navienginebsp/ne1_tb/specific/variant.cpp
changeset 0 5de814552237
equal deleted inserted replaced
-1:000000000000 0:5de814552237
       
     1 /*
       
     2 * Copyright (c) 2008-2010 Nokia Corporation and/or its subsidiary(-ies).
       
     3 * All rights reserved.
       
     4 * This component and the accompanying materials are made available
       
     5 * under the terms of "Eclipse Public License v1.0"
       
     6 * which accompanies this distribution, and is available
       
     7 * at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     8 *
       
     9 * Initial Contributors:
       
    10 * Nokia Corporation - initial contribution.
       
    11 *
       
    12 * Contributors:
       
    13 *
       
    14 * Description:  
       
    15 * ne1_tb\specific\variant.cpp
       
    16 *
       
    17 */
       
    18 
       
    19 
       
    20 
       
    21 #include "variant.h"
       
    22 #include "mconf.h"
       
    23 #include <videodriver.h>
       
    24 #include <xyin.h>
       
    25 #include "ne1_tb_power.h"
       
    26 #include <naviengine_lcd.h>
       
    27 #include <d32ethernet.h>
       
    28 
       
    29 //These constants define Custom Restart Reasons in SuperPage::iHwStartupReason
       
    30 const TUint KHtCustomRestartMax	  = 0xff;
       
    31 const TUint KHtCustomRestartShift = 8;
       
    32 const TUint KHtCustomRestartMask  = KHtCustomRestartMax << KHtCustomRestartShift; 
       
    33 
       
    34 const TUint KHtRestartStartupModesMax = 0xf; // Variable, platform dependant 
       
    35 //const TUint KHtRestartStartupModesShift = 16; // Variable, platform dependant 
       
    36 //const TUint KHtRestartStartupModesMask = KHtRestartStartupModesMax << KHtRestartStartupModesShift;
       
    37 
       
    38 void NE1_TBVariantFault(TInt aLine)
       
    39 	{
       
    40 	Kern::Fault("NE1_TBVariant",aLine);
       
    41 	}
       
    42 
       
    43 #define V_FAULT()	NE1_TBVariantFault(__LINE__)
       
    44 
       
    45 // Debug output
       
    46 #define XON								17
       
    47 #define XOFF							19
       
    48 #define DEBUG_XON_XOFF					0		// Non-zero if we want XON-XOFF handshaking
       
    49 
       
    50 GLDEF_D NE1_TBVariant TheVariant;
       
    51 TUint32 Variant::iBaseAddress=0;
       
    52 
       
    53 TUint32 NE1_TBVariant::HandlerData[3];
       
    54 SInterruptHandler NE1_TBVariant::Handlers[ENumXInts];
       
    55 
       
    56 extern void XIntDispatch(TAny*);
       
    57 
       
    58 #ifdef __SMP__
       
    59 
       
    60 extern void PowerUpCpu(TInt aCpu, SPerCpuUncached* aU);
       
    61 extern void PowerDownCpu(TInt aCpu, SPerCpuUncached* aU);
       
    62 
       
    63 extern "C" {
       
    64 SVariantInterfaceBlock VIB;
       
    65 
       
    66 SVariantInterfaceBlock* InitVIB()
       
    67 	{
       
    68 	SVariantInterfaceBlock* v = &VIB;
       
    69 	v->iVer = 0;
       
    70 	v->iSize = sizeof(VIB);
       
    71 	v->iMaxCpuClock = UI64LIT(400000000);	// 400MHz
       
    72 	v->iMaxTimerClock = 200000000u;			// 200MHz = CPU CLK / 2
       
    73 	v->iScuAddr = KHwBaseSCU;
       
    74 	v->iGicDistAddr = KHwBaseGlobalIntDist;
       
    75 	v->iGicCpuIfcAddr = KHwBaseIntIf;
       
    76 	v->iLocalTimerAddr = KHwBaseSCU + 0x600u;
       
    77 	v->iCpuPowerUpFn = &PowerUpCpu;
       
    78 	v->iCpuPowerDownFn = &PowerDownCpu;
       
    79 	return v;
       
    80 	}
       
    81 }
       
    82 
       
    83 #endif
       
    84 
       
    85 extern "C" EXPORT_C TAny* VariantInitialise(TInt a)
       
    86 	{
       
    87 	switch(a)
       
    88 		{
       
    89 		case 0:	return &TheVariant;
       
    90 #ifdef __SMP__
       
    91 		case 1: return InitVIB();
       
    92 #endif
       
    93 		default: return 0;
       
    94 		}
       
    95 	}
       
    96 
       
    97 NE1_TBVariant::NE1_TBVariant()
       
    98 	{
       
    99 #ifdef __SMP__
       
   100 	__VARIANT_SUPPORTS_NANOKERNEL_INTERFACE_BLOCK__();
       
   101 #endif
       
   102 	iDebugInitialised=EFalse;
       
   103 	}
       
   104 
       
   105 //
       
   106 // TO DO: (optional)
       
   107 //
       
   108 // Specify the RAM zone configuration.
       
   109 //
       
   110 // The lowest addressed zone must have the highest preference as the bootstrap 
       
   111 // will always allocate from the lowest address up.  Once the kernel has initialised
       
   112 // then the zone preferences will decide from which RAM zone memory is allocated.
       
   113 //
       
   114 // 	const TUint KVariantRamZoneCount = ?;
       
   115 //	static const SRamZone KRamZoneConfig[KVariantRamZoneCount+1] = 
       
   116 //				 			iBase      iSize   		iID	iPref	iFlags
       
   117 //				{
       
   118 //				__SRAM_ZONE(0x????????, 0x???????, 	?,	?, 		?), 
       
   119 //				...
       
   120 //				__SRAM_ZONE(0x????????, 0x???????, 	?, 	?, 		?),
       
   121 //				__SRAM_ZONE_END, // end of zone list
       
   122 //				};
       
   123 //
       
   124 
       
   125 TInt NE1_TBVariant::RamZoneCallback(TRamZoneOp aOp, TAny* aId, const TAny* aMasks)
       
   126 	{
       
   127 	//
       
   128 	// TO DO: (optional)
       
   129 	//
       
   130 	// Handle RAM zone operations requested by the kernel.
       
   131 	//
       
   132 	return TheVariant.DoRamZoneCallback(aOp, (TUint)aId, (const TUint*)aMasks);
       
   133 	}
       
   134 
       
   135 
       
   136 TInt NE1_TBVariant::DoRamZoneCallback(TRamZoneOp aOp, TUint aId, const TUint* aMasks)
       
   137 	{
       
   138 	//
       
   139 	// TO DO: (optional)
       
   140 	//
       
   141 	// Handle RAM zone operations requested by the kernel.
       
   142 	//
       
   143 	// Three types of operation need to be supported:
       
   144 	//	ERamZoneOp_Init:		Update power state of the RAM zones after the
       
   145 	//							kernel has initialised.
       
   146 	//	ERamZoneOp_PowerUp:		A RAM zone changing from used to empty.
       
   147 	//	ERamZoneOp_PowerDown:	A RAM zone changing from empty to used.
       
   148 	//
       
   149  
       
   150 	switch (aOp)
       
   151 		{
       
   152 		case ERamZoneOp_Init:	
       
   153 			break;
       
   154 		case ERamZoneOp_PowerUp:
       
   155 			break;
       
   156 		case ERamZoneOp_PowerDown:
       
   157 			break;
       
   158 		default:
       
   159 			return KErrNotSupported;
       
   160 		}
       
   161 	return KErrNone;
       
   162 	}
       
   163 
       
   164 
       
   165 void NE1_TBVariant::Init1()
       
   166 	{
       
   167 	__KTRACE_OPT(KBOOT,Kern::Printf("NE1_TBVariant::Init1()"));
       
   168 
       
   169 	//
       
   170 	// TO DO: (mandatory)
       
   171 	//
       
   172 	// Configure Memory controller and Memrory Bus parameters (in addition to what was done in the Bootstrap)
       
   173 	//
       
   174 	__KTRACE_OPT(KBOOT,Kern::Printf("Memory Configuration done"));
       
   175 
       
   176 	//
       
   177 	// TO DO: (optional)
       
   178 	//
       
   179 	// Inform the kernel of the RAM zone configuration via Epoc::SetRamZoneConfig().
       
   180 	// For devices that wish to reduce power consumption of the RAM IC(s) the callback functions
       
   181 	// RamZoneCallback() and DoRamZoneCallback() will need to be implemented and passed 
       
   182 	// to Epoc::SetRamZoneConfig() as the parameter aCallback.
       
   183 	// The kernel will assume that all RAM ICs are fully intialised and ready for use from boot.
       
   184 	//
       
   185 
       
   186 	//
       
   187 	// TO DO: (optional)
       
   188 	//
       
   189 	// Initialise other critical hardware functions such as I/O interfaces, etc, not done by Bootstrap
       
   190 	//
       
   191 	// if CPU is Sleep-capable, and requires some preparation to be put in that state (code provided in Bootstrap),
       
   192 	// the address of the idle code is writen at this location by the Bootstrap
       
   193 	// e.g.
       
   194 	// iIdleFunction=*(TLinAddr*)((TUint8*)&Kern::SuperPage()+0x1000);
       
   195 	//
       
   196 	NaviEngineAssp::Init1();
       
   197 
       
   198 	}
       
   199 
       
   200 #ifdef __SMP__
       
   201 void NE1_TBVariant::Init2AP()
       
   202 	{
       
   203 	__KTRACE_OPT(KBOOT,Kern::Printf("NE1_TBVariant::Init2AP()"));
       
   204 	}
       
   205 #endif
       
   206 
       
   207 void NE1_TBVariant::Init3()
       
   208 	{
       
   209 	__KTRACE_OPT(KBOOT,Kern::Printf(">NE1_TBVariant::Init3()"));
       
   210 
       
   211 	NaviEngineAssp::Init3();
       
   212 
       
   213 	Variant::Init3();
       
   214 	//
       
   215 	// TO DO: (optional)
       
   216 	//
       
   217 	// Initialise other accessor classes, if required
       
   218 	//
       
   219 
       
   220 	InitInterrupts();
       
   221 	__KTRACE_OPT(KBOOT,Kern::Printf("<NE1_TBVariant::Init3()"));
       
   222 	}
       
   223 
       
   224 void Variant::Init3()
       
   225 //
       
   226 // Phase 3 initialisation
       
   227 //
       
   228     {
       
   229 	__KTRACE_OPT(KHARDWARE, Kern::Printf(">Variant::Init3"));
       
   230 
       
   231 	//
       
   232 	// TO DO: (optional)
       
   233 	//
       
   234 	// Initialise any Variant class data members here, map in Variant and external hardware addresses
       
   235 	//
       
   236 	DPlatChunkHw* pC=NULL;
       
   237 	TInt r=DPlatChunkHw::New(pC,KHwVariantPhysBase,0x2000,EMapAttrSupRw|EMapAttrFullyBlocking);
       
   238 	__KTRACE_OPT(KHARDWARE, Kern::Printf("r=%d", r));
       
   239     __ASSERT_ALWAYS(r==KErrNone,V_FAULT());
       
   240 	iBaseAddress=pC->LinearAddress();
       
   241 	__KTRACE_OPT(KHARDWARE, Kern::Printf("iBaseAddress=%08x", iBaseAddress));
       
   242 	__KTRACE_OPT(KHARDWARE, Kern::Printf("<Variant::Init3"));
       
   243 	}
       
   244 
       
   245 EXPORT_C TUint Variant::BaseLinAddress()
       
   246 	{
       
   247 	return((TUint)iBaseAddress);
       
   248 	}
       
   249 
       
   250 EXPORT_C void Variant::MarkDebugPortOff()
       
   251 	{
       
   252 	TheVariant.iDebugInitialised=EFalse;
       
   253 	}
       
   254 
       
   255 void NE1_TBVariant::Idle()
       
   256 //
       
   257 // The NULL thread idle loop
       
   258 //
       
   259 	{
       
   260 	// Idle the CPU, suppressing the system tick if possible
       
   261 
       
   262 	//
       
   263 	// TO DO: (optional)
       
   264 	//
       
   265 	// Idle Tick supression: 
       
   266 	// 1- obtain the number of idle Ticks before the next NTimer expiration (NTimerQ::IdleTime())
       
   267 	// 2- if the number of Ticks is large enough (criteria to be defined) reset the Hardware Timer
       
   268 	//    to only interrupt again when the corresponding time has expired.
       
   269 	//   2.1- the calculation of the new value to program the Hardware Timer with should take in 
       
   270 	//		  consideration the rounding value (NTimerQ::iRounding)
       
   271 	//  3- call the low level Sleep function (e'g. Bootstrap: address in iIdleFunction)
       
   272 	//  4- on coming back from Idle need to read the Hardware Timer and determine if woken up due to 
       
   273 	//     timer expiration (system time for new match<=current system time<system time for new match-tick period)
       
   274 	//     or some other Interrupt.
       
   275 	//	 4.1- if timer expiration, adjust System Time by adding the number of Ticks suppressed to NTimerQ::iMsCount
       
   276 	//   4.2- if other interrupt, calculate the number of Ticks skipped until woken up and adjust the System Time as
       
   277 	//		  above
       
   278 	//
       
   279 	// Support for different Sleep Modes:
       
   280 	// Often the Sleep mode a platform can go to depends on how many resources such as clocks/voltages can be 
       
   281 	// turned Off or lowered to a suitable level. If different Sleep modes are supported this code may need 
       
   282 	// to be able to find out what power resources are On or Off or used to what level. This could be achieved by
       
   283 	// enquiring the Resource Manager (see \ne1_tb\inc\ne1_tb_power.h).
       
   284 	// Then a decision could be made to what Sleep level we go to.
       
   285 	//
       
   286 	// Example calls:
       
   287 	// Obtain the number of Idle Ticks before the next NTimer expiration
       
   288 	// TInt aTicksLeft = NTimerQ::IdleTime();
       
   289 	// ... 
       
   290 	// Find out the deepest Sleep mode available for current resource usage and sleeping time
       
   291 	// NE1_TBResourceManager* aManager = TNE1_TBPowerController::ResourceManager();
       
   292 	// NE1_TBResourceManager::TSleepModes aMode = aManager -> MapSleepMode(aTicksLeft*MsTickPeriod());
       
   293 	// ...
       
   294 	// Find out the state of some particular resources
       
   295 	// TBool aResourceState = aManager -> GetResourceState(NE1_TBResourceManager::AsynchBinResourceUsedByZOnly);
       
   296 	// TUint aResourceLevel = aManager -> GetResourceLevel(NE1_TBResourceManager::SynchMlResourceUsedByXOnly);
       
   297 	// ...
       
   298 
       
   299 	extern void __cpu_idle();
       
   300 
       
   301 	__cpu_idle();
       
   302 	}
       
   303 
       
   304 TInt NE1_TBVariant::VariantHal(TInt aFunction, TAny* a1, TAny* a2)
       
   305 	{
       
   306 	TInt r=KErrNone;
       
   307 	switch(aFunction)
       
   308 		{
       
   309 		case EVariantHalCurrentNumberOfScreens:
       
   310 			{
       
   311 			TInt numScreens = 1; // Number of screens is fixed to 1 on the NaviEngine
       
   312 			kumemput(a1,&numScreens,sizeof(numScreens));
       
   313 			break;
       
   314 			}
       
   315 
       
   316 		case EVariantHalVariantInfo:
       
   317 			{
       
   318 			TVariantInfoV01Buf infoBuf;
       
   319 			TVariantInfoV01& info=infoBuf();
       
   320 			info.iRomVersion=Epoc::RomHeader().iVersion;
       
   321 			info.iMachineUniqueId.iData[0] = 0x4956414E;
       
   322 			info.iMachineUniqueId.iData[1] = 0x474E4520;
       
   323 			info.iLedCapabilities = 0;
       
   324 			info.iProcessorClockInKHz = 400000;
       
   325 
       
   326 			// ratio of 'speed' to 'speed' of a Psion Series 5 ...
       
   327 			// ... no I'm not joking!
       
   328 			info.iSpeedFactor = 20;
       
   329 
       
   330 			Kern::InfoCopy(*(TDes8*)a1,infoBuf);
       
   331 			break;
       
   332 			}
       
   333 		case EVariantHalDebugPortSet:
       
   334 			{
       
   335 			//
       
   336 			// TO DO: (mandatory)
       
   337 			//
       
   338 			// Write the iDebugPort field of the SuperPage, as in the following EXAMPLE ONLY:
       
   339 			//
       
   340 			TUint32 thePort = (TUint32)a1;
       
   341 			switch(thePort)
       
   342 				{
       
   343 				case 0:			// port 0 at 115200bps
       
   344 				case 0x100:		// port 0 at 230400bps
       
   345 				case 1:			// port 1 at 115200bps
       
   346 				case 0x101:		// port 1 at 230400bps
       
   347 				case 2:			// port 2 at 115200bps
       
   348 				case 3:			// ??same as 0??
       
   349 					TheVariant.iDebugInitialised=EFalse;
       
   350 				case (TUint32)KNullDebugPort:
       
   351 					Kern::SuperPage().iDebugPort = thePort;
       
   352 					break;
       
   353 				default:
       
   354 					r=KErrNotSupported;
       
   355 				}
       
   356 			break;
       
   357 			}
       
   358 		case EVariantHalDebugPortGet:
       
   359 			{
       
   360 			//
       
   361 			// TO DO: (mandatory)
       
   362 			//
       
   363 			// Obtain the Linear address of the Uart used for outputting Debug strings as in the following EXAMPLE ONLY:
       
   364 			//
       
   365 
       
   366 			TUint32 thePort = TNaviEngine::DebugPortAddr();
       
   367 			kumemput32(a1, &thePort, sizeof(TUint32));
       
   368 			break;
       
   369 			}
       
   370 		case EVariantHalSwitches:
       
   371 			{
       
   372 			//
       
   373 			// TO DO: (optional)
       
   374 			//
       
   375 			// Read the state of any switches, as in the following EXAMPLE ONLY:
       
   376 			//
       
   377 			TUint32 x = Variant::Switches();
       
   378 			kumemput32(a1, &x, sizeof(x));
       
   379 			break;
       
   380 			}
       
   381 		case EVariantHalLedMaskSet:
       
   382 			{
       
   383 			//
       
   384 			// TO DO: (optional)
       
   385 			//
       
   386 			// Set the state of any on-board LEDs, e.g:
       
   387 			// TUint32 aLedMask=(TUint32)a1;
       
   388 			// Variant::ModifyLedState(~aLedMask,aLedMask);
       
   389 			//
       
   390 			break;
       
   391 			}
       
   392 		case EVariantHalLedMaskGet:
       
   393 			{
       
   394 			//
       
   395 			// TO DO: (optional)
       
   396 			//
       
   397 			// Read the state of any on-board LEDs, e.g:
       
   398 			// TUint32 x = Variant::LedState();
       
   399 			// kumemput32(a1, &x, sizeof(x));
       
   400 			//
       
   401 			break;
       
   402 			}
       
   403 
       
   404 		case EVariantHalCustomRestartReason:
       
   405 			{
       
   406 			//Restart reason is stored in super page
       
   407 			TInt x = (Kern::SuperPage().iHwStartupReason & KHtCustomRestartMask) >> KHtCustomRestartShift ;
       
   408 			kumemput32(a1, &x, sizeof(TInt));
       
   409 			break;
       
   410 			}
       
   411 
       
   412 		case EVariantHalCustomRestart:
       
   413 			{
       
   414 			if(!Kern::CurrentThreadHasCapability(ECapabilityPowerMgmt,__PLATSEC_DIAGNOSTIC_STRING("Checked by Hal function EVariantHalCustomRestart")))
       
   415 				return KErrPermissionDenied;
       
   416 			if ((TUint)a1 > KHtCustomRestartMax)
       
   417 				return KErrArgument;
       
   418 			Kern::Restart((TInt)a1 << KHtCustomRestartShift);
       
   419 			}
       
   420 			break;
       
   421 
       
   422 		case EVariantHalCaseState:
       
   423 			{
       
   424 			//
       
   425 			// TO DO: (optional)
       
   426 			//
       
   427 			// Read the state of the case, e.g:
       
   428 			// TUint32 x = Variant::CaseState();
       
   429 			// kumemput32(a1, &x, sizeof(x));
       
   430 			//
       
   431 			break;
       
   432 			}
       
   433 
       
   434 		case EVariantHalPersistStartupMode:
       
   435 			{
       
   436 			if (!Kern::CurrentThreadHasCapability(ECapabilityWriteDeviceData,__PLATSEC_DIAGNOSTIC_STRING("Checked by Hal function EDisplayHalSetBacklightOn")))
       
   437 				return KErrPermissionDenied;
       
   438 
       
   439 			if ((TUint)a1 > KHtRestartStartupModesMax ) // Restart startup mode max value
       
   440 				return KErrArgument;
       
   441 			//
       
   442 			// TO DO: (optional)
       
   443 			//
       
   444 			// Store the restart reason locally,
       
   445 			// which will eventually be picked up by
       
   446 			// the power controller, e.g:
       
   447 			// iCustomRestartReason = (TUint)a1;
       
   448 			break;
       
   449 			}
       
   450 
       
   451 
       
   452 		case EVariantHalGetPersistedStartupMode:
       
   453 			{
       
   454 			//
       
   455 			// TO DO: (optional)
       
   456 			//
       
   457 			// Read the restart startup mode, e.g:
       
   458 			// TInt startup = (Kern::SuperPage().iHwStartupReason & KHtRestartStartupModesMask) >> KHtRestartStartupModesShift;
       
   459 			// kumemput32(a1, &startup, sizeof(TInt));
       
   460 			break; 			
       
   461 			}
       
   462 
       
   463 		case EVariantHalGetMaximumCustomRestartReasons:
       
   464 			{
       
   465 			//
       
   466 			// TO DO: (optional)
       
   467 			//
       
   468 			// Read the maximum custom restart reason, e.g:
       
   469 			// kumemput32(a1, &KHtCustomRestartMax, sizeof(TUint));
       
   470 			break;
       
   471 			}
       
   472 
       
   473 
       
   474 		case EVariantHalGetMaximumRestartStartupModes:
       
   475 			{
       
   476 			//
       
   477 			// TO DO: (optional)
       
   478 			//
       
   479 			// Read the maximum restart startup mode, e.g:
       
   480 			// kumemput32(a1, &KHtRestartStartupModesMax, sizeof(TUint));
       
   481 			break;
       
   482 			}
       
   483 		
       
   484 		case EVariantHalSerialNumber:
       
   485 			{
       
   486 			TInt serialNumber = NE1_TBVariant::GetSerialNumber();
       
   487 			kumemput(a1,&serialNumber,sizeof(serialNumber));
       
   488 			break;
       
   489 			}
       
   490 			
       
   491 		case EVariantHalProfilingDefaultInterruptBase:
       
   492 			{
       
   493 			TInt interruptNumber = KIntCpuProfilingDefaultInterruptBase;
       
   494 			kumemput(a1,&interruptNumber,sizeof(interruptNumber));
       
   495 			break;
       
   496 			}
       
   497 
       
   498 		default:
       
   499 			r=KErrNotSupported;
       
   500 			break;
       
   501 		}
       
   502 	return r;
       
   503 	}
       
   504 
       
   505 TPtr8 NE1_TBVariant::MachineConfiguration()
       
   506 	{
       
   507 	return TPtr8((TUint8*)&Kern::MachineConfig(),sizeof(TActualMachineConfig),sizeof(TActualMachineConfig));
       
   508 	}
       
   509 
       
   510 TInt NE1_TBVariant::VideoRamSize()
       
   511 	{
       
   512 	//
       
   513 	// Return the size of the area of RAM used to store the Video Buffer, as in the following EXAMPLE ONLY:
       
   514 	return FRAME_BUFFER_SIZE(32, 800, 480);//32 bits per pixel
       
   515 	}
       
   516 
       
   517 EXPORT_C void Variant::PowerReset()
       
   518 	{
       
   519 	//
       
   520 	// TO DO: (optional)
       
   521 	//
       
   522 	// Reset all power supplies
       
   523 	//
       
   524 	}
       
   525 
       
   526 EXPORT_C TUint Variant::Switches()
       
   527 	{
       
   528 	//
       
   529 	// TO DO: (optional)
       
   530 	//
       
   531 	// Read the state of on-board switches
       
   532 	//
       
   533 	return 0;		// EXAMPLE ONLY
       
   534 	}
       
   535 
       
   536 /******************************************************************************
       
   537  * Interrupt handling/dispatch
       
   538  ******************************************************************************/
       
   539 TInt NE1_TBVariant::InterruptBind(TInt anId, TIsr anIsr, TAny* aPtr)
       
   540 	{
       
   541 	TUint id=anId&0x7fffffff;	// mask off second-level interrupt mask
       
   542 	if (id>=ENumXInts)
       
   543 		return KErrArgument;
       
   544 	TInt r=KErrNone;
       
   545 	SInterruptHandler& h=Handlers[id];
       
   546 	TInt irq=NKern::DisableAllInterrupts();
       
   547 	if (h.iIsr!=Spurious)
       
   548 		r=KErrInUse;
       
   549 	else
       
   550 		{
       
   551 		h.iIsr=anIsr;
       
   552 		h.iPtr=aPtr;
       
   553 		}
       
   554 	NKern::RestoreInterrupts(irq);
       
   555 	return r;
       
   556 	}
       
   557 
       
   558 TInt NE1_TBVariant::InterruptUnbind(TInt anId)
       
   559 	{
       
   560 	TUint id=anId&0x7fffffff;	// mask off second-level interrupt mask
       
   561 	if (id>=ENumXInts)
       
   562 		return KErrArgument;
       
   563 	InterruptDisable(anId);
       
   564 	InterruptClear(anId);
       
   565 	TInt r=KErrNone;
       
   566 	SInterruptHandler& h=Handlers[id];
       
   567 	TInt irq=NKern::DisableAllInterrupts();
       
   568 	if (h.iIsr!=Spurious)
       
   569 		{
       
   570 		h.iIsr=Spurious;
       
   571 		h.iPtr=(TAny*)id;
       
   572 		}
       
   573 	NKern::RestoreInterrupts(irq);
       
   574 	return r;
       
   575 	}
       
   576 
       
   577 TInt NE1_TBVariant::InterruptEnable(TInt anId)
       
   578 	{
       
   579 	TUint id=anId&0x7fffffff;	// mask off second-level interrupt mask
       
   580 	if (id>=ENumXInts)
       
   581 		return KErrArgument;
       
   582 	TInt r=KErrNone;
       
   583 	SInterruptHandler& h=Handlers[id];
       
   584 	TInt irq=NKern::DisableAllInterrupts();
       
   585 	if (h.iIsr==Spurious)
       
   586 		r=KErrNotReady;
       
   587 	else
       
   588 		{
       
   589 		//
       
   590 		// TO DO: (mandatory)
       
   591 		//
       
   592 		// Enable the hardware interrupt in the source, e.g.
       
   593 		// Variant::EnableInt(anId);
       
   594 		//
       
   595 		}
       
   596 	NKern::RestoreInterrupts(irq);
       
   597 	return r;
       
   598 	}
       
   599 
       
   600 TInt NE1_TBVariant::InterruptDisable(TInt anId)
       
   601 	{
       
   602 	TUint id=anId&0x7fffffff;	// mask off second-level interrupt mask
       
   603 	if (id>=ENumXInts)
       
   604 		return KErrArgument;
       
   605 	//
       
   606 	// TO DO: (mandatory)
       
   607 	//
       
   608 	// Disable the hardware interrupt in the source, e.g.
       
   609 	// Variant::DisableInt(anId);
       
   610 	//
       
   611 	return KErrNone;
       
   612 	}
       
   613 
       
   614 TInt NE1_TBVariant::InterruptClear(TInt anId)
       
   615 	{
       
   616 	TUint id=anId&0x7fffffff;
       
   617 	if (id>=ENumXInts)
       
   618 		return KErrArgument;
       
   619 	//
       
   620 	// TO DO: (mandatory)
       
   621 	//
       
   622 	// Clear the hardware interrupt in the source, e.g.
       
   623 	// Variant::ClearInt(anId);
       
   624 	//
       
   625 	return KErrNone;
       
   626 	}
       
   627 
       
   628 void NE1_TBVariant::InitInterrupts()
       
   629 	{
       
   630 	if (0) return;
       
   631 	// Set up the variant interrupt dispatcher
       
   632 
       
   633 	// all interrupts initially unbound
       
   634 	TInt i;
       
   635 	for (i=0; i<(TInt)ENumXInts; i++)
       
   636 		{
       
   637 		Handlers[i].iPtr=(TAny*)i;
       
   638 		Handlers[i].iIsr=Spurious;
       
   639 		}
       
   640 
       
   641 	// Set up data for 2nd level interrupt dispatcher
       
   642 	HandlerData[0]=Variant::BaseLinAddress();	// Linear Base address of 2nd level Int Controller
       
   643 	HandlerData[1]=(TUint32)&Handlers[0];		// Pointer to handler array
       
   644 	HandlerData[2]=0;							// 
       
   645 	
       
   646 	//
       
   647 	// TO DO: (mandatory) (NOT MANDATORY - DOESN'T EXIST ON NAVIENGINE)
       
   648 	//
       
   649 	// set up ASSP expansion interrupt to generate interrupts whenever a 2nd level interrupt occurrs
       
   650 	// 
       
   651 
       
   652 	// bind NE1_TBVariant ASSP expansion interrupt input to our interrupt dispatcher
       
   653 //	TInt r=Interrupt::Bind(KIntIdExpansion, XIntDispatch, HandlerData);
       
   654 //	__ASSERT_ALWAYS(r>=0,V_FAULT());
       
   655 //	Interrupt::Enable(KIntIdExpansion);				// enable expansion interrupt
       
   656 	}
       
   657 
       
   658 void NE1_TBVariant::Spurious(TAny* aId)
       
   659 	{
       
   660 	TUint32 id=((TUint32)aId)|0x80000000u;
       
   661 	Kern::Fault("SpuriousInt",id);
       
   662 	}
       
   663 
       
   664 
       
   665 // USB Client controller
       
   666 
       
   667 TBool NE1_TBVariant::UsbClientConnectorDetectable()
       
   668 	{
       
   669 	__KTRACE_OPT(KHARDWARE, Kern::Printf("NE1_TBVariant::UsbClientConnectorDetectable"));
       
   670 
       
   671 	// TO DO: The return value should reflect the actual situation.
       
   672 	return ETrue;
       
   673 	}
       
   674 
       
   675 
       
   676 TBool NE1_TBVariant::UsbClientConnectorInserted()
       
   677  	{
       
   678 	__KTRACE_OPT(KHARDWARE, Kern::Printf("NE1_TBVariant::UsbClientConnectorInserted"));
       
   679 
       
   680 	// TO DO: Query cable status here. The return value should reflect the actual current state.
       
   681 	return ETrue;
       
   682 	}
       
   683 
       
   684 
       
   685 TInt NE1_TBVariant::RegisterUsbClientConnectorCallback(TInt (*aCallback)(TAny*), TAny* aPtr)
       
   686 	{
       
   687 	__KTRACE_OPT(KHARDWARE, Kern::Printf("NE1_TBVariant::RegisterUsbClientConnectorCallback"));
       
   688 
       
   689 	iUsbClientConnectorCallback = aCallback;
       
   690 	iUsbClientConnectorCallbackArg = aPtr;
       
   691 
       
   692 	// TO DO: Register and enable the interrupt(s) for detecting USB cable insertion/removal here.
       
   693 	// (Register UsbClientConnectorIsr.)
       
   694 
       
   695 	// TO DO: The return value should reflect the actual situation.
       
   696 	return KErrNone;
       
   697 	}
       
   698 
       
   699 
       
   700 void NE1_TBVariant::UnregisterUsbClientConnectorCallback()
       
   701 	{
       
   702 	__KTRACE_OPT(KHARDWARE, Kern::Printf("NE1_TBVariant::UnregisterUsbClientConnectorCallback"));
       
   703 
       
   704 	// TO DO: Disable and unbind the interrupt(s) for detecting USB cable insertion/removal here.
       
   705 
       
   706 	iUsbClientConnectorCallback = NULL;
       
   707 	iUsbClientConnectorCallbackArg = NULL;
       
   708 	}
       
   709 
       
   710 
       
   711 TBool NE1_TBVariant::UsbSoftwareConnectable()
       
   712 	{
       
   713 	__KTRACE_OPT(KHARDWARE, Kern::Printf("NE1_TBVariant::UsbSoftwareConnectable"));
       
   714 
       
   715 	// TO DO: The return value should reflect the actual situation.
       
   716 	return ETrue;
       
   717 	}
       
   718 
       
   719 
       
   720 TInt NE1_TBVariant::UsbConnect()
       
   721 	{
       
   722 	__KTRACE_OPT(KHARDWARE, Kern::Printf("NE1_TBVariant::UsbConnect"));
       
   723 
       
   724 	// TO DO: Do here whatever is necessary for the UDC to appear on the bus (and thus to the host).
       
   725 
       
   726 	return KErrNone;
       
   727 	}
       
   728 
       
   729 
       
   730 TInt NE1_TBVariant::UsbDisconnect()
       
   731 	{
       
   732 	__KTRACE_OPT(KHARDWARE, Kern::Printf("NE1_TBVariant::UsbDisconnect"));
       
   733 
       
   734 	// TO DO: Do here whatever is necessary for the UDC to appear disconnected from the bus (and thus from the
       
   735 	// host).
       
   736 
       
   737 	return KErrNone;
       
   738 	}
       
   739 
       
   740 
       
   741 void NE1_TBVariant::UsbClientConnectorIsr(TAny *aPtr)
       
   742 //
       
   743 // Services the USB cable interrupt.
       
   744 //
       
   745 	{
       
   746 	__KTRACE_OPT(KHARDWARE, Kern::Printf("NE1_TBVariant::UsbClientConnectorIsr()"));
       
   747 
       
   748 	NE1_TBVariant* tm = static_cast<NE1_TBVariant*>(aPtr);
       
   749 
       
   750 	// TO DO: Service interrupt here: determmine cause, clear condition flag (if applicable), etc.
       
   751 
       
   752 	if (tm->UsbClientConnectorInserted())
       
   753 		{
       
   754 		__KTRACE_OPT(KHARDWARE, Kern::Printf(" > USB cable now inserted."));
       
   755 		}
       
   756 	else
       
   757 		{
       
   758 		__KTRACE_OPT(KHARDWARE, Kern::Printf(" > USB cable now removed."));
       
   759 		}
       
   760 
       
   761 	// Important: Inform the USB stack.
       
   762 	if (tm->iUsbClientConnectorCallback)
       
   763 		{
       
   764 		(*tm->iUsbClientConnectorCallback)(tm->iUsbClientConnectorCallbackArg);
       
   765 		}
       
   766 	}
       
   767 
       
   768 // Set the board serial number
       
   769 EXPORT_C TUint16 NE1_TBVariant::SetSerialNumber( TUint32 aSerialNum )
       
   770     {
       
   771     TheVariant.iSerialNumber = aSerialNum;
       
   772     return KErrNone;
       
   773     }
       
   774 
       
   775 // Get the board serial number
       
   776 EXPORT_C TUint32 NE1_TBVariant::GetSerialNumber( )
       
   777     {
       
   778     return TheVariant.iSerialNumber;
       
   779     }
       
   780 
       
   781 
       
   782 #ifdef __SMP__
       
   783 
       
   784 void PowerUpCpu(TInt aCpu, SPerCpuUncached* aU)
       
   785 	{
       
   786 	__KTRACE_OPT(KHARDWARE,Kern::Printf("PowerUpCpu %d %08x", aCpu, aU));
       
   787 	aU->iPowerOnReq = 0xF000000Fu;	// special value
       
   788 	__e32_io_completion_barrier();
       
   789 	__holler();
       
   790 	}
       
   791 
       
   792 void PowerDownCpu(TInt aCpu, SPerCpuUncached* aU)
       
   793 	{
       
   794 	__KTRACE_OPT(KHARDWARE,Kern::Printf("PowerDownCpu %d %08x", aCpu, aU));
       
   795 	}
       
   796 
       
   797 #endif
       
   798 
       
   799 //---eof