hostsupport/hostopenvg/src/src/riPath.cpp
branchbug235_bringup_0
changeset 53 c2ef9095503a
parent 24 a3f46bb01be2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hostsupport/hostopenvg/src/src/riPath.cpp	Wed Oct 06 17:59:01 2010 +0100
@@ -0,0 +1,2779 @@
+/*------------------------------------------------------------------------
+ *
+ * OpenVG 1.1 Reference Implementation
+ * -----------------------------------
+ *
+ * Copyright (c) 2007 The Khronos Group Inc.
+ * Portions copyright (c) 2010 Nokia Corporation and/or its subsidiary(-ies).
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and /or associated documentation files
+ * (the "Materials "), to deal in the Materials without restriction,
+ * including without limitation the rights to use, copy, modify, merge,
+ * publish, distribute, sublicense, and/or sell copies of the Materials,
+ * and to permit persons to whom the Materials are furnished to do so,
+ * subject to the following conditions: 
+ *
+ * The above copyright notice and this permission notice shall be included 
+ * in all copies or substantial portions of the Materials. 
+ *
+ * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+ * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
+ * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR
+ * THE USE OR OTHER DEALINGS IN THE MATERIALS.
+ *
+ *//**
+ * \file
+ * \brief   Implementation of Path functions.
+ * \note    
+ *//*-------------------------------------------------------------------*/
+
+#include "riPath.h"
+
+//==============================================================================================
+
+
+//==============================================================================================
+
+namespace OpenVGRI
+{
+
+RIfloat inputFloat(VGfloat f);  //defined in riApi.cpp
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Form a reliable normalized average of the two unit input vectors.
+*           The average always lies to the given direction from the first
+*           vector.
+* \param    u0, u1 Unit input vectors.
+* \param    cw True if the average should be clockwise from u0, false if
+*              counterclockwise.
+* \return   Average of the two input vectors.
+* \note     
+*//*-------------------------------------------------------------------*/
+
+static const Vector2 unitAverage(const Vector2& u0, const Vector2& u1, bool cw)
+{
+    Vector2 u = 0.5f * (u0 + u1);
+    Vector2 n0 = perpendicularCCW(u0);
+
+    if( dot(u, u) > 0.25f )
+    {   //the average is long enough and thus reliable
+        if( dot(n0, u1) < 0.0f )
+            u = -u; //choose the larger angle
+    }
+    else
+    {   // the average is too short, use the average of the normals to the vectors instead
+        Vector2 n1 = perpendicularCW(u1);
+        u = 0.5f * (n0 + n1);
+    }
+    if( cw )
+        u = -u;
+
+    return normalize(u);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Form a reliable normalized average of the two unit input vectors.
+*           The average lies on the side where the angle between the input
+*           vectors is less than 180 degrees.
+* \param    u0, u1 Unit input vectors.
+* \return   Average of the two input vectors.
+* \note     
+*//*-------------------------------------------------------------------*/
+
+static const Vector2 unitAverage(const Vector2& u0, const Vector2& u1)
+{
+    Vector2 u = 0.5f * (u0 + u1);
+
+    if( dot(u, u) < 0.25f )
+    {   // the average is unreliable, use the average of the normals to the vectors instead
+        Vector2 n0 = perpendicularCCW(u0);
+        Vector2 n1 = perpendicularCW(u1);
+        u = 0.5f * (n0 + n1);
+        if( dot(n1, u0) < 0.0f )
+            u = -u;
+    }
+
+    return normalize(u);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Interpolate the given unit tangent vectors to the given
+*           direction on a unit circle.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+static const Vector2 circularLerp(const Vector2& t0, const Vector2& t1, RIfloat ratio, bool cw)
+{
+    Vector2 u0 = t0, u1 = t1;
+    RIfloat l0 = 0.0f, l1 = 1.0f;
+    for(int i=0;i<18;i++)
+    {
+        Vector2 n = unitAverage(u0, u1, cw);
+        RIfloat l = 0.5f * (l0 + l1);
+        if( ratio < l )
+        {
+            u1 = n;
+            l1 = l;
+        }
+        else
+        {
+            u0 = n;
+            l0 = l;
+        }
+    }
+    return u0;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Interpolate the given unit tangent vectors on a unit circle.
+*           Smaller angle between the vectors is used.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+static const Vector2 circularLerp(const Vector2& t0, const Vector2& t1, RIfloat ratio)
+{
+    Vector2 u0 = t0, u1 = t1;
+    RIfloat l0 = 0.0f, l1 = 1.0f;
+    for(int i=0;i<18;i++)
+    {
+        Vector2 n = unitAverage(u0, u1);
+        RIfloat l = 0.5f * (l0 + l1);
+        if( ratio < l )
+        {
+            u1 = n;
+            l1 = l;
+        }
+        else
+        {
+            u0 = n;
+            l0 = l;
+        }
+    }
+    return u0;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Path constructor.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+Path::Path(VGint format, VGPathDatatype datatype, RIfloat scale, RIfloat bias, int segmentCapacityHint, int coordCapacityHint, VGbitfield caps) :
+    m_format(format),
+    m_datatype(datatype),
+    m_scale(scale),
+    m_bias(bias),
+    m_capabilities(caps),
+    m_referenceCount(0),
+    m_segments(),
+    m_data(),
+    m_vertices(),
+    m_segmentToVertex(),
+    m_userMinx(0.0f),
+    m_userMiny(0.0f),
+    m_userMaxx(0.0f),
+    m_userMaxy(0.0f)
+{
+    RI_ASSERT(format == VG_PATH_FORMAT_STANDARD);
+    RI_ASSERT(datatype >= VG_PATH_DATATYPE_S_8 && datatype <= VG_PATH_DATATYPE_F);
+    if(segmentCapacityHint > 0)
+        m_segments.reserve(RI_INT_MIN(segmentCapacityHint, 65536));
+    if(coordCapacityHint > 0)
+        m_data.reserve(RI_INT_MIN(coordCapacityHint, 65536) * getBytesPerCoordinate(datatype));
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Path destructor.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+Path::~Path()
+{
+    RI_ASSERT(m_referenceCount == 0);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Reads a coordinate and applies scale and bias.
+* \param    
+* \return   
+*//*-------------------------------------------------------------------*/
+
+RIfloat Path::getCoordinate(int i) const
+{
+    RI_ASSERT(i >= 0 && i < m_data.size() / getBytesPerCoordinate(m_datatype));
+    RI_ASSERT(m_scale != 0.0f);
+
+    const RIuint8* ptr = &m_data[0];
+    switch(m_datatype)
+    {
+    case VG_PATH_DATATYPE_S_8:
+        return (RIfloat)(((const RIint8*)ptr)[i]) * m_scale + m_bias;
+
+    case VG_PATH_DATATYPE_S_16:
+        return (RIfloat)(((const RIint16*)ptr)[i]) * m_scale + m_bias;
+
+    case VG_PATH_DATATYPE_S_32:
+        return (RIfloat)(((const RIint32*)ptr)[i]) * m_scale + m_bias;
+
+    default:
+        RI_ASSERT(m_datatype == VG_PATH_DATATYPE_F);
+        return (RIfloat)(((const RIfloat32*)ptr)[i]) * m_scale + m_bias;
+    }
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Writes a coordinate, subtracting bias and dividing out scale.
+* \param    
+* \return   
+* \note     If the coordinates do not fit into path datatype range, they
+*           will overflow silently.
+*//*-------------------------------------------------------------------*/
+
+void Path::setCoordinate(Array<RIuint8>& data, VGPathDatatype datatype, RIfloat scale, RIfloat bias, int i, RIfloat c)
+{
+    RI_ASSERT(i >= 0 && i < data.size()/getBytesPerCoordinate(datatype));
+    RI_ASSERT(!RI_ISNAN(scale));    
+    RI_ASSERT(!RI_ISNAN(bias));
+    RI_ASSERT(scale != 0.0f);
+
+    c = inputFloat(c); // Revalidate: Can happen when a coordinate has been transformed.
+    c -= bias;
+    c /= scale;
+
+    RI_ASSERT(!RI_ISNAN(c));
+
+    RIuint8* ptr = &data[0];
+    switch(datatype)
+    {
+    case VG_PATH_DATATYPE_S_8:
+        ((RIint8*)ptr)[i] = (RIint8)floor(c + 0.5f);    //add 0.5 for correct rounding
+        break;
+
+    case VG_PATH_DATATYPE_S_16:
+        ((RIint16*)ptr)[i] = (RIint16)floor(c + 0.5f);  //add 0.5 for correct rounding
+        break;
+
+    case VG_PATH_DATATYPE_S_32:
+        ((RIint32*)ptr)[i] = (RIint32)floor(c + 0.5f);  //add 0.5 for correct rounding
+        break;
+
+    default:
+        RI_ASSERT(datatype == VG_PATH_DATATYPE_F);
+        ((RIfloat32*)ptr)[i] = (RIfloat32)c;
+        break;
+    }
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Given a datatype, returns the number of bytes per coordinate.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+int Path::getBytesPerCoordinate(VGPathDatatype datatype)
+{
+    if(datatype == VG_PATH_DATATYPE_S_8)
+        return 1;
+    if(datatype == VG_PATH_DATATYPE_S_16)
+        return 2;
+    RI_ASSERT(datatype == VG_PATH_DATATYPE_S_32 || datatype == VG_PATH_DATATYPE_F);
+    return 4;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Given a path segment type, returns the number of coordinates
+*           it uses.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+int Path::segmentToNumCoordinates(VGPathSegment segment)
+{
+    RI_ASSERT(((int)segment >> 1) >= 0 && ((int)segment >> 1) <= 12);
+    static const int coords[13] = {0,2,2,1,1,4,6,2,4,5,5,5,5};
+    return coords[(int)segment >> 1];
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Computes the number of coordinates a segment sequence uses.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+int Path::countNumCoordinates(const RIuint8* segments, int numSegments)
+{
+    RI_ASSERT(segments);
+    RI_ASSERT(numSegments >= 0);
+
+    int coordinates = 0;
+    for(int i=0;i<numSegments;i++)
+        coordinates += segmentToNumCoordinates(getPathSegment(segments[i]));
+    return coordinates;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Clears path segments and data, and resets capabilities.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+void Path::clear(VGbitfield capabilities)
+{
+    m_segments.clear();
+    m_data.clear();
+    m_capabilities = capabilities;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Appends user segments and data.
+* \param    
+* \return   
+* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::appendData(const RIuint8* segments, int numSegments, const RIuint8* data)
+{
+    RI_ASSERT(numSegments > 0);
+    RI_ASSERT(segments && data);
+    RI_ASSERT(m_referenceCount > 0);
+
+    //allocate new arrays
+    int oldSegmentsSize = m_segments.size();
+    int newSegmentsSize = oldSegmentsSize + numSegments;
+    Array<RIuint8> newSegments;
+    newSegments.resize(newSegmentsSize);    //throws bad_alloc
+
+    int newCoords = countNumCoordinates(segments, numSegments);
+    int bytesPerCoordinate = getBytesPerCoordinate(m_datatype);
+    int newDataSize = m_data.size() + newCoords * bytesPerCoordinate;
+    Array<RIuint8> newData;
+    newData.resize(newDataSize);    //throws bad_alloc
+    //if we get here, the memory allocations have succeeded
+
+    //copy old segments and append new ones
+    if(m_segments.size())
+        ri_memcpy(&newSegments[0], &m_segments[0], m_segments.size());
+    ri_memcpy(&newSegments[0] + m_segments.size(), segments, numSegments);
+
+    //copy old data and append new ones
+    if(newData.size())
+    {
+        if(m_data.size())
+            ri_memcpy(&newData[0], &m_data[0], m_data.size());
+        if(m_datatype == VG_PATH_DATATYPE_F)
+        {
+            RIfloat32* d = (RIfloat32*)(&newData[0] + m_data.size());
+            const RIfloat32* s = (const RIfloat32*)data;
+            for(int i=0;i<newCoords;i++)
+                *d++ = (RIfloat32)inputFloat(*s++);
+        }
+        else
+        {
+            ri_memcpy(&newData[0] + m_data.size(), data, newCoords * bytesPerCoordinate);
+        }
+    }
+
+    RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
+
+    //replace old arrays
+    m_segments.swap(newSegments);
+    m_data.swap(newData);
+
+    int c = 0;
+    for(int i=0;i<m_segments.size();i++)
+    {
+        VGPathSegment segment = getPathSegment(m_segments[i]);
+        int coords = segmentToNumCoordinates(segment);
+        c += coords;
+    }
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Appends a path.
+* \param    
+* \return   
+* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::append(const Path* srcPath)
+{
+    RI_ASSERT(srcPath);
+    RI_ASSERT(m_referenceCount > 0 && srcPath->m_referenceCount > 0);
+
+    if(srcPath->m_segments.size())
+    {
+        //allocate new arrays
+        int newSegmentsSize = m_segments.size() + srcPath->m_segments.size();
+        Array<RIuint8> newSegments;
+        newSegments.resize(newSegmentsSize);    //throws bad_alloc
+
+        int newDataSize = m_data.size() + srcPath->getNumCoordinates() * getBytesPerCoordinate(m_datatype);
+        Array<RIuint8> newData;
+        newData.resize(newDataSize);    //throws bad_alloc
+        //if we get here, the memory allocations have succeeded
+
+        //copy old segments and append new ones
+        if(m_segments.size())
+            ri_memcpy(&newSegments[0], &m_segments[0], m_segments.size());
+        if(srcPath->m_segments.size())
+            ri_memcpy(&newSegments[0] + m_segments.size(), &srcPath->m_segments[0], srcPath->m_segments.size());
+
+        //copy old data and append new ones
+        if(m_data.size())
+            ri_memcpy(&newData[0], &m_data[0], m_data.size());
+        for(int i=0;i<srcPath->getNumCoordinates();i++)
+            setCoordinate(newData, m_datatype, m_scale, m_bias, i + getNumCoordinates(), srcPath->getCoordinate(i));
+
+        RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
+
+        //replace old arrays
+        m_segments.swap(newSegments);
+        m_data.swap(newData);
+    }
+}
+
+int Path::coordsSizeInBytes( int startIndex, int numSegments )
+    {
+    RI_ASSERT(numSegments > 0);
+    RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size());
+    RI_ASSERT(m_referenceCount > 0);
+
+    int numCoords = countNumCoordinates(&m_segments[startIndex], numSegments);
+    if(!numCoords)
+        return 0;
+    int bytesPerCoordinate = getBytesPerCoordinate(m_datatype);
+    return (numCoords * bytesPerCoordinate);
+    }
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Modifies existing coordinate data.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+void Path::modifyCoords(int startIndex, int numSegments, const RIuint8* data)
+{
+    RI_ASSERT(numSegments > 0);
+    RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size());
+    RI_ASSERT(data);
+    RI_ASSERT(m_referenceCount > 0);
+
+    int startCoord = countNumCoordinates(&m_segments[0], startIndex);
+    int numCoords = countNumCoordinates(&m_segments[startIndex], numSegments);
+    if(!numCoords)
+        return;
+    int bytesPerCoordinate = getBytesPerCoordinate(m_datatype);
+    RIuint8* dst = &m_data[startCoord * bytesPerCoordinate];
+    if(m_datatype == VG_PATH_DATATYPE_F)
+    {
+        RIfloat32* d = (RIfloat32*)dst;
+        const RIfloat32* s = (const RIfloat32*)data;
+        for(int i=0;i<numCoords;i++)
+            *d++ = (RIfloat32)inputFloat(*s++);
+    }
+    else
+    {
+        ri_memcpy(dst, data, numCoords*bytesPerCoordinate);
+    }
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Appends a transformed copy of the source path.
+* \param    
+* \return   
+* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::transform(const Path* srcPath, const Matrix3x3& matrix)
+{
+    RI_ASSERT(srcPath);
+    RI_ASSERT(m_referenceCount > 0 && srcPath->m_referenceCount > 0);
+    RI_ASSERT(matrix.isAffine());
+
+    if(!srcPath->m_segments.size())
+        return;
+
+    //count the number of resulting coordinates
+    int numSrcCoords = 0;
+    int numDstCoords = 0;
+    for(int i=0;i<srcPath->m_segments.size();i++)
+    {
+        VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
+        int coords = segmentToNumCoordinates(segment);
+        numSrcCoords += coords;
+        if(segment == VG_HLINE_TO || segment == VG_VLINE_TO)
+            coords = 2; //convert hline and vline to lines
+        numDstCoords += coords;
+    }
+
+    //allocate new arrays
+    Array<RIuint8> newSegments;
+    newSegments.resize(m_segments.size() + srcPath->m_segments.size()); //throws bad_alloc
+    Array<RIuint8> newData;
+    newData.resize(m_data.size() + numDstCoords * getBytesPerCoordinate(m_datatype));   //throws bad_alloc
+    //if we get here, the memory allocations have succeeded
+
+    //copy old segments
+    if(m_segments.size())
+        ri_memcpy(&newSegments[0], &m_segments[0], m_segments.size());
+
+    //copy old data
+    if(m_data.size())
+        ri_memcpy(&newData[0], &m_data[0], m_data.size());
+
+    int srcCoord = 0;
+    int dstCoord = getNumCoordinates();
+    Vector2 s(0,0);     //the beginning of the current subpath
+    Vector2 o(0,0);     //the last point of the previous segment
+    for(int i=0;i<srcPath->m_segments.size();i++)
+    {
+        VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
+        VGPathAbsRel absRel = getPathAbsRel(srcPath->m_segments[i]);
+        int coords = segmentToNumCoordinates(segment);
+
+        switch(segment)
+        {
+        case VG_CLOSE_PATH:
+        {
+            RI_ASSERT(coords == 0);
+            o = s;
+            break;
+        }
+
+        case VG_MOVE_TO:
+        {
+            RI_ASSERT(coords == 2);
+            Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 tc;
+
+            if (absRel == VG_ABSOLUTE)
+                tc = affineTransform(matrix, c);
+            else
+            {
+                tc = affineTangentTransform(matrix, c);
+                c += o;
+            }
+            
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
+            s = c;
+            o = c;
+            break;
+        }
+
+        case VG_LINE_TO:
+        {
+            RI_ASSERT(coords == 2);
+            Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 tc;
+
+            if (absRel == VG_ABSOLUTE)
+                tc = affineTransform(matrix, c);
+            else
+            {
+                tc = affineTangentTransform(matrix, c);
+                c += o;
+            }
+
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
+            o = c;
+            break;
+        }
+
+        case VG_HLINE_TO:
+        {
+            RI_ASSERT(coords == 1);
+            Vector2 c(srcPath->getCoordinate(srcCoord+0), 0);
+            Vector2 tc;
+
+            if (absRel == VG_ABSOLUTE)
+            {
+                c.y = o.y;
+                tc = affineTransform(matrix, c);
+            }
+            else
+            {
+                tc = affineTangentTransform(matrix, c);
+                c += o;
+            }
+
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
+            o = c;
+            segment = VG_LINE_TO;
+            break;
+        }
+
+        case VG_VLINE_TO:
+        {
+            RI_ASSERT(coords == 1);
+            Vector2 c(0, srcPath->getCoordinate(srcCoord+0));
+            Vector2 tc;
+
+            if (absRel == VG_ABSOLUTE)
+            {
+                c.x = o.x;
+                tc = affineTransform(matrix, c);
+            }
+            else
+            {
+                tc = affineTangentTransform(matrix, c);
+                c += o;
+            }
+
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
+            o = c;
+            segment = VG_LINE_TO;
+            break;
+        }
+
+        case VG_QUAD_TO:
+        {
+            RI_ASSERT(coords == 4);
+            Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+            Vector2 tc0, tc1;
+
+            if (absRel == VG_ABSOLUTE)
+            {
+                tc0 = affineTransform(matrix, c0);
+                tc1 = affineTransform(matrix, c1);
+            }
+            else
+            {
+                tc0 = affineTangentTransform(matrix, c0);
+                tc1 = affineTangentTransform(matrix, c1);
+                c1 += o;
+            }
+
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.y);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
+            o = c1;
+            break;
+        }
+
+        case VG_CUBIC_TO:
+        {
+            RI_ASSERT(coords == 6);
+            Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+            Vector2 c2(srcPath->getCoordinate(srcCoord+4), srcPath->getCoordinate(srcCoord+5));
+            Vector2 tc0, tc1, tc2;
+
+            if (absRel == VG_ABSOLUTE)
+            {
+                tc0 = affineTransform(matrix, c0);
+                tc1 = affineTransform(matrix, c1);
+                tc2 = affineTransform(matrix, c2);
+            }
+            else
+            {
+                tc0 = affineTangentTransform(matrix, c0);
+                tc1 = affineTangentTransform(matrix, c1);
+                tc2 = affineTangentTransform(matrix, c2);
+                c2 += o;
+            }
+
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.y);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.y);
+            o = c2;
+            break;
+        }
+
+        case VG_SQUAD_TO:
+        {
+            RI_ASSERT(coords == 2);
+            Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 tc1;
+
+            if (absRel == VG_ABSOLUTE)
+                tc1 = affineTransform(matrix, c1);
+            else
+            {
+                tc1 = affineTangentTransform(matrix, c1);
+                c1 += o;
+            }
+
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
+            o = c1;
+            break;
+        }
+
+        case VG_SCUBIC_TO:
+        {
+            RI_ASSERT(coords == 4);
+            Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 c2(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+            Vector2 tc1, tc2;
+
+            if (absRel == VG_ABSOLUTE)
+            {
+                tc1 = affineTransform(matrix, c1);
+                tc2 = affineTransform(matrix, c2);
+            }
+            else
+            {
+                tc1 = affineTangentTransform(matrix, c1);
+                tc2 = affineTangentTransform(matrix, c2);
+                c2 += o;
+            }
+
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.y);
+            o = c2;
+            break;
+        }
+
+        default:
+        {
+            RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
+                      segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
+            RI_ASSERT(coords == 5);
+            RIfloat rh = srcPath->getCoordinate(srcCoord+0);
+            RIfloat rv = srcPath->getCoordinate(srcCoord+1);
+            RIfloat rot = srcPath->getCoordinate(srcCoord+2);
+            Vector2 c(srcPath->getCoordinate(srcCoord+3), srcPath->getCoordinate(srcCoord+4));
+
+            rot = RI_DEG_TO_RAD(rot);
+            Matrix3x3 u((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
+                        (RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
+                        0,                   0,                   1);
+            u = matrix * u;
+            u[2].set(0,0,1);        //force affinity
+            //u maps from the unit circle to transformed ellipse
+
+            //compute new rh, rv and rot
+            Vector2 p(u[0][0], u[1][0]);
+            Vector2 q(u[1][1], -u[0][1]);
+            bool swapped = false;
+            if(dot(p,p) < dot(q,q))
+            {
+                RI_SWAP(p.x,q.x);
+                RI_SWAP(p.y,q.y);
+                swapped = true;
+            }
+            Vector2 h = (p+q) * 0.5f;
+            Vector2 hp = (p-q) * 0.5f;
+            RIfloat hlen = h.length();
+            RIfloat hplen = hp.length();
+            rh = hlen + hplen;
+            rv = hlen - hplen;
+
+            if (RI_ISNAN(rh)) rh = 0.0f;
+            if (RI_ISNAN(rv)) rv = 0.0f;
+
+            h = hplen * h + hlen * hp;
+            hlen = dot(h,h);
+            if(hlen == 0.0f)
+                rot = 0.0f;
+            else
+            {
+                h.normalize();
+                rot = (RIfloat)acos(h.x);
+                if(h.y < 0.0f)
+                    rot = 2.0f*RI_PI - rot;
+                if (RI_ISNAN(rot))
+                    rot = 0.0f;
+            }
+            if(swapped)
+                rot += RI_PI*0.5f;
+
+            Vector2 tc;
+            if (absRel == VG_ABSOLUTE)
+                tc = affineTransform(matrix, c);
+            else
+            {
+                tc = affineTangentTransform(matrix, c);
+                c += o;
+            }
+
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, rh);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, rv);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, RI_RAD_TO_DEG(rot));
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
+            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
+            o = c;
+
+            //flip winding if the determinant is negative
+            if (matrix.det() < 0)
+            {
+                switch (segment)
+                {
+                case VG_SCCWARC_TO: segment = VG_SCWARC_TO;     break;
+                case VG_SCWARC_TO:  segment = VG_SCCWARC_TO;    break;
+                case VG_LCCWARC_TO: segment = VG_LCWARC_TO;     break;
+                case VG_LCWARC_TO:  segment = VG_LCCWARC_TO;    break;
+                default:                                        break;
+                }
+            }
+            break;
+        }
+        }
+
+        newSegments[m_segments.size() + i] = (RIuint8)(segment | absRel);
+        srcCoord += coords;
+    }
+    RI_ASSERT(srcCoord == numSrcCoords);
+    RI_ASSERT(dstCoord == getNumCoordinates() + numDstCoords);
+
+    RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
+
+    //replace old arrays
+    m_segments.swap(newSegments);
+    m_data.swap(newData);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Normalizes a path for interpolation.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+void Path::normalizeForInterpolation(const Path* srcPath)
+{
+    RI_ASSERT(srcPath);
+    RI_ASSERT(srcPath != this);
+    RI_ASSERT(srcPath->m_referenceCount > 0);
+
+    //count the number of resulting coordinates
+    int numSrcCoords = 0;
+    int numDstCoords = 0;
+    for(int i=0;i<srcPath->m_segments.size();i++)
+    {
+        VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
+        int coords = segmentToNumCoordinates(segment);
+        numSrcCoords += coords;
+        switch(segment)
+        {
+        case VG_CLOSE_PATH:
+        case VG_MOVE_TO:
+        case VG_LINE_TO:
+            break;
+
+        case VG_HLINE_TO:
+        case VG_VLINE_TO:
+            coords = 2;
+            break;
+
+        case VG_QUAD_TO:
+        case VG_CUBIC_TO:
+        case VG_SQUAD_TO:
+        case VG_SCUBIC_TO:
+            coords = 6;
+            break;
+
+        default:
+            RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
+                      segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
+            break;
+        }
+        numDstCoords += coords;
+    }
+
+    m_segments.resize(srcPath->m_segments.size());  //throws bad_alloc
+    m_data.resize(numDstCoords * getBytesPerCoordinate(VG_PATH_DATATYPE_F));    //throws bad_alloc
+
+    int srcCoord = 0;
+    int dstCoord = 0;
+    Vector2 s(0,0);     //the beginning of the current subpath
+    Vector2 o(0,0);     //the last point of the previous segment
+
+    // the last internal control point of the previous segment, if the
+    //segment was a (regular or smooth) quadratic or cubic
+    //Bezier, or else the last point of the previous segment
+    Vector2 p(0,0);     
+    for(int i=0;i<srcPath->m_segments.size();i++)
+    {
+        VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
+        VGPathAbsRel absRel = getPathAbsRel(srcPath->m_segments[i]);
+        int coords = segmentToNumCoordinates(segment);
+
+        switch(segment)
+        {
+        case VG_CLOSE_PATH:
+        {
+            RI_ASSERT(coords == 0);
+            p = s;
+            o = s;
+            break;
+        }
+
+        case VG_MOVE_TO:
+        {
+            RI_ASSERT(coords == 2);
+            Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            if(absRel == VG_RELATIVE)
+                c += o;
+            setCoordinate(dstCoord++, c.x);
+            setCoordinate(dstCoord++, c.y);
+            s = c;
+            p = c;
+            o = c;
+            break;
+        }
+
+        case VG_LINE_TO:
+        {
+            RI_ASSERT(coords == 2);
+            Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            if(absRel == VG_RELATIVE)
+                c += o;
+            setCoordinate(dstCoord++, c.x);
+            setCoordinate(dstCoord++, c.y);
+            p = c;
+            o = c;
+            break;
+        }
+
+        case VG_HLINE_TO:
+        {
+            RI_ASSERT(coords == 1);
+            Vector2 c(srcPath->getCoordinate(srcCoord+0), o.y);
+            if(absRel == VG_RELATIVE)
+                c.x += o.x;
+            setCoordinate(dstCoord++, c.x);
+            setCoordinate(dstCoord++, c.y);
+            p = c;
+            o = c;
+            segment = VG_LINE_TO;
+            break;
+        }
+
+        case VG_VLINE_TO:
+        {
+            RI_ASSERT(coords == 1);
+            Vector2 c(o.x, srcPath->getCoordinate(srcCoord+0));
+            if(absRel == VG_RELATIVE)
+                c.y += o.y;
+            setCoordinate(dstCoord++, c.x);
+            setCoordinate(dstCoord++, c.y);
+            p = c;
+            o = c;
+            segment = VG_LINE_TO;
+            break;
+        }
+
+        case VG_QUAD_TO:
+        {
+            RI_ASSERT(coords == 4);
+            Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+            if(absRel == VG_RELATIVE)
+            {
+                c0 += o;
+                c1 += o;
+            }
+            Vector2 d0 = (1.0f/3.0f) * (o + 2.0f * c0);
+            Vector2 d1 = (1.0f/3.0f) * (c1 + 2.0f * c0);
+            setCoordinate(dstCoord++, d0.x);
+            setCoordinate(dstCoord++, d0.y);
+            setCoordinate(dstCoord++, d1.x);
+            setCoordinate(dstCoord++, d1.y);
+            setCoordinate(dstCoord++, c1.x);
+            setCoordinate(dstCoord++, c1.y);
+            p = c0;
+            o = c1;
+            segment = VG_CUBIC_TO;
+            break;
+        }
+
+        case VG_CUBIC_TO:
+        {
+            RI_ASSERT(coords == 6);
+            Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+            Vector2 c2(srcPath->getCoordinate(srcCoord+4), srcPath->getCoordinate(srcCoord+5));
+            if(absRel == VG_RELATIVE)
+            {
+                c0 += o;
+                c1 += o;
+                c2 += o;
+            }
+            setCoordinate(dstCoord++, c0.x);
+            setCoordinate(dstCoord++, c0.y);
+            setCoordinate(dstCoord++, c1.x);
+            setCoordinate(dstCoord++, c1.y);
+            setCoordinate(dstCoord++, c2.x);
+            setCoordinate(dstCoord++, c2.y);
+            p = c1;
+            o = c2;
+            break;
+        }
+
+        case VG_SQUAD_TO:
+        {
+            RI_ASSERT(coords == 2);
+            Vector2 c0 = 2.0f * o - p;
+            Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            if(absRel == VG_RELATIVE)
+                c1 += o;
+            Vector2 d0 = (1.0f/3.0f) * (o + 2.0f * c0);
+            Vector2 d1 = (1.0f/3.0f) * (c1 + 2.0f * c0);
+            setCoordinate(dstCoord++, d0.x);
+            setCoordinate(dstCoord++, d0.y);
+            setCoordinate(dstCoord++, d1.x);
+            setCoordinate(dstCoord++, d1.y);
+            setCoordinate(dstCoord++, c1.x);
+            setCoordinate(dstCoord++, c1.y);
+            p = c0;
+            o = c1;
+            segment = VG_CUBIC_TO;
+            break;
+        }
+
+        case VG_SCUBIC_TO:
+        {
+            RI_ASSERT(coords == 4);
+            Vector2 c0 = 2.0f * o - p;
+            Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 c2(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+            if(absRel == VG_RELATIVE)
+            {
+                c1 += o;
+                c2 += o;
+            }
+            setCoordinate(dstCoord++, c0.x);
+            setCoordinate(dstCoord++, c0.y);
+            setCoordinate(dstCoord++, c1.x);
+            setCoordinate(dstCoord++, c1.y);
+            setCoordinate(dstCoord++, c2.x);
+            setCoordinate(dstCoord++, c2.y);
+            p = c1;
+            o = c2;
+            segment = VG_CUBIC_TO;
+            break;
+        }
+
+        default:
+        {
+            RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
+                      segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
+            RI_ASSERT(coords == 5);
+            RIfloat rh = srcPath->getCoordinate(srcCoord+0);
+            RIfloat rv = srcPath->getCoordinate(srcCoord+1);
+            RIfloat rot = srcPath->getCoordinate(srcCoord+2);
+            Vector2 c(srcPath->getCoordinate(srcCoord+3), srcPath->getCoordinate(srcCoord+4));
+            if(absRel == VG_RELATIVE)
+                c += o;
+            setCoordinate(dstCoord++, rh);
+            setCoordinate(dstCoord++, rv);
+            setCoordinate(dstCoord++, rot);
+            setCoordinate(dstCoord++, c.x);
+            setCoordinate(dstCoord++, c.y);
+            p = c;
+            o = c;
+            break;
+        }
+        }
+
+        m_segments[i] = (RIuint8)(segment | VG_ABSOLUTE);
+        srcCoord += coords;
+    }
+    RI_ASSERT(srcCoord == numSrcCoords);
+    RI_ASSERT(dstCoord == numDstCoords);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Appends a linearly interpolated copy of the two source paths.
+* \param    
+* \return   
+* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+bool Path::interpolate(const Path* startPath, const Path* endPath, RIfloat amount)
+{
+    RI_ASSERT(startPath && endPath);
+    RI_ASSERT(m_referenceCount > 0 && startPath->m_referenceCount > 0 && endPath->m_referenceCount > 0);
+
+    if(!startPath->m_segments.size() || startPath->m_segments.size() != endPath->m_segments.size())
+        return false;   //start and end paths are incompatible or zero length
+
+    Path start(VG_PATH_FORMAT_STANDARD, VG_PATH_DATATYPE_F, 1.0f, 0.0f, 0, 0, 0);
+    start.normalizeForInterpolation(startPath); //throws bad_alloc
+
+    Path end(VG_PATH_FORMAT_STANDARD, VG_PATH_DATATYPE_F, 1.0f, 0.0f, 0, 0, 0);
+    end.normalizeForInterpolation(endPath); //throws bad_alloc
+
+    //check that start and end paths are compatible
+    if(start.m_data.size() != end.m_data.size() || start.m_segments.size() != end.m_segments.size())
+        return false;   //start and end paths are incompatible
+
+    //allocate new arrays
+    Array<RIuint8> newSegments;
+    newSegments.resize(m_segments.size() + start.m_segments.size());    //throws bad_alloc
+    Array<RIuint8> newData;
+    newData.resize(m_data.size() + start.m_data.size() * getBytesPerCoordinate(m_datatype) / getBytesPerCoordinate(start.m_datatype));  //throws bad_alloc
+    //if we get here, the memory allocations have succeeded
+
+    //copy old segments
+    if(m_segments.size())
+        ri_memcpy(&newSegments[0], &m_segments[0], m_segments.size());
+
+    //copy old data
+    if(m_data.size())
+        ri_memcpy(&newData[0], &m_data[0], m_data.size());
+
+    //copy segments
+    for(int i=0;i<start.m_segments.size();i++)
+    {
+        VGPathSegment s = getPathSegment(start.m_segments[i]);
+        VGPathSegment e = getPathSegment(end.m_segments[i]);
+
+        if(s == VG_SCCWARC_TO || s == VG_SCWARC_TO || s == VG_LCCWARC_TO || s == VG_LCWARC_TO)
+        {
+            if(e != VG_SCCWARC_TO && e != VG_SCWARC_TO && e != VG_LCCWARC_TO && e != VG_LCWARC_TO)
+                return false;   //start and end paths are incompatible
+            if(amount < 0.5f)
+                newSegments[m_segments.size() + i] = start.m_segments[i];
+            else
+                newSegments[m_segments.size() + i] = end.m_segments[i];
+        }
+        else
+        {
+            if(s != e)
+                return false;   //start and end paths are incompatible
+            newSegments[m_segments.size() + i] = start.m_segments[i];
+        }
+    }
+
+    //interpolate data
+    int oldNumCoords = getNumCoordinates();
+    for(int i=0;i<start.getNumCoordinates();i++)
+        setCoordinate(newData, m_datatype, m_scale, m_bias, oldNumCoords + i, start.getCoordinate(i) * (1.0f - amount) + end.getCoordinate(i) * amount);
+
+    RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
+
+    //replace old arrays
+    m_segments.swap(newSegments);
+    m_data.swap(newData);
+
+    return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates a path for filling and appends resulting edges
+*           to a rasterizer.
+* \param    
+* \return   
+* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::fill(const Matrix3x3& pathToSurface, Rasterizer& rasterizer)
+{
+    RI_ASSERT(m_referenceCount > 0);
+    RI_ASSERT(pathToSurface.isAffine());
+
+    tessellate(pathToSurface, 0.0f);    //throws bad_alloc
+
+    try
+    {
+        Vector2 p0(0,0), p1(0,0);
+        for(int i=0;i<m_vertices.size();i++)
+        {
+            p1 = affineTransform(pathToSurface, m_vertices[i].userPosition);
+
+            if(!(m_vertices[i].flags & START_SEGMENT))
+            {   //in the middle of a segment
+                rasterizer.addEdge(p0, p1); //throws bad_alloc
+            }
+
+            p0 = p1;
+        }
+    }
+    catch(std::bad_alloc)
+    {
+        rasterizer.clear(); //remove the unfinished path
+        throw;
+    }
+}
+
+/**
+ *  \brief  Intersection between lines (p0->p1) and (p2->p3)
+ *  \todo   This must be done in the rasterizer to get correct results.
+ */
+static void intersectLines(const Vector2& p0, const Vector2& p1, const Vector2& p2, const Vector2& p3, Vector2& pt)
+{
+    RIfloat n = (p1.x-p0.x)*(p0.y-p2.y)-(p1.y-p0.y)*(p0.x-p2.x);
+    RIfloat d = (p3.y-p2.y)*(p1.x-p0.x)-(p3.x-p2.x)*(p1.y-p0.y);
+    if (d == 0) 
+    {
+        pt = p0;
+        return;
+    }
+    RIfloat t = n/d;
+    Vector2 dir = p1-p0;
+
+    pt = p0+t*dir;
+}
+
+static bool isCCW(const Vector2& a, const Vector2& b)
+{
+    RIfloat c = a.x*b.y - a.y*b.x;
+    return c >= 0;
+}
+
+/**
+ * \brief   Add a CCW stitch-triangle so that accw -> acw is the base of the triangle.
+ * \param   accw    Counter-clockwise stroke end (for example).
+ * \param   acw     Clockwise stroke end.
+ * \param   p       Tip of the triangle to form.
+ */
+static void addStitchTriangle(Rasterizer& rasterizer, const Vector2& accw, const Vector2& acw, const Vector2& p)
+{
+    if (isCCW(p - accw, acw - accw))
+    {
+        // p "below"
+        rasterizer.addEdge(accw, p);
+        rasterizer.addEdge(p, acw);
+        rasterizer.addEdge(acw, accw);
+    }
+    else
+    {
+        rasterizer.addEdge(accw, acw);
+        rasterizer.addEdge(acw, p);
+        rasterizer.addEdge(p, accw);
+    }
+}
+
+/**
+ * \brief   Add a (ccw-closed) segment to path. See the naming of parameters for input order:
+ *          pp = previous, nn = next
+ */
+static void addStrokeSegment(Rasterizer& rasterizer, const Vector2& ppccw, const Vector2& ppcw, const Vector2& nnccw, const Vector2& nncw)
+{
+    RIfloat d = dot(nnccw-ppccw, nncw-ppcw);
+    if(d < 0)
+    {
+        Vector2 ip;
+        intersectLines(ppccw, ppcw, nnccw, nncw, ip);
+
+        // Create two triangles from the self-intersecting part
+        if (isCCW(ppccw - nnccw, ip - nnccw))
+        {
+            rasterizer.addEdge(nnccw, ppccw);
+            rasterizer.addEdge(ppccw, ip);
+            rasterizer.addEdge(ip, nnccw);
+
+            rasterizer.addEdge(nncw, ppcw);
+            rasterizer.addEdge(ppcw, ip);
+            rasterizer.addEdge(ip, nncw);
+        }
+        else
+        {
+            rasterizer.addEdge(nnccw, ip);
+            rasterizer.addEdge(ip, ppccw);
+            rasterizer.addEdge(ppccw, nnccw);
+
+            rasterizer.addEdge(nncw, ip);
+            rasterizer.addEdge(ip, ppcw);
+            rasterizer.addEdge(ppcw, nncw);
+        }
+        // Final stitch (not necessary if done in the rasterizer)
+        addStitchTriangle(rasterizer, ppccw, ppcw, ip);
+        addStitchTriangle(rasterizer, nnccw, nncw, ip);
+    }
+    else
+    {
+        rasterizer.addEdge(ppccw, ppcw);	//throws bad_alloc
+        rasterizer.addEdge(ppcw, nncw);	//throws bad_alloc
+        rasterizer.addEdge(nncw, nnccw);		//throws bad_alloc
+        rasterizer.addEdge(nnccw, ppccw);	//throws bad_alloc
+    }
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Smoothly interpolates between two StrokeVertices. Positions
+*           are interpolated linearly, while tangents are interpolated
+*           on a unit circle. Stroking is implemented so that overlapping
+*           geometry doesnt cancel itself when filled with nonzero rule.
+*           The resulting polygons are closed.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+void Path::interpolateStroke(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v0, const StrokeVertex& v1, RIfloat strokeWidth) const
+{
+    Vector2 ppccw, endccw;
+    Vector2 ppcw, endcw;
+    
+    if (m_mirror)
+    {
+        ppccw = affineTransform(pathToSurface, v0.cw);
+        ppcw = affineTransform(pathToSurface, v0.ccw);
+        endccw = affineTransform(pathToSurface, v1.cw);
+        endcw = affineTransform(pathToSurface, v1.ccw);
+    }
+    else
+    {
+        ppccw = affineTransform(pathToSurface, v0.ccw);
+        ppcw = affineTransform(pathToSurface, v0.cw);
+        endccw = affineTransform(pathToSurface, v1.ccw);
+        endcw = affineTransform(pathToSurface, v1.cw);
+    }
+
+	const RIfloat tessellationAngle = 5.0f;
+
+	RIfloat angle = RI_RAD_TO_DEG((RIfloat)acos(RI_CLAMP(dot(v0.t, v1.t), -1.0f, 1.0f))) / tessellationAngle;
+	int samples = RI_INT_MAX((int)ceil(angle), 1);
+	Vector2 prev = v0.p;
+	Vector2 prevt = v0.t;
+	Vector2 position = v0.p;
+	for(int j=0;j<samples-1;j++)
+	{
+		RIfloat t = (RIfloat)(j+1) / (RIfloat)samples;
+		position = v0.p * (1.0f - t) + v1.p * t;
+		Vector2 tangent = circularLerp(v0.t, v1.t, t);
+		Vector2 n = normalize(perpendicularCCW(tangent)) * strokeWidth * 0.5f;
+
+		Vector2 nnccw = affineTransform(pathToSurface, position + n);
+		Vector2 nncw = affineTransform(pathToSurface, position - n);
+
+        addStrokeSegment(rasterizer, ppccw, ppcw, nnccw, nncw);
+
+		ppccw = nnccw;
+		ppcw = nncw;
+		prev = position;
+		prevt = tangent;
+	}
+
+	//connect the last segment to the end coordinates
+	//Vector2 n = affineTangentTransform(pathToSurface, perpendicularCCW(v1.t));
+    Vector2 nncw = endcw;
+    Vector2 nnccw = endccw;
+
+    addStrokeSegment(rasterizer, ppccw, ppcw, nnccw, nncw);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Generate edges for stroke caps. Resulting polygons are closed.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+void Path::doCap(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v, RIfloat strokeWidth, VGCapStyle capStyle) const
+{
+    const bool mirror = m_mirror;
+    Vector2 ccwt, cwt, p;
+    if (mirror)
+    {
+        ccwt = affineTransform(pathToSurface, v.cw);
+        cwt = affineTransform(pathToSurface, v.ccw);
+        p = affineTransform(pathToSurface, v.p);
+    }
+    else
+    {
+        ccwt = affineTransform(pathToSurface, v.ccw);
+        cwt = affineTransform(pathToSurface, v.cw);
+        p = affineTransform(pathToSurface, v.p);
+    }
+
+    //rasterizer.clear();
+    switch(capStyle)
+    {
+    case VG_CAP_BUTT:
+        break;
+
+    case VG_CAP_ROUND:
+    {
+        const RIfloat tessellationAngle = 5.0f;
+
+        RIfloat angle = 180.0f / tessellationAngle;
+
+        int samples = (int)ceil(angle);
+        RIfloat step = 1.0f / samples;
+        RIfloat t = step;
+        Vector2 u0, u1;
+        if (!mirror)
+        {
+            u0 = normalize(v.cw - v.p);
+            u1 = normalize(v.ccw - v.p);
+        } else
+        {
+            u0 = normalize(v.ccw - v.p);
+            u1 = normalize(v.cw - v.p);
+        }
+        Vector2 prev = cwt;
+        rasterizer.addEdge(p, cwt);    //throws bad_alloc
+        for(int j=1;j<samples;j++)
+        {
+            Vector2 next = v.p + circularLerp(u0, u1, t, mirror) * strokeWidth * 0.5f;
+            next = affineTransform(pathToSurface, next);
+
+            rasterizer.addEdge(prev, next); //throws bad_alloc
+            prev = next;
+            t += step;
+        }
+        rasterizer.addEdge(prev, ccwt);  //throws bad_alloc
+        rasterizer.addEdge(ccwt, p);     //throws bad_alloc
+        break;
+    }
+
+    default:
+    {
+        RI_ASSERT(capStyle == VG_CAP_SQUARE);
+        Vector2 t = v.t;
+        t.normalize();
+        Vector2 ccws, cws;
+        if (!mirror)
+        {
+            ccws = affineTransform(pathToSurface, v.ccw + t * strokeWidth * 0.5f);
+            cws = affineTransform(pathToSurface, v.cw + t * strokeWidth * 0.5f);
+        }
+        else
+        {
+            ccws = affineTransform(pathToSurface, v.cw + t * strokeWidth * 0.5f);
+            cws = affineTransform(pathToSurface, v.ccw + t * strokeWidth * 0.5f);
+        }
+        rasterizer.addEdge(p, cwt);    //throws bad_alloc
+        rasterizer.addEdge(cwt, cws); //throws bad_alloc
+        rasterizer.addEdge(cws, ccws);  //throws bad_alloc
+        rasterizer.addEdge(ccws, ccwt);   //throws bad_alloc
+        rasterizer.addEdge(ccwt, p);     //throws bad_alloc
+        break;
+    }
+    }
+    //rasterizer.fill();
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Generate edges for stroke joins. Resulting polygons are closed.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+void Path::doJoin(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v0, const StrokeVertex& v1, RIfloat strokeWidth, VGJoinStyle joinStyle, RIfloat miterLimit) const
+{
+    const bool mirror = m_mirror;
+    Vector2 ccw0t, ccw1t;
+    Vector2 cw0t, cw1t;
+    Vector2 m0t, m1t;
+    Vector2 tt0, tt1;
+
+    if(mirror)
+    {
+        ccw0t = affineTransform(pathToSurface, v0.cw);
+        cw0t = affineTransform(pathToSurface, v0.ccw);
+        m0t = affineTransform(pathToSurface, v0.p);
+        tt0 = affineTangentTransform(pathToSurface, v0.t);
+        ccw1t = affineTransform(pathToSurface, v1.cw);
+        cw1t = affineTransform(pathToSurface, v1.ccw);
+        m1t = affineTransform(pathToSurface, v1.p);
+        tt1 = affineTangentTransform(pathToSurface, v1.t);
+    } else
+    {
+        ccw0t = affineTransform(pathToSurface, v0.ccw);
+        cw0t = affineTransform(pathToSurface, v0.cw);
+        m0t = affineTransform(pathToSurface, v0.p);
+        tt0 = affineTangentTransform(pathToSurface, v0.t);
+        ccw1t = affineTransform(pathToSurface, v1.ccw);
+        cw1t = affineTransform(pathToSurface, v1.cw);
+        m1t = affineTransform(pathToSurface, v1.p);
+        tt1 = affineTangentTransform(pathToSurface, v1.t);
+    }
+
+    Vector2 tccw = v1.ccw - v0.ccw;
+    Vector2 s, e, m, st, et;
+    bool cw = true;
+
+    // \todo Uses addStrokeSegment, which is wasteful in several cases
+    // (but should be pretty robust)
+    // Round or miter to cw-side?
+    
+    if (dot(tt1, ccw0t - m0t) >= 0)
+        cw = false;
+        
+    // Add the bevel (which is part of all the other joins also)
+    // This would be a "consistent" way to handle joins (in addition
+    // to creating rounding to _both_ side of the join). However,
+    // the conformance test currently invalidates this case.
+    // \note Causes some extra geometry.
+    if (cw)
+        addStrokeSegment(rasterizer, ccw0t, m0t, ccw1t, m1t);
+    else
+        addStrokeSegment(rasterizer, m0t, cw0t, m1t, cw1t);
+
+    switch (joinStyle)
+    {
+    case VG_JOIN_BEVEL:
+        break;
+    case VG_JOIN_MITER:
+    {
+        RIfloat theta = (RIfloat)acos(RI_CLAMP(dot(v0.t, -v1.t), -1.0f, 1.0f));
+        RIfloat miterLengthPerStrokeWidth = 1.0f / (RIfloat)sin(theta*0.5f);
+        if (miterLengthPerStrokeWidth < miterLimit)
+        {   
+            // Miter
+            if (cw)
+            {
+                m = !mirror ? v0.ccw : v0.cw;
+                s = ccw1t;
+                e = ccw0t;
+            } else
+            {
+                m = !mirror ? v0.cw : v0.ccw;
+                s = cw0t;
+                e = cw1t;
+            }
+
+            RIfloat l = (RIfloat)cos(theta*0.5f) * miterLengthPerStrokeWidth * (strokeWidth * 0.5f);
+            l = RI_MIN(l, RI_FLOAT_MAX);    //force finite
+            Vector2 c = m + v0.t * l;
+            c = affineTransform(pathToSurface, c);
+
+            rasterizer.addEdge(s, c);
+            rasterizer.addEdge(c, e);
+            rasterizer.addEdge(e, s);
+        }
+        break;
+    }
+    default:
+    {
+        RI_ASSERT(joinStyle == VG_JOIN_ROUND);
+
+        Vector2 sp, ep;
+
+        const RIfloat tessellationAngle = 5.0f;
+            
+        if (cw)
+        {
+            s = ccw1t;
+            st = -v1.t;
+            e = ccw0t;
+            et = -v0.t;
+            sp = v1.p;
+            ep = v0.p;
+        } else
+        {
+            s = cw0t;
+            st = v0.t;
+            e = cw1t;
+            et = v1.t;
+            sp = v0.p;
+            ep = v1.p;
+        }
+
+        Vector2 prev = s;
+        RIfloat angle = RI_RAD_TO_DEG((RIfloat)acos(RI_CLAMP(dot(st, et), -1.0f, 1.0f))) / tessellationAngle;
+        int samples = (int)ceil(angle);
+        if( samples )
+        {
+            RIfloat step = 1.0f / samples;
+            RIfloat t = step;
+            for(int j=1;j<samples;j++)
+            {
+                Vector2 position = sp * (1.0f - t) + ep * t;
+                Vector2 tangent = circularLerp(st, et, t, mirror);
+
+                Vector2 next = position + normalize(perpendicular(tangent, !mirror)) * strokeWidth * 0.5f;
+                next = affineTransform(pathToSurface, next);
+
+                rasterizer.addEdge(prev, next); //throws bad_alloc
+                prev = next;
+                t += step;
+            }
+        }
+        rasterizer.addEdge(prev, e);    //throws bad_alloc
+        rasterizer.addEdge(e, s);
+        break;
+    }
+    }
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellate a path, apply stroking, dashing, caps and joins, and
+*           append resulting edges to a rasterizer.
+* \param    
+* \return   
+* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::stroke(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const Array<RIfloat>& dashPattern, RIfloat dashPhase, bool dashPhaseReset, RIfloat strokeWidth, VGCapStyle capStyle, VGJoinStyle joinStyle, RIfloat miterLimit)
+{
+    RI_ASSERT(pathToSurface.isAffine());
+    RI_ASSERT(m_referenceCount > 0);
+    RI_ASSERT(strokeWidth >= 0.0f);
+    RI_ASSERT(miterLimit >= 1.0f);
+
+    tessellate(pathToSurface, strokeWidth); //throws bad_alloc
+
+    m_mirror = pathToSurface[0][0]*pathToSurface[1][1] < 0 ? true : false;
+
+    if(!m_vertices.size())
+        return;
+
+    bool dashing = true;
+    int dashPatternSize = dashPattern.size();
+    if( dashPattern.size() & 1 )
+        dashPatternSize--;  //odd number of dash pattern entries, discard the last one
+    RIfloat dashPatternLength = 0.0f;
+    for(int i=0;i<dashPatternSize;i++)
+        dashPatternLength += RI_MAX(dashPattern[i], 0.0f);
+    if(!dashPatternSize || dashPatternLength == 0.0f )
+        dashing = false;
+    dashPatternLength = RI_MIN(dashPatternLength, RI_FLOAT_MAX);
+
+    //walk along the path
+    //stop at the next event which is either:
+    //-path vertex
+    //-dash stop
+    //for robustness, decisions based on geometry are done only once.
+    //inDash keeps track whether the last point was in dash or not
+
+    //loop vertex events
+    try
+    {
+        RIfloat nextDash = 0.0f;
+        int d = 0;
+        bool inDash = true;
+        StrokeVertex v0, v1, vs;
+        for(int i=0;i<m_vertices.size();i++)
+        {
+            //read the next vertex
+            Vertex& v = m_vertices[i];
+            v1.p = v.userPosition;
+            v1.t = v.userTangent;
+            RI_ASSERT(!isZero(v1.t));   //don't allow zero tangents
+
+            v1.ccw = v1.p + normalize(perpendicularCCW(v1.t)) * strokeWidth * 0.5f;
+            v1.cw = v1.p + normalize(perpendicularCW(v1.t)) * strokeWidth * 0.5f;
+
+            v1.pathLength = v.pathLength;
+            v1.flags = v.flags;
+            v1.inDash = dashing ? inDash : true;    //NOTE: for other than START_SEGMENT vertices inDash will be updated after dashing
+
+            //process the vertex event
+            if(v.flags & START_SEGMENT)
+            {
+                if(v.flags & START_SUBPATH)
+                {
+                    if( dashing )
+                    {   //initialize dashing by finding which dash or gap the first point of the path lies in
+                        if(dashPhaseReset || i == 0)
+                        {
+                            d = 0;
+                            inDash = true;
+                            nextDash = v1.pathLength - RI_MOD(dashPhase, dashPatternLength);
+                            for(;;)
+                            {
+                                RIfloat prevDash = nextDash;
+                                nextDash = prevDash + RI_MAX(dashPattern[d], 0.0f);
+                                if(nextDash >= v1.pathLength)
+                                    break;
+
+                                if( d & 1 )
+                                    inDash = true;
+                                else
+                                    inDash = false;
+                                d = (d+1) % dashPatternSize;
+                            }
+                            v1.inDash = inDash;
+                            //the first point of the path lies between prevDash and nextDash
+                            //d in the index of the next dash stop
+                            //inDash is true if the first point is in a dash
+                        }
+                    }
+                    vs = v1;    //save the subpath start point
+                }
+                else
+                {
+                    if( v.flags & IMPLICIT_CLOSE_SUBPATH )
+                    {   //do caps for the start and end of the current subpath
+                        if( v0.inDash )
+                            doCap(pathToSurface, rasterizer, v0, strokeWidth, capStyle);    //end cap   //throws bad_alloc
+                        if( vs.inDash )
+                        {
+                            StrokeVertex vi = vs;
+                            vi.t = -vi.t;
+                            RI_SWAP(vi.ccw.x, vi.cw.x);
+                            RI_SWAP(vi.ccw.y, vi.cw.y);
+                            doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);    //start cap //throws bad_alloc
+                        }
+                    }
+                    else
+                    {   //join two segments
+                        RI_ASSERT(v0.inDash == v1.inDash);
+                        if( v0.inDash )
+                            doJoin(pathToSurface, rasterizer, v0, v1, strokeWidth, joinStyle, miterLimit);  //throws bad_alloc
+                    }
+                }
+            }
+            else
+            {   //in the middle of a segment
+                if( !(v.flags & IMPLICIT_CLOSE_SUBPATH) )
+                {   //normal segment, do stroking
+                    if( dashing )
+                    {
+                        StrokeVertex prevDashVertex = v0;   //dashing of the segment starts from the previous vertex
+
+                        if(nextDash + 10000.0f * dashPatternLength < v1.pathLength)
+                            throw std::bad_alloc();     //too many dashes, throw bad_alloc
+
+                        //loop dash events until the next vertex event
+                        //zero length dashes are handled as a special case since if they hit the vertex,
+                        //we want to include their starting point to this segment already in order to generate a join
+                        int numDashStops = 0;
+                        while(nextDash < v1.pathLength || (nextDash <= v1.pathLength && dashPattern[(d+1) % dashPatternSize] == 0.0f))
+                        {
+                            RIfloat edgeLength = v1.pathLength - v0.pathLength;
+                            RIfloat ratio = 0.0f;
+                            if(edgeLength > 0.0f)
+                                ratio = (nextDash - v0.pathLength) / edgeLength;
+                            StrokeVertex nextDashVertex;
+                            nextDashVertex.p = v0.p * (1.0f - ratio) + v1.p * ratio;
+                            nextDashVertex.t = circularLerp(v0.t, v1.t, ratio);
+                            nextDashVertex.ccw = nextDashVertex.p + normalize(perpendicularCCW(nextDashVertex.t)) * strokeWidth * 0.5f;
+                            nextDashVertex.cw = nextDashVertex.p + normalize(perpendicularCW(nextDashVertex.t)) * strokeWidth * 0.5f;
+
+                            if( inDash )
+                            {   //stroke from prevDashVertex -> nextDashVertex
+                                if( numDashStops )
+                                {   //prevDashVertex is not the start vertex of the segment, cap it (start vertex has already been joined or capped)
+                                    StrokeVertex vi = prevDashVertex;
+                                    vi.t = -vi.t;
+                                    RI_SWAP(vi.ccw.x, vi.cw.x);
+                                    RI_SWAP(vi.ccw.y, vi.cw.y);
+                                    doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);    //throws bad_alloc
+                                }
+                                interpolateStroke(pathToSurface, rasterizer, prevDashVertex, nextDashVertex, strokeWidth);  //throws bad_alloc
+                                doCap(pathToSurface, rasterizer, nextDashVertex, strokeWidth, capStyle);    //end cap   //throws bad_alloc
+                            }
+                            prevDashVertex = nextDashVertex;
+
+                            if( d & 1 )
+                            {   //dash starts
+                                RI_ASSERT(!inDash);
+                                inDash = true;
+                            }
+                            else
+                            {   //dash ends
+                                RI_ASSERT(inDash);
+                                inDash = false;
+                            }
+                            d = (d+1) % dashPatternSize;
+                            nextDash += RI_MAX(dashPattern[d], 0.0f);
+                            numDashStops++;
+                        }
+                        
+                        if( inDash )
+                        {   //stroke prevDashVertex -> v1
+                            if( numDashStops )
+                            {   //prevDashVertex is not the start vertex of the segment, cap it (start vertex has already been joined or capped)
+                                StrokeVertex vi = prevDashVertex;
+                                vi.t = -vi.t;
+                                RI_SWAP(vi.ccw.x, vi.cw.x);
+                                RI_SWAP(vi.ccw.y, vi.cw.y);
+                                doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);    //throws bad_alloc
+                            }
+                            interpolateStroke(pathToSurface, rasterizer, prevDashVertex, v1, strokeWidth);  //throws bad_alloc
+                            //no cap, leave path open
+                        }
+
+                        v1.inDash = inDash; //update inDash status of the segment end point
+                    }
+                    else    //no dashing, just interpolate segment end points
+                        interpolateStroke(pathToSurface, rasterizer, v0, v1, strokeWidth);  //throws bad_alloc
+                }
+            }
+
+            if((v.flags & END_SEGMENT) && (v.flags & CLOSE_SUBPATH))
+            {   //join start and end of the current subpath
+                if( v1.inDash && vs.inDash )
+                    doJoin(pathToSurface, rasterizer, v1, vs, strokeWidth, joinStyle, miterLimit);  //throws bad_alloc
+                else
+                {   //both start and end are not in dash, cap them
+                    if( v1.inDash )
+                        doCap(pathToSurface, rasterizer, v1, strokeWidth, capStyle);    //end cap   //throws bad_alloc
+                    if( vs.inDash )
+                    {
+                        StrokeVertex vi = vs;
+                        vi.t = -vi.t;
+                        RI_SWAP(vi.ccw.x, vi.cw.x);
+                        RI_SWAP(vi.ccw.y, vi.cw.y);
+                        doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);    //start cap //throws bad_alloc
+                    }
+                }
+            }
+
+            v0 = v1;
+        }
+    }
+    catch(std::bad_alloc)
+    {
+        rasterizer.clear(); //remove the unfinished path
+        throw;
+    }
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates a path, and returns a position and a tangent on the path
+*           given a distance along the path.
+* \param    
+* \return   
+* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::getPointAlong(int startIndex, int numSegments, RIfloat distance, Vector2& p, Vector2& t)
+{
+    RI_ASSERT(m_referenceCount > 0);
+    RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size() && numSegments > 0);
+
+    Matrix3x3 identity;
+    identity.identity();
+    tessellate(identity, 0.0f); //throws bad_alloc
+
+    RI_ASSERT(startIndex >= 0 && startIndex < m_segmentToVertex.size());
+    RI_ASSERT(startIndex + numSegments >= 0 && startIndex + numSegments <= m_segmentToVertex.size());
+
+    // ignore move segments at the start of the path
+    while (numSegments && (m_segments[startIndex] & ~VG_RELATIVE) == VG_MOVE_TO)
+    {
+        startIndex++;
+        numSegments--;
+    }
+
+    // ignore move segments at the end of the path
+    while (numSegments && (m_segments[startIndex + numSegments - 1] & ~VG_RELATIVE) == VG_MOVE_TO)
+        numSegments--;
+
+    // empty path?
+    if (!m_vertices.size() || !numSegments)
+    {
+        p.set(0,0);
+        t.set(1,0);
+        return;
+    }
+
+    int startVertex = m_segmentToVertex[startIndex].start;
+    int endVertex = m_segmentToVertex[startIndex + numSegments - 1].end;
+
+    if(startVertex == -1)
+        startVertex = 0;
+
+    // zero length?
+    if (startVertex >= endVertex)
+    {
+        p = m_vertices[startVertex].userPosition;
+        t.set(1,0);
+        return;
+    }
+
+    RI_ASSERT(startVertex >= 0 && startVertex < m_vertices.size());
+    RI_ASSERT(endVertex >= 0 && endVertex < m_vertices.size());
+
+    distance += m_vertices[startVertex].pathLength; //map distance to the range of the whole path
+
+    if(distance <= m_vertices[startVertex].pathLength)
+    {   //return the first point of the path
+        p = m_vertices[startVertex].userPosition;
+        t = m_vertices[startVertex].userTangent;
+        return;
+    }
+
+    if(distance >= m_vertices[endVertex].pathLength)
+    {   //return the last point of the path
+        p = m_vertices[endVertex].userPosition;
+        t = m_vertices[endVertex].userTangent;
+        return;
+    }
+
+    //search for the segment containing the distance
+    for(int s=startIndex;s<startIndex+numSegments;s++)
+    {
+        int start = m_segmentToVertex[s].start;
+        int end = m_segmentToVertex[s].end;
+        if(start < 0)
+            start = 0;
+        if(end < 0)
+            end = 0;
+        RI_ASSERT(start >= 0 && start < m_vertices.size());
+        RI_ASSERT(end >= 0 && end < m_vertices.size());
+
+        if(distance >= m_vertices[start].pathLength && distance < m_vertices[end].pathLength)
+        {   //segment contains the queried distance
+            for(int i=start;i<end;i++)
+            {
+                const Vertex& v0 = m_vertices[i];
+                const Vertex& v1 = m_vertices[i+1];
+                if(distance >= v0.pathLength && distance < v1.pathLength)
+                {   //segment found, interpolate linearly between its end points
+                    RIfloat edgeLength = v1.pathLength - v0.pathLength;
+                    RI_ASSERT(edgeLength > 0.0f);
+                    RIfloat r = (distance - v0.pathLength) / edgeLength;
+                    p = (1.0f - r) * v0.userPosition + r * v1.userPosition;
+                    t = (1.0f - r) * v0.userTangent + r * v1.userTangent;
+                    return;
+                }
+            }
+        }
+    }
+
+    RI_ASSERT(0);   //point not found (should never get here)
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates a path, and computes its length.
+* \param    
+* \return   
+* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+RIfloat Path::getPathLength(int startIndex, int numSegments)
+{
+    RI_ASSERT(m_referenceCount > 0);
+    RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size() && numSegments > 0);
+
+    Matrix3x3 identity;
+    identity.identity();
+    tessellate(identity, 0.0f); //throws bad_alloc
+
+    RI_ASSERT(startIndex >= 0 && startIndex < m_segmentToVertex.size());
+    RI_ASSERT(startIndex + numSegments >= 0 && startIndex + numSegments <= m_segmentToVertex.size());
+
+    int startVertex = m_segmentToVertex[startIndex].start;
+    int endVertex = m_segmentToVertex[startIndex + numSegments - 1].end;
+
+    if(!m_vertices.size())
+        return 0.0f;
+
+    RIfloat startPathLength = 0.0f;
+    if(startVertex >= 0)
+    {
+        RI_ASSERT(startVertex >= 0 && startVertex < m_vertices.size());
+        startPathLength = m_vertices[startVertex].pathLength;
+    }
+    RIfloat endPathLength = 0.0f;
+    if(endVertex >= 0)
+    {
+        RI_ASSERT(endVertex >= 0 && endVertex < m_vertices.size());
+        endPathLength = m_vertices[endVertex].pathLength;
+    }
+
+    return endPathLength - startPathLength;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates a path, and computes its bounding box in user space.
+* \param    
+* \return   
+* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::getPathBounds(RIfloat& minx, RIfloat& miny, RIfloat& maxx, RIfloat& maxy)
+{
+    RI_ASSERT(m_referenceCount > 0);
+
+    Matrix3x3 identity;
+    identity.identity();
+    tessellate(identity, 0.0f); //throws bad_alloc
+
+    if(m_vertices.size())
+    {
+        minx = m_userMinx;
+        miny = m_userMiny;
+        maxx = m_userMaxx;
+        maxy = m_userMaxy;
+    }
+    else
+    {
+        minx = miny = 0;
+        maxx = maxy = -1;
+    }
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates a path, and computes its bounding box in surface space.
+* \param    
+* \return   
+* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::getPathTransformedBounds(const Matrix3x3& pathToSurface, RIfloat& minx, RIfloat& miny, RIfloat& maxx, RIfloat& maxy)
+{
+    RI_ASSERT(m_referenceCount > 0);
+    RI_ASSERT(pathToSurface.isAffine());
+
+    Matrix3x3 identity;
+    identity.identity();
+    tessellate(identity, 0.0f); //throws bad_alloc
+
+    if(m_vertices.size())
+    {
+        Vector3 p0(m_userMinx, m_userMiny, 1.0f);
+        Vector3 p1(m_userMinx, m_userMaxy, 1.0f);
+        Vector3 p2(m_userMaxx, m_userMaxy, 1.0f);
+        Vector3 p3(m_userMaxx, m_userMiny, 1.0f);
+        p0 = pathToSurface * p0;
+        p1 = pathToSurface * p1;
+        p2 = pathToSurface * p2;
+        p3 = pathToSurface * p3;
+
+        minx = RI_MIN(RI_MIN(RI_MIN(p0.x, p1.x), p2.x), p3.x);
+        miny = RI_MIN(RI_MIN(RI_MIN(p0.y, p1.y), p2.y), p3.y);
+        maxx = RI_MAX(RI_MAX(RI_MAX(p0.x, p1.x), p2.x), p3.x);
+        maxy = RI_MAX(RI_MAX(RI_MAX(p0.y, p1.y), p2.y), p3.y);
+    }
+    else
+    {
+        minx = miny = 0;
+        maxx = maxy = -1;
+    }
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Adds a vertex to a tessellated path.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+void Path::addVertex(const Vector2& p, const Vector2& t, RIfloat pathLength, unsigned int flags)
+{
+    RI_ASSERT(!isZero(t));
+
+    Vertex v;
+    v.pathLength = pathLength;
+    v.userPosition = p;
+    v.userTangent = t;
+    v.flags = flags;
+    m_vertices.push_back(v);    //throws bad_alloc
+    m_numTessVertices++;
+
+    m_userMinx = RI_MIN(m_userMinx, v.userPosition.x);
+    m_userMiny = RI_MIN(m_userMiny, v.userPosition.y);
+    m_userMaxx = RI_MAX(m_userMaxx, v.userPosition.x);
+    m_userMaxy = RI_MAX(m_userMaxy, v.userPosition.y);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Adds an edge to a tessellated path.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+void Path::addEdge(const Vector2& p0, const Vector2& p1, const Vector2& t0, const Vector2& t1, unsigned int startFlags, unsigned int endFlags)
+{
+    Vertex v;
+    RIfloat pathLength = 0.0f;
+
+    RI_ASSERT(!isZero(t0) && !isZero(t1));
+
+    //segment midpoints are shared between edges
+    if(!m_numTessVertices)
+    {
+        if(m_vertices.size() > 0)
+            pathLength = m_vertices[m_vertices.size()-1].pathLength;
+
+        addVertex(p0, t0, pathLength, startFlags);  //throws bad_alloc
+    }
+
+    //other than implicit close paths (caused by a MOVE_TO) add to path length
+    if( !(endFlags & IMPLICIT_CLOSE_SUBPATH) )
+    {
+        //NOTE: with extremely large coordinates the floating point path length is infinite
+        RIfloat l = (p1 - p0).length();
+        pathLength = m_vertices[m_vertices.size()-1].pathLength + l;
+        pathLength = RI_MIN(pathLength, RI_FLOAT_MAX);
+    }
+
+    addVertex(p1, t1, pathLength, endFlags);    //throws bad_alloc
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates a close-path segment.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+void Path::addEndPath(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, bool subpathHasGeometry, unsigned int flags)
+{
+    RI_UNREF(pathToSurface);
+    m_numTessVertices = 0;
+    if(!subpathHasGeometry)
+    {   //single vertex
+        Vector2 t(1.0f,0.0f);
+        addEdge(p0, p1, t, t, START_SEGMENT | START_SUBPATH, END_SEGMENT | END_SUBPATH);    //throws bad_alloc
+        m_numTessVertices = 0;
+        addEdge(p0, p1, -t, -t, IMPLICIT_CLOSE_SUBPATH | START_SEGMENT, IMPLICIT_CLOSE_SUBPATH | END_SEGMENT);  //throws bad_alloc
+        return;
+    }
+    //the subpath contains segment commands that have generated geometry
+
+    //add a close path segment to the start point of the subpath
+    RI_ASSERT(m_vertices.size() > 0);
+    m_vertices[m_vertices.size()-1].flags |= END_SUBPATH;
+
+    Vector2 t = normalize(p1 - p0);
+    if(isZero(t))
+        t = m_vertices[m_vertices.size()-1].userTangent;    //if the segment is zero-length, use the tangent of the last segment end point so that proper join will be generated
+    RI_ASSERT(!isZero(t));
+
+    addEdge(p0, p1, t, t, flags | START_SEGMENT, flags | END_SEGMENT);  //throws bad_alloc
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates a line-to segment.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+bool Path::addLineTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, bool subpathHasGeometry)
+{
+    RI_UNREF(pathToSurface);
+    if(p0 == p1)
+        return false;   //discard zero-length segments
+
+    //compute end point tangents
+    Vector2 t = normalize(p1 - p0);
+    RI_ASSERT(!isZero(t));
+
+    m_numTessVertices = 0;
+    unsigned int startFlags = START_SEGMENT;
+    if(!subpathHasGeometry)
+        startFlags |= START_SUBPATH;
+    addEdge(p0, p1, t, t, startFlags, END_SEGMENT); //throws bad_alloc
+    return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates a quad-to segment.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+bool Path::addQuadTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, const Vector2& p2, bool subpathHasGeometry, float strokeWidth)
+{
+    RI_UNREF(pathToSurface);
+    RI_UNREF(strokeWidth);
+    if(p0 == p1 && p0 == p2)
+    {
+        RI_ASSERT(p1 == p2);
+        return false;   //discard zero-length segments
+    }
+
+    //compute end point tangents
+
+    Vector2 incomingTangent = normalize(p1 - p0);
+    Vector2 outgoingTangent = normalize(p2 - p1);
+    if(p0 == p1)
+        incomingTangent = normalize(p2 - p0);
+    if(p1 == p2)
+        outgoingTangent = normalize(p2 - p0);
+    RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
+
+    m_numTessVertices = 0;
+    unsigned int startFlags = START_SEGMENT;
+    if(!subpathHasGeometry)
+        startFlags |= START_SUBPATH;
+
+    const int segments = RI_NUM_TESSELLATED_SEGMENTS_QUAD;
+    Vector2 pp = p0;
+    Vector2 tp = incomingTangent;
+    unsigned int prevFlags = startFlags;
+    for(int i=1;i<segments;i++)
+    {
+        RIfloat t = (RIfloat)i / (RIfloat)segments;
+        RIfloat u = 1.0f-t;
+        Vector2 pn = u*u * p0 + 2.0f*t*u * p1 + t*t * p2;
+        Vector2 tn = (-1.0f+t) * p0 + (1.0f-2.0f*t) * p1 + t * p2;
+        tn = normalize(tn);
+        if(isZero(tn))
+            tn = tp;
+
+        addEdge(pp, pn, tp, tn, prevFlags, 0);  //throws bad_alloc
+
+        pp = pn;
+        tp = tn;
+        prevFlags = 0;
+    }
+    addEdge(pp, p2, tp, outgoingTangent, prevFlags, END_SEGMENT);   //throws bad_alloc
+    return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates a cubic-to segment.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+bool Path::addCubicTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, const Vector2& p2, const Vector2& p3, bool subpathHasGeometry, float strokeWidth)
+{
+    RI_UNREF(pathToSurface);
+    RI_UNREF(strokeWidth);
+
+    if(p0 == p1 && p0 == p2 && p0 == p3)
+    {
+        RI_ASSERT(p1 == p2 && p1 == p3 && p2 == p3);
+        return false;   //discard zero-length segments
+    }
+
+    //compute end point tangents
+    Vector2 incomingTangent = normalize(p1 - p0);
+    Vector2 outgoingTangent = normalize(p3 - p2);
+    if(p0 == p1)
+    {
+        incomingTangent = normalize(p2 - p0);
+        if(p1 == p2)
+            incomingTangent = normalize(p3 - p0);
+    }
+    if(p2 == p3)
+    {
+        outgoingTangent = normalize(p3 - p1);
+        if(p1 == p2)
+            outgoingTangent = normalize(p3 - p0);
+    }
+    RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
+
+    m_numTessVertices = 0;
+    unsigned int startFlags = START_SEGMENT;
+    if(!subpathHasGeometry)
+        startFlags |= START_SUBPATH;
+
+    const int segments = RI_NUM_TESSELLATED_SEGMENTS_CUBIC;
+    Vector2 pp = p0;
+    Vector2 tp = incomingTangent;
+    unsigned int prevFlags = startFlags;
+    for(int i=1;i<segments;i++)
+    {
+        RIfloat t = (RIfloat)i / (RIfloat)segments;
+        Vector2 pn = (1.0f - 3.0f*t + 3.0f*t*t - t*t*t) * p0 + (3.0f*t - 6.0f*t*t + 3.0f*t*t*t) * p1 + (3.0f*t*t - 3.0f*t*t*t) * p2 + t*t*t * p3;
+        Vector2 tn = (-3.0f + 6.0f*t - 3.0f*t*t) * p0 + (3.0f - 12.0f*t + 9.0f*t*t) * p1 + (6.0f*t - 9.0f*t*t) * p2 + 3.0f*t*t * p3;
+
+        tn = normalize(tn);
+        if(isZero(tn))
+            tn = tp;
+
+        addEdge(pp, pn, tp, tn, prevFlags, 0);  //throws bad_alloc
+
+        pp = pn;
+        tp = tn;
+        prevFlags = 0;
+    }
+    addEdge(pp, p3, tp, outgoingTangent, prevFlags, END_SEGMENT);   //throws bad_alloc
+    return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Finds an ellipse center and transformation from the unit circle to
+*           that ellipse.
+* \param    rh Length of the horizontal axis
+*           rv Length of the vertical axis
+*           rot Rotation angle
+*           p0,p1 User space end points of the arc
+*           c0,c1 (Return value) Unit circle space center points of the two ellipses
+*           u0,u1 (Return value) Unit circle space end points of the arc
+*           unitCircleToEllipse (Return value) A matrix mapping from unit circle space to user space
+* \return   true if ellipse exists, false if doesn't
+* \note     
+*//*-------------------------------------------------------------------*/
+
+static bool findEllipses(RIfloat rh, RIfloat rv, RIfloat rot, const Vector2& p0, const Vector2& p1, VGPathSegment segment, Vector2& c0, Vector2& c1, Vector2& u0, Vector2& u1, Matrix3x3& unitCircleToEllipse, bool& cw)
+{
+    rh = RI_ABS(rh);
+    rv = RI_ABS(rv);
+    if(rh == 0.0f || rv == 0.0f || p0 == p1)
+        return false;   //degenerate ellipse
+
+    rot = RI_DEG_TO_RAD(rot);
+    unitCircleToEllipse.set((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
+                            (RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
+                            0,                   0,                   1);
+    Matrix3x3 ellipseToUnitCircle = invert(unitCircleToEllipse);
+    //force affinity
+    ellipseToUnitCircle[2][0] = 0.0f;
+    ellipseToUnitCircle[2][1] = 0.0f;
+    ellipseToUnitCircle[2][2] = 1.0f;
+
+    // Transform p0 and p1 into unit space
+    u0 = affineTransform(ellipseToUnitCircle, p0);
+    u1 = affineTransform(ellipseToUnitCircle, p1);
+
+    Vector2 m = 0.5f * (u0 + u1);
+    Vector2 d = u0 - u1;
+
+    RIfloat lsq = (RIfloat)dot(d,d);
+    if(lsq <= 0.0f)
+        return false;   //the points are coincident
+
+    RIfloat disc = (1.0f / lsq) - 0.25f;
+    if(disc < 0.0f)
+    {   //the points are too far apart for a solution to exist, scale the axes so that there is a solution
+        RIfloat l = (RIfloat)sqrt(lsq);
+        rh *= 0.5f * l;
+        rv *= 0.5f * l;
+
+        //redo the computation with scaled axes
+        unitCircleToEllipse.set((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
+                                (RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
+                                0,                   0,                   1);
+        ellipseToUnitCircle = invert(unitCircleToEllipse);
+        //force affinity
+        ellipseToUnitCircle[2][0] = 0.0f;
+        ellipseToUnitCircle[2][1] = 0.0f;
+        ellipseToUnitCircle[2][2] = 1.0f;
+
+        // Transform p0 and p1 into unit space
+        u0 = affineTransform(ellipseToUnitCircle, p0);
+        u1 = affineTransform(ellipseToUnitCircle, p1);
+
+        // Solve for intersecting unit circles
+        d = u0 - u1;
+        m = 0.5f * (u0 + u1);
+
+        lsq = dot(d,d);
+        if(lsq <= 0.0f)
+            return false;   //the points are coincident
+
+        disc = RI_MAX(0.0f, 1.0f / lsq - 0.25f);
+    }
+
+    if(u0 == u1)
+        return false;
+
+    Vector2 sd = d * (RIfloat)sqrt(disc);
+    Vector2 sp = perpendicularCW(sd);
+    c0 = m + sp;
+    c1 = m - sp;
+
+    //choose the center point and direction
+    Vector2 cp = c0;
+    if(segment == VG_SCWARC_TO || segment == VG_LCCWARC_TO)
+        cp = c1;
+    cw = false;
+    if(segment == VG_SCWARC_TO || segment == VG_LCWARC_TO)
+        cw = true;
+
+    //move the unit circle origin to the chosen center point
+    u0 -= cp;
+    u1 -= cp;
+
+    if(u0 == u1 || isZero(u0) || isZero(u1))
+        return false;
+
+    //transform back to the original coordinate space
+    cp = affineTransform(unitCircleToEllipse, cp);
+    unitCircleToEllipse[0][2] = cp.x;
+    unitCircleToEllipse[1][2] = cp.y;
+    return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates an arc-to segment.
+* \param    
+* \return   
+* \note     
+*//*-------------------------------------------------------------------*/
+
+bool Path::addArcTo(const Matrix3x3& pathToSurface, const Vector2& p0, RIfloat rh, RIfloat rv, RIfloat rot, const Vector2& p1, const Vector2& p1r, VGPathSegment segment, bool subpathHasGeometry, float strokeWidth)
+{
+    RI_UNREF(pathToSurface);
+    RI_UNREF(strokeWidth);
+
+    if(p0 == p1)
+        return false;   //discard zero-length segments
+    
+    // Check NaNs
+    // \todo Make a general vec2 function?
+    if (RI_ISNAN(p0.x) || RI_ISNAN(p0.y))
+        return false;
+
+    if (RI_ISNAN(p1.x) || RI_ISNAN(p1.y))
+        return false;
+
+    Vector2 c0, c1, u0, u1;
+    Matrix3x3 unitCircleToEllipse;
+    bool cw;
+
+    m_numTessVertices = 0;
+    unsigned int startFlags = START_SEGMENT;
+    if(!subpathHasGeometry)
+        startFlags |= START_SUBPATH;
+
+    if(!findEllipses(rh, rv, rot, Vector2(), p1r, segment, c0, c1, u0, u1, unitCircleToEllipse, cw))
+    {   //ellipses don't exist, add line instead
+        Vector2 t = normalize(p1r);
+        RI_ASSERT(!isZero(t));
+        addEdge(p0, p1, t, t, startFlags, END_SEGMENT); //throws bad_alloc
+        return true;
+    }
+
+    //compute end point tangents
+    Vector2 incomingTangent = perpendicular(u0, cw);
+    incomingTangent = affineTangentTransform(unitCircleToEllipse, incomingTangent);
+    incomingTangent = normalize(incomingTangent);
+    Vector2 outgoingTangent = perpendicular(u1, cw);
+    outgoingTangent = affineTangentTransform(unitCircleToEllipse, outgoingTangent);
+    outgoingTangent = normalize(outgoingTangent);
+    RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
+
+    const int segments = RI_NUM_TESSELLATED_SEGMENTS_ARC;
+    Vector2 pp = p0;
+    Vector2 tp = incomingTangent;
+    unsigned int prevFlags = startFlags;
+    for(int i=1;i<segments;i++)
+    {
+        RIfloat t = (RIfloat)i / (RIfloat)segments;
+        Vector2 pn = circularLerp(u0, u1, t, cw);
+        Vector2 tn = perpendicular(pn, cw);
+        tn = affineTangentTransform(unitCircleToEllipse, tn);
+        pn = affineTransform(unitCircleToEllipse, pn) + p0;
+        tn = normalize(tn);
+        if(isZero(tn))
+            tn = tp;
+
+        addEdge(pp, pn, tp, tn, prevFlags, 0);  //throws bad_alloc
+
+        pp = pn;
+        tp = tn;
+        prevFlags = 0;
+    }
+    addEdge(pp, p1, tp, outgoingTangent, prevFlags, END_SEGMENT);   //throws bad_alloc
+    return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief    Tessellates a path.
+* \param    
+* \return   
+* \note     tessellation output format: A list of vertices describing the
+*           path tessellated into line segments and relevant aspects of the
+*           input data. Each path segment has a start vertex, a number of
+*           internal vertices (possibly zero), and an end vertex. The start
+*           and end of segments and subpaths have been flagged, as well as
+*           implicit and explicit close subpath segments.
+*//*-------------------------------------------------------------------*/
+
+void Path::tessellate(const Matrix3x3& pathToSurface, float strokeWidth)
+{
+    m_vertices.clear();
+
+    m_userMinx = RI_FLOAT_MAX;
+    m_userMiny = RI_FLOAT_MAX;
+    m_userMaxx = -RI_FLOAT_MAX;
+    m_userMaxy = -RI_FLOAT_MAX;
+    
+    try
+    {
+        m_segmentToVertex.resize(m_segments.size());
+
+        int coordIndex = 0;
+        Vector2 s(0,0);     //the beginning of the current subpath
+        Vector2 o(0,0);     //the last point of the previous segment
+        Vector2 p(0,0);     //the last internal control point of the previous segment, if the segment was a (regular or smooth) quadratic or cubic Bezier, or else the last point of the previous segment
+
+        //tessellate the path segments
+        coordIndex = 0;
+        s.set(0,0);
+        o.set(0,0);
+        p.set(0,0);
+        bool subpathHasGeometry = false;
+        VGPathSegment prevSegment = VG_MOVE_TO;
+        for(int i=0;i<m_segments.size();i++)
+        {
+            VGPathSegment segment = getPathSegment(m_segments[i]);
+            VGPathAbsRel absRel = getPathAbsRel(m_segments[i]);
+            int coords = segmentToNumCoordinates(segment);
+            m_segmentToVertex[i].start = m_vertices.size();
+
+            switch(segment)
+            {
+            case VG_CLOSE_PATH:
+            {
+                RI_ASSERT(coords == 0);
+                addEndPath(pathToSurface, o, s, subpathHasGeometry, CLOSE_SUBPATH);
+                p = s;
+                o = s;
+                subpathHasGeometry = false;
+                break;
+            }
+
+            case VG_MOVE_TO:
+            {
+                RI_ASSERT(coords == 2);
+                Vector2 c(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+                if(absRel == VG_RELATIVE)
+                    c += o;
+                if(prevSegment != VG_MOVE_TO && prevSegment != VG_CLOSE_PATH)
+                    addEndPath(pathToSurface, o, s, subpathHasGeometry, IMPLICIT_CLOSE_SUBPATH);
+                s = c;
+                p = c;
+                o = c;
+                subpathHasGeometry = false;
+                break;
+            }
+
+            case VG_LINE_TO:
+            {
+                RI_ASSERT(coords == 2);
+                Vector2 c(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+                if(absRel == VG_RELATIVE)
+                    c += o;
+                if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
+                    subpathHasGeometry = true;
+                p = c;
+                o = c;
+                break;
+            }
+
+            case VG_HLINE_TO:
+            {
+                RI_ASSERT(coords == 1);
+                Vector2 c(getCoordinate(coordIndex+0), o.y);
+                if(absRel == VG_RELATIVE)
+                    c.x += o.x;
+                if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
+                    subpathHasGeometry = true;
+                p = c;
+                o = c;
+                break;
+            }
+
+            case VG_VLINE_TO:
+            {
+                RI_ASSERT(coords == 1);
+                Vector2 c(o.x, getCoordinate(coordIndex+0));
+                if(absRel == VG_RELATIVE)
+                    c.y += o.y;
+                if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
+                    subpathHasGeometry = true;
+                p = c;
+                o = c;
+                break;
+            }
+
+            case VG_QUAD_TO:
+            {
+                RI_ASSERT(coords == 4);
+                Vector2 c0(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+                Vector2 c1(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
+                if(absRel == VG_RELATIVE)
+                {
+                    c0 += o;
+                    c1 += o;
+                }
+                if(addQuadTo(pathToSurface, o, c0, c1, subpathHasGeometry, strokeWidth))
+                    subpathHasGeometry = true;
+                p = c0;
+                o = c1;
+                break;
+            }
+
+            case VG_SQUAD_TO:
+            {
+                RI_ASSERT(coords == 2);
+                Vector2 c0 = 2.0f * o - p;
+                Vector2 c1(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+                if(absRel == VG_RELATIVE)
+                    c1 += o;
+                if(addQuadTo(pathToSurface, o, c0, c1, subpathHasGeometry, strokeWidth))
+                    subpathHasGeometry = true;
+                p = c0;
+                o = c1;
+                break;
+            }
+
+            case VG_CUBIC_TO:
+            {
+                RI_ASSERT(coords == 6);
+                Vector2 c0(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+                Vector2 c1(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
+                Vector2 c2(getCoordinate(coordIndex+4), getCoordinate(coordIndex+5));
+                if(absRel == VG_RELATIVE)
+                {
+                    c0 += o;
+                    c1 += o;
+                    c2 += o;
+                }
+                if(addCubicTo(pathToSurface, o, c0, c1, c2, subpathHasGeometry, strokeWidth))
+                    subpathHasGeometry = true;
+                p = c1;
+                o = c2;
+                break;
+            }
+
+            case VG_SCUBIC_TO:
+            {
+                RI_ASSERT(coords == 4);
+                Vector2 c0 = 2.0f * o - p;
+                Vector2 c1(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+                Vector2 c2(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
+                if(absRel == VG_RELATIVE)
+                {
+                    c1 += o;
+                    c2 += o;
+                }
+                if(addCubicTo(pathToSurface, o, c0, c1, c2, subpathHasGeometry, strokeWidth))
+                    subpathHasGeometry = true;
+                p = c1;
+                o = c2;
+                break;
+            }
+
+            default:
+            {
+                RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
+                          segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
+                RI_ASSERT(coords == 5);
+                RIfloat rh = getCoordinate(coordIndex+0);
+                RIfloat rv = getCoordinate(coordIndex+1);
+                RIfloat rot = getCoordinate(coordIndex+2);
+                Vector2 c(getCoordinate(coordIndex+3), getCoordinate(coordIndex+4));
+
+                Vector2 cr = c;
+                if(absRel == VG_ABSOLUTE)
+                    cr -= o;
+                else
+                    c += o;
+
+                if(addArcTo(pathToSurface, o, rh, rv, rot, c, cr, segment, subpathHasGeometry, strokeWidth))
+                    subpathHasGeometry = true;
+                p = c;
+                o = c;
+                break;
+            }
+            }
+
+            if(m_vertices.size() > m_segmentToVertex[i].start)
+            {   //segment produced vertices
+                m_segmentToVertex[i].end = m_vertices.size() - 1;
+            }
+            else
+            {   //segment didn't produce vertices (zero-length segment). Ignore it.
+                m_segmentToVertex[i].start = m_segmentToVertex[i].end = m_vertices.size()-1;
+            }
+            prevSegment = segment;
+            coordIndex += coords;
+        }
+
+        //add an implicit MOVE_TO to the end to close the last subpath.
+        //if the subpath contained only zero-length segments, this produces the necessary geometry to get it stroked
+        // and included in path bounds. The geometry won't be included in the pointAlongPath query.
+        if(prevSegment != VG_MOVE_TO && prevSegment != VG_CLOSE_PATH)
+            addEndPath(pathToSurface, o, s, subpathHasGeometry, IMPLICIT_CLOSE_SUBPATH);
+
+        //check that the flags are correct
+#ifdef RI_DEBUG
+        int prev = -1;
+        bool subpathStarted = false;
+        bool segmentStarted = false;
+        for(int i=0;i<m_vertices.size();i++)
+        {
+            Vertex& v = m_vertices[i];
+
+            if(v.flags & START_SUBPATH)
+            {
+                RI_ASSERT(!subpathStarted);
+                RI_ASSERT(v.flags & START_SEGMENT);
+                RI_ASSERT(!(v.flags & END_SUBPATH));
+                RI_ASSERT(!(v.flags & END_SEGMENT));
+                RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
+                RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
+                subpathStarted = true;
+            }
+            
+            if(v.flags & START_SEGMENT)
+            {
+                RI_ASSERT(subpathStarted || (v.flags & CLOSE_SUBPATH) || (v.flags & IMPLICIT_CLOSE_SUBPATH));
+                RI_ASSERT(!segmentStarted);
+                RI_ASSERT(!(v.flags & END_SUBPATH));
+                RI_ASSERT(!(v.flags & END_SEGMENT));
+                segmentStarted = true;
+            }
+            
+            if( v.flags & CLOSE_SUBPATH )
+            {
+                RI_ASSERT(segmentStarted);
+                RI_ASSERT(!subpathStarted);
+                RI_ASSERT((v.flags & START_SEGMENT) || (v.flags & END_SEGMENT));
+                RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
+                RI_ASSERT(!(v.flags & START_SUBPATH));
+                RI_ASSERT(!(v.flags & END_SUBPATH));
+            }
+            if( v.flags & IMPLICIT_CLOSE_SUBPATH )
+            {
+                RI_ASSERT(segmentStarted);
+                RI_ASSERT(!subpathStarted);
+                RI_ASSERT((v.flags & START_SEGMENT) || (v.flags & END_SEGMENT));
+                RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
+                RI_ASSERT(!(v.flags & START_SUBPATH));
+                RI_ASSERT(!(v.flags & END_SUBPATH));
+            }
+            
+            if( prev >= 0 )
+            {
+                RI_ASSERT(segmentStarted);
+                RI_ASSERT(subpathStarted || ((m_vertices[prev].flags & CLOSE_SUBPATH) && (m_vertices[i].flags & CLOSE_SUBPATH)) ||
+                          ((m_vertices[prev].flags & IMPLICIT_CLOSE_SUBPATH) && (m_vertices[i].flags & IMPLICIT_CLOSE_SUBPATH)));
+            }
+
+            prev = i;
+            if(v.flags & END_SEGMENT)
+            {
+                RI_ASSERT(subpathStarted || (v.flags & CLOSE_SUBPATH) || (v.flags & IMPLICIT_CLOSE_SUBPATH));
+                RI_ASSERT(segmentStarted);
+                RI_ASSERT(!(v.flags & START_SUBPATH));
+                RI_ASSERT(!(v.flags & START_SEGMENT));
+                segmentStarted = false;
+                prev = -1;
+            }
+            
+            if(v.flags & END_SUBPATH)
+            {
+                RI_ASSERT(subpathStarted);
+                RI_ASSERT(v.flags & END_SEGMENT);
+                RI_ASSERT(!(v.flags & START_SUBPATH));
+                RI_ASSERT(!(v.flags & START_SEGMENT));
+                RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
+                RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
+                subpathStarted = false;
+            }
+        }
+#endif  //RI_DEBUG
+    }
+    catch(std::bad_alloc)
+    {
+        m_vertices.clear();
+        throw;
+    }
+}
+
+//==============================================================================================
+
+}       //namespace OpenVGRI
+
+//==============================================================================================