Move GLES20 source into standard locations
Move Khronos headers into their respective components, to be exported by each.
Remove hostthreadadapter as nothing outside of the vghwapiwrapper, which now contains the code, needs it
/* Copyright (c) 2010 Nokia Corporation and/or its subsidiary(-ies).
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and /or associated documentation files
* (the "Materials "), to deal in the Materials without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Materials,
* and to permit persons to whom the Materials are furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Materials.
*
* THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR
* THE USE OR OTHER DEALINGS IN THE MATERIALS.
*/
#include "sfDynamicBlitter.h"
#ifndef __SFBLITTER_H
# include "sfBlitter.h"
#endif
#ifndef __SFMASK_H
# include "sfMask.h"
#endif
namespace OpenVGRI {
RI_INLINE static bool maskOperationRequiresLoad(VGMaskOperation op)
{
switch(op)
{
case VG_CLEAR_MASK:
case VG_FILL_MASK:
case VG_SET_MASK:
return false;
default:
RI_ASSERT(op == VG_UNION_MASK || op == VG_INTERSECT_MASK || op == VG_SUBTRACT_MASK);
return true;
}
}
/**
* \brief Blit rectangular areas between similar or different color format buffers.
* \note Implementation is structured so that the per-pixel branches are minimized
* even if dynamic compilation is not in use.
* \todo For some reason the completely generic integer conversion does not optimize
* fully run-time. Check what causes this!
*/
void executeBlitter(const DynamicBlitter::BlitSignatureState& state, const DynamicBlitter::BlitUniforms& uniforms)
{
const void* srcPtr = Image::calculateAddress(
uniforms.src, state.srcDesc.bitsPerPixel, uniforms.srcX, uniforms.srcY, uniforms.srcStride);
void* dstPtr = Image::calculateAddress(
uniforms.dst, state.dstDesc.bitsPerPixel, uniforms.dstX, uniforms.dstY, uniforms.dstStride);
// The following flag is useful for debugging. Enabling it will hurt performance.
//#define ALWAYS_FORCE_FULL_CONVERSION
// Currently the data must be byte-aligned for memcpy optimizations:
const int minBpp = RI_INT_MIN(state.srcDesc.bitsPerPixel, state.dstDesc.bitsPerPixel);
const bool byteCopy = minBpp >= 8 ? true : false;
const bool forceFullConversion = state.isMaskOperation || state.unsafeInput || !byteCopy;
#if !defined(ALWAYS_FORCE_FULL_CONVERSION)
if (state.srcDesc.isZeroConversion(state.dstDesc) && !forceFullConversion)
{
const int fullCopyStride = Image::descriptorToStride(state.srcDesc, uniforms.width);
if ((uniforms.dstStride != uniforms.srcStride) || (fullCopyStride != uniforms.srcStride))
{
// memcpy individual scanlines.
const size_t scanLength = (size_t)RI_INT_ABS(Image::descriptorToStride(state.srcDesc, uniforms.width));
for (RIuint32 i = 0; i < uniforms.height; i++)
{
memcpy(dstPtr, srcPtr, scanLength);
dstPtr = (void*)((RIuint8*)dstPtr + uniforms.dstStride);
srcPtr = (void*)((RIuint8*)srcPtr + uniforms.srcStride);
}
} else
{
// memcpy the whole area
memcpy(dstPtr, srcPtr, uniforms.srcStride * uniforms.height);
}
} else if (state.srcDesc.isShiftConversion(state.dstDesc) && !forceFullConversion)
{
// \todo Separate to function? Replace with pointer read/write & advance.
if (state.srcDesc.isShiftConversionToLower(state.dstDesc))
{
// Components can be immediately shifted down to lower bit-depth.
for (RIuint32 j = 0; j < uniforms.height; j++)
{
RIuint8* srcStart = (RIuint8*)srcPtr;
RIuint8* dstStart = (RIuint8*)dstPtr;
RIuint32 srcX = uniforms.srcX;
RIuint32 dstX = uniforms.dstX;
for (RIuint32 i = 0; i < uniforms.width; i++)
{
RIuint32 c = Image::readPackedPixelFromAddress(srcPtr, state.srcDesc.bitsPerPixel, srcX); // \todo srcX!
RIuint32 dc = Color::Descriptor::crossConvertToLower(c, state.srcDesc, state.dstDesc);
Image::writePackedPixelToAddress(dstPtr, state.dstDesc.bitsPerPixel, dstX, dc);
srcPtr = Image::incrementPointer(srcPtr, state.srcDesc.bitsPerPixel, srcX);
dstPtr = (void*)Image::incrementPointer(dstPtr, state.dstDesc.bitsPerPixel, dstX);
srcX++;
dstX++;
}
srcPtr = (void*)(srcStart + uniforms.srcStride);
dstPtr = (void*)(dstStart + uniforms.dstStride);
}
}
else
{
// Color components require expansion before shifting to destination color-format */
for (RIuint32 j = 0; j < uniforms.height; j++)
{
RIuint8* srcStart = (RIuint8*)srcPtr;
RIuint8* dstStart = (RIuint8*)dstPtr;
RIuint32 srcX = uniforms.srcX;
RIuint32 dstX = uniforms.dstX;
for (RIuint32 i = 0; i < uniforms.width; i++)
{
RIuint32 c = Image::readPackedPixelFromAddress(srcPtr, state.srcDesc.bitsPerPixel, srcX);
IntegerColor ic = IntegerColor(c, state.srcDesc);
ic.expandColor(state.srcDesc);
ic.truncateColor(state.dstDesc);
RIuint32 dc = ic.getPackedColor(state.dstDesc);
Image::writePackedPixelToAddress(dstPtr, state.dstDesc.bitsPerPixel, dstX, dc);
srcPtr = Image::incrementPointer(srcPtr, state.srcDesc.bitsPerPixel, srcX);
dstPtr = (void*)Image::incrementPointer(dstPtr, state.dstDesc.bitsPerPixel, dstX);
srcX++;
dstX++;
}
srcPtr = (void*)(srcStart + uniforms.srcStride);
dstPtr = (void*)(dstStart + uniforms.dstStride);
}
}
} else
#endif
{
/* This block should handle the rest (and all) of the color-conversion cases. */
for (RIuint32 j = 0; j < uniforms.height; j++)
{
RIuint8* srcStart = (RIuint8*)srcPtr;
RIuint8* dstStart = (RIuint8*)dstPtr;
RIuint32 srcX = uniforms.srcX;
RIuint32 dstX = uniforms.dstX;
for (RIuint32 i = 0; i < uniforms.width; i++)
{
RIuint32 c = Image::readPackedPixelFromAddress(srcPtr, state.srcDesc.bitsPerPixel, srcX);
IntegerColor ic;
RIuint32 dc;
if (!state.isMaskOperation)
{
ic = IntegerColor(c, state.srcDesc);
if (state.unsafeInput)
ic.clampToAlpha();
ic.convertToFrom(state.dstDesc, state.srcDesc, false);
dc = ic.getPackedColor(state.dstDesc);
}
else
{
// Apply the given mask operation between two surfaces.
IntegerColor id;
if (maskOperationRequiresLoad(state.maskOperation))
{
ic.fromPackedMask(c, state.srcDesc);
ic.expandMask(state.srcDesc);
IntegerColor id;
RIuint32 d = Image::readPackedPixelFromAddress(dstPtr, state.dstDesc.bitsPerPixel, dstX);
id.fromPackedMask(d, state.dstDesc);
id.expandColor(state.dstDesc);
RIuint32 coverage = ic.a + (ic.a >> 7);
ic = intMaskOperation(coverage, id, state.maskOperation);
}
else
{
// Other ops handled with memset, not blitter
RI_ASSERT(state.maskOperation == VG_SET_MASK);
ic.fromPackedMask(c, state.srcDesc);
//ic.expandMask(state.srcDesc);
ic.convertToFrom(state.dstDesc, state.srcDesc, true);
}
dc = ic.getPackedMaskColor(state.dstDesc);
}
Image::writePackedPixelToAddress(dstPtr, state.dstDesc.bitsPerPixel, dstX, dc);
srcPtr = Image::incrementPointer(srcPtr, state.srcDesc.bitsPerPixel, srcX);
dstPtr = (void*)Image::incrementPointer(dstPtr, state.dstDesc.bitsPerPixel, dstX);
srcX++;
dstX++;
}
srcPtr = (void*)(srcStart + uniforms.srcStride);
dstPtr = (void*)(dstStart + uniforms.dstStride);
}
}
}
}