A_4;
-        else if(maskBits == 8)
-            mf = VG_A_8;
-        m_mask = RI_NEW(Surface, (Color::formatToDescriptor(mf), width, height, numSamples));
-        m_mask->addReference();
-        m_mask->clear(Color(1,1,1,1,Color::sRGBA), 0, 0, width, height);
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Drawable::Drawable(Image* image, int maskBits) :
-    m_referenceCount(0),
-    m_color(NULL),
-    m_mask(NULL)
-{
-    RI_ASSERT(maskBits == 0 || maskBits == 1 || maskBits == 4 || maskBits == 8);
-    RI_ASSERT(image);
-    m_color = RI_NEW(Surface, (image));
-    m_color->addReference();
-    if(maskBits)
-    {
-        VGImageFormat mf = VG_A_1;
-        if(maskBits == 4)
-            mf = VG_A_4;
-        else if(maskBits == 8)
-            mf = VG_A_8;
-        m_mask = RI_NEW(Surface, (Color::formatToDescriptor(mf), image->getWidth(), image->getHeight(), 1));
-        m_mask->addReference();
-        m_mask->clear(Color(1,1,1,1,Color::sRGBA), 0, 0, image->getWidth(), image->getHeight());
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Drawable::Drawable(const Color::Descriptor& desc, int width, int height, int stride, RIuint8* data, int maskBits) :
-    m_referenceCount(0),
-    m_color(NULL),
-    m_mask(NULL)
-{
-    RI_ASSERT(width > 0 && height > 0);
-    RI_ASSERT(maskBits == 0 || maskBits == 1 || maskBits == 4 || maskBits == 8);
-    m_color = RI_NEW(Surface, (desc, width, height, stride, data));	//throws bad_alloc
-    m_color->addReference();
-    if(maskBits)
-    {
-        VGImageFormat mf = VG_A_1;
-        if(maskBits == 4)
-            mf = VG_A_4;
-        else if(maskBits == 8)
-            mf = VG_A_8;
-        m_mask = RI_NEW(Surface, (Color::formatToDescriptor(mf), width, height, 1));
-        m_mask->addReference();
-        m_mask->clear(Color(1,1,1,1,Color::sRGBA), 0, 0, width, height);
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-Drawable::~Drawable()
-{
-    RI_ASSERT(m_referenceCount == 0);
-    if(!m_color->removeReference())
-        RI_DELETE(m_color);
-    if(m_mask)
-        if(!m_mask->removeReference())
-            RI_DELETE(m_mask);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief
-* \param
-* \return
-* \note
-*//*-------------------------------------------------------------------*/
-
-void Drawable::resize(VGContext* context, int newWidth, int newHeight)
-{
-    Surface* oldcolor = m_color;
-    Surface* oldmask = m_mask;
-    int oldWidth = m_color->getWidth();
-    int oldHeight = m_color->getHeight();
-
-    //TODO check that image is not a proxy
-    m_color = RI_NEW(Surface, (m_color->getDescriptor(), newWidth, newHeight, m_color->getNumSamples()));
-    m_color->addReference();
-    if(m_mask)
-    {
-        m_mask = RI_NEW(Surface, (m_mask->getDescriptor(), newWidth, newHeight, m_mask->getNumSamples()));
-        m_mask->addReference();
-    }
-
-    int wmin = RI_INT_MIN(newWidth,oldWidth);
-    int hmin = RI_INT_MIN(newHeight,oldHeight);
-    m_color->clear(Color(0.0f, 0.0f, 0.0f, 0.0f, getDescriptor().internalFormat), 0, 0, m_color->getWidth(), m_color->getHeight());
-    m_color->m_image->blit(context, oldcolor->m_image, 0, 0, 0, 0, wmin, hmin);
-    if(m_mask)
-    {
-        m_mask->clear(Color(1.0f, 1.0f, 1.0f, 1.0f, getDescriptor().internalFormat), 0, 0, m_mask->getWidth(), m_mask->getHeight());
-        m_mask->m_image->blit(context, oldmask->m_image, 0, 0, 0, 0, wmin, hmin);
-    }
-
-    if(!oldcolor->removeReference())
-        RI_DELETE(oldcolor);
-    if(oldmask)
-        if(!oldmask->removeReference())
-            RI_DELETE(oldmask);
-}
-
-#ifndef RI_COMPILE_LLVM_BYTECODE
-
-#endif /* RI_COMPILE_LLVM_BYTECODE */
-
-//==============================================================================================
-
-}	//namespace OpenVGRI
-
-//==============================================================================================