navienginebsp/ne1_tb/specific/power.cpp
changeset 0 5de814552237
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/navienginebsp/ne1_tb/specific/power.cpp	Tue Sep 28 18:00:05 2010 +0100
@@ -0,0 +1,623 @@
+/*
+* Copyright (c) 2008-2010 Nokia Corporation and/or its subsidiary(-ies).
+* All rights reserved.
+* This component and the accompanying materials are made available
+* under the terms of "Eclipse Public License v1.0"
+* which accompanies this distribution, and is available
+* at the URL "http://www.eclipse.org/legal/epl-v10.html".
+*
+* Initial Contributors:
+* Nokia Corporation - initial contribution.
+*
+* Contributors:
+*
+* Description:  
+* ne1_tb\specific\power.cpp*
+*/
+
+
+
+#include "ne1_tb_power.h"
+
+DNE1_TBPowerController* TNE1_TBPowerController::iPowerController = NULL;
+
+#ifdef __SMP__
+#ifndef __NO_IDLE_HANDLER_PIL__
+DNE1_SMPIdleHandler* TNE1_TBPowerController::iIdleHandler = NULL;
+#endif
+const TUint32 DNE1_TBPowerController::KCyclesPerTick 	= 66666;
+const TInt DNE1_TBPowerController::KMaxSleepTicks 	= TInt(0xffffff00u/DNE1_TBPowerController::KCyclesPerTick)-1;
+const TUint32 DNE1_TBPowerController::KWakeUpBeforeTick = 24000;
+const TUint32 DNE1_TBPowerController::KTooCloseToTick	= 6666;
+const TUint32 DNE1_TBPowerController::KMinTimeToTick	= 2000;
+const TInt DNE1_TBPowerController::KMinIdleTicks		= 2;
+#if defined(SIMULATE_RETIREMENT) && !defined(__NO_IDLE_HANDLER_PIL__)
+volatile TUint32 DNE1_SMPIdleHandler::iRetiredCores = 0;
+#endif
+#endif // __SMP__
+
+inline TUint32 abs_u32diff(TUint32 aA, TUint32 aB) 
+    {
+    return (aA > aB) ? aA - aB : aB - aA; 
+    }
+
+
+//-/-/-/-/-/-/-/-/-/ class DNE1_SMPIdleHandler /-/-/-/-/-/-/-/-/-/
+
+#if defined(__SMP__) && !defined(__NO_IDLE_HANDLER_PIL__)
+
+DNE1_SMPIdleHandler::DNE1_SMPIdleHandler(DNE1_TBPowerController* aController)
+    :DSMPIdleHandler(),iController(aController)
+    {
+    }
+
+TInt DNE1_SMPIdleHandler::Initialise()
+    {
+    TInt r = KErrNone;
+    DSMPIdleHandler::Initialise(KHwBaseGlobalIntDist,KHwBaseIntIf);
+#ifdef SIMULATE_RETIREMENT
+    // create as many antiIdle threads as there are cored
+    TInt nc = NKern::NumberOfCpus();
+    iIdleStealers = new TDfcQue*[nc];
+    __PM_ASSERT_ALWAYS(iIdleStealers);
+    iIdleStealDfcs = new TDfc*[nc];
+    __PM_ASSERT_ALWAYS(iIdleStealDfcs);
+    for (TInt i = 0; i < nc; i++)
+        {
+        TName name = _L("IDLESTEALER");
+        name.AppendNum(i);
+        r = Kern::DfcQCreate(iIdleStealers[i],1,&name);
+        __PM_ASSERT_ALWAYS(KErrNone==r);
+        iIdleStealDfcs[i] = new TDfc(IdleSteal,(TAny*) i,iIdleStealers[i],0);
+        __PM_ASSERT_ALWAYS(iIdleStealDfcs[i]);
+        NKern::ThreadSetCpuAffinity((NThread*)iIdleStealers[i]->iThread,i);
+        }
+    TName name = _L("RETIREENAGE");
+    r = Kern::DfcQCreate(iRetireEngageQue,27,&name);
+#endif
+    return r;
+    }
+
+TBool DNE1_SMPIdleHandler::DoEnterIdle(TInt aCpuMask, TInt aStage, volatile TAny* /*aU*/)
+    {
+    if (aStage & SCpuIdleHandler::EPostamble)
+        {
+        iController->IdleTickSuppresionRestore();
+        return EFalse;
+        }
+#ifdef SIMULATE_RETIREMENT
+    // are we retiring? 
+    if (iRetiredCores&aCpuMask) 
+        {
+        // this should be safe as no cores can be using sync points yet 
+        // as DoEnterIdle is called before all cores are in idle
+        // and the last core has not arrived yet
+        // theorically would not return from here 
+        // DoRetireCore would call TIdleSupport::MarkCoreRetired as last 
+        // thing once core is guaranteed not to enter idle handler again 
+        // until it is enaged once more
+        DoRetireCore(__e32_find_ms1_32(aCpuMask),0); 
+        return EFalse;
+        }
+#endif
+    return ETrue;
+    }
+
+
+TBool DNE1_SMPIdleHandler::GetLowPowerMode(TInt aIdleTime, TInt &aLowPowerMode)
+    {
+    
+    aLowPowerMode = 0;
+    if (aIdleTime < DNE1_TBPowerController::KMinIdleTicks) return EFalse;
+    iController->IdleTickSuppresionEntry(DNE1_TBPowerController::KWakeUpBeforeTick,aIdleTime);  
+    return ETrue;
+    }
+
+TBool DNE1_SMPIdleHandler::EnterLowPowerMode(TInt aMode, TInt aCpuMask, TBool aLastCpu)
+    {
+    TIdleSupport::DoWFI();	// maybe we will wake up, or maybe another CPU will wake us up
+    return ETrue;
+    }
+
+
+#ifdef SIMULATE_RETIREMENT
+
+void DNE1_SMPIdleHandler::IdleSteal(TAny* aPtr)
+    {
+    TInt cpu = (TInt) aPtr;
+    PMBTRACE4(KRetireCore,KRetireCoreEntry,cpu);
+    TUint32 cpuMask = 0x1 << cpu;
+
+    while (cpuMask&iRetiredCores);
+    PMBTRACE4(KRetireCore,KRetireCoreeXit,cpu);
+    }
+
+void DNE1_SMPIdleHandler::DoRetireCore(TInt aCpu, TLinAddr /*aReturnPoint*/)
+    {
+    iIdleStealDfcs[aCpu]->RawAdd();
+    TIdleSupport::MarkCoreRetired(0x1<<aCpu);
+    }
+
+#endif
+#endif
+
+
+//-/-/-/-/-/-/-/-/-/ class DNE1_TBPowerController /-/-/-/-/-/-/-/-/-/
+
+DNE1_TBPowerController::DNE1_TBPowerController()
+#if defined(__SMP__) && !defined(__NO_IDLE_HANDLER_PIL__)
+    :iIdleHandler(this)
+#endif
+    {
+    Register();			// register Power Controller with Power Manager
+	TNE1_TBPowerController::RegisterPowerController(this);
+	
+#if defined(__SMP__) && !defined(__NO_IDLE_HANDLER_PIL__)
+    //	Register idle handler
+    if ((AsspRegister::Read32(KHwRoGpio_Port_Value) & (0x1<<27)))
+        {
+        __PM_ASSERT_ALWAYS(KErrNone==iIdleHandler.Initialise());
+        }
+    else 
+        {
+        // press and hold User Switch 0 / INT0 (SW3) on boot
+        // to disable idle tick suppression
+        Kern::Printf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
+        Kern::Printf("!!!!!!!!!!!! NOT DOING ITS !!!!!!!!!!!");
+        Kern::Printf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
+        }
+#endif
+	}
+
+void DNE1_TBPowerController::CpuIdle()
+	{
+	Arch::TheAsic()->Idle();
+#ifndef __SMP__
+    iIdleCount++;
+#endif
+	}
+
+void DNE1_TBPowerController::EnableWakeupEvents()
+	{
+	//
+	// TO DO: (mandatory)
+	//
+	// Enable tracking of wake-up events directly in hardware. If the hardware is controlled by a Driver
+	// or Extension, may need to disable interrupts and preemption around the code that accesses the hardware
+	// and set up a flag which the Driver/Extension code need to read before modifying the state of that piece
+	// of hardware. Note in that case the Driver/Extension may need to link to this Library.
+	//
+
+	//
+	// EXAMPLE ONLY
+	// In this example we simply assume that the driver will call the Power Controller every time a 
+	// wakeup event occurr. It is up to the Power Controller to know if it is tracking them or not.
+	// We also assume that if a wakeup event occurrs when the CPU is in Standby, this will automatically
+	// bring it back from that state.
+	iWakeupEventsOn = ETrue;	// start tracking wakeup events
+	}
+
+void DNE1_TBPowerController::DisableWakeupEvents()
+	{
+	//
+	// TO DO: (mandatory)
+	//
+	// Disable tracking of wake-up events directly in hardware or if the hardware is controlled by a Driver or
+	// Extension need to set up a flag which the Driver/Extension reads whenever the event occurs, in order to
+	// find out if it needs to deliver notification to the Power Controller
+	//
+	iWakeupEventsOn = EFalse;	// stop tracking wakeup events
+	}
+
+void DNE1_TBPowerController::AbsoluteTimerExpired()
+	{
+	if (iTargetState == EPwStandby && iWakeupEventsOn)
+		{
+		iWakeupEventsOn = EFalse;		// one occurred, no longer track wakeup events
+		WakeupEvent();
+		}
+	}
+
+void DNE1_TBPowerController::PowerDown(TTimeK aWakeupST)	
+	{
+	if (iTargetState == EPwStandby)
+		{
+		//
+		// TO DO: (mandatory)
+		//
+		// Converts between the Wakeup time in System Time units as passed in to this function and a Wakeup
+		// time in RTC units. The following code is given as an example how to convert between System time units
+		// RTC time units on a system with a 32 bit RTC timer and which is incremented on a second interval:
+		//
+		// TUint32 wakeupRTC;
+		if (aWakeupST)
+			{
+			TUint32 nowRTC = TNaviEngine::RtcData();
+			TTimeK nowST = Kern::SystemTime();
+			__KTRACE_OPT(KPOWER,Kern::Printf("system time: now = 0x%lx(us) wakeup = 0x%lx(us)", nowST, aWakeupST));
+			if (aWakeupST < nowST)
+				return;
+			Int64 deltaSecs = (aWakeupST - nowST) / 1000000;
+			if (deltaSecs <= 0)
+				return;
+			if (deltaSecs + (Int64)nowRTC > (Int64)(KMaxTInt - 2))
+				{
+				//wakeupRTC = (KMaxTInt - 2); // RTC can't wrap around during standby
+				__KTRACE_OPT(KPOWER,Kern::Printf("RTC: now = %d(s) wakeup = %d(s)", nowRTC, KMaxTInt - 2));
+				}
+			else
+				{
+				//wakeupRTC = nowRTC + deltaSecs;
+				__KTRACE_OPT(KPOWER,Kern::Printf("RTC: now = %d(s) wakeup = %d(s)", nowRTC, nowRTC + deltaSecs));
+				}
+			}
+//		else
+//			wakeupRTC = 0;
+		//
+		// TO DO: (optional)
+		//
+		// It then uses the calculated value to program the RTC to wakeup the System at the Wakeup
+		// time ans sets the CPU and remaining hardware to go to the correponding low power mode. When the 
+		// state of the Core and Core Peripherals is not preserved in this mode the following is usually 
+		// required:
+		//	- save current Core state (current Mode, banked registers for each Mode and Stack Pointer for 
+		//	  both current and User Modes
+		//	- save MMU state: Control Register, TTB and Domain Access Control
+		//	- Flush Dta Cache and drain Write Buffer
+		//	- save Core Peripherals state: Interrupt Controller, Pin Function, Bus State and Clock settings
+		// SDRAM should be put in self refresh mode. Peripheral devices involved in detection of Wakeup events
+		// should be left powered.
+		// The Tick timer should be disabled and the current count of this and other System timers shall be
+		// saved.
+		// On wakeing up the state should be restored from the save state as above. SDRAM shall be brought back
+		// under CPU control, The Tick count shall be restored and timers re-enabled.
+
+		// We assume that if a wakeup event occurrs when the CPU is in Standby, this will automatically
+		// bring it back from that state. Therefore we stop tracking wakeup events as the Power Manager will
+		// complete any pending notifications anyway. When the driver delivers its notification, we just ignore
+		// it.
+		iWakeupEventsOn = EFalse;		// tracking of wakeup events is now done in hardware
+		}
+	else
+		{
+		Kern::Restart(0x80000000);
+		}
+	}
+
+void DNE1_TBPowerController::IdleTickSuppresionRestore()
+    {
+#ifdef __SMP__	
+    // only one CPU can enter this function
+    NETimer& NET = NETimer::Timer(0);
+    TUint32 timerWrapped = NET.iGTInterrupt&KNETimerGTIInt_TCI;
+    __e32_io_completion_barrier();
+    TUint32  timeIn = NET.iTimerCount;
+    TUint32 timeSlept = timeIn;
+
+    __PM_ASSERT_DEBUG(NET.iTimerReset == iNextInterrupt);
+    
+    if (timerWrapped) 
+        {
+        // We woke up due to a the main timer. If this is case unless we clear the interrupt
+        // this result in an extra tick being advanced. We are reprogramming the ISR for a latter
+        // activation aligned with the correct phase. For timer based wakeups we wake up a bit early
+        // early enough to allow the time needed to repogram the timer for the next edge
+        timeSlept+=((iNextInterrupt+KCyclesPerTick)-iOriginalTimerExpire);  // timer wrapped if interrupt is pending
+        ClearTimerInterrupt();
+        }
+	else if	(timeIn >= iOriginalTimerExpire)
+		{
+		//We woke up after one or more ticks
+		timeSlept+=(KCyclesPerTick-iOriginalTimerExpire);		
+		}
+		
+    TUint32 ticksSlept = timeSlept/KCyclesPerTick;
+    TUint32 timeToNextInterruptDelta = (ticksSlept+1)*KCyclesPerTick-timeSlept;
+	
+	if	(timerWrapped==0 && timeIn<iOriginalTimerExpire)
+		{
+		//We woke up before first tick expired
+		ticksSlept=0;
+		timeToNextInterruptDelta=iOriginalTimerExpire-timeIn;
+		}
+	
+	
+    if (timeToNextInterruptDelta < KMinTimeToTick) 
+        {        
+        // This should not happen on normal timer expiries as we should be be programmed to wake 
+        // well before the next timer expiry which therefore means that ie we need to make sure that
+        // wake up times are always larger than this KMinTimeToTick
+		// However a WakeupEvent could have resulted in us waking close potential tick		
+        // skip a tick
+        ticksSlept++;
+        timeToNextInterruptDelta +=KCyclesPerTick;
+        }
+    TUint32 timeToNextInterrupt = timeIn+timeToNextInterruptDelta;
+
+//while(timeToNextInterrupt==KWakeUpBeforeTick);
+
+
+    NET.iTimerReset = timeToNextInterrupt;
+	__e32_io_completion_barrier();
+    NTimerQ::Advance(ticksSlept);
+    // restart stopped timers used in NKern::Timestamp, in hardware that will be used for
+    // product timers of this type would stop when entering low power mode
+    NETimer& T1 = NETimer::Timer(1);
+	NETimer& T2 = NETimer::Timer(2);
+
+    TUint32 t2 = T2.iTimerCount;
+    TUint32 t1 = T1.iTimerCount;
+
+    // because timers at started one after the other
+    // there a certain amount of error accumulated in the diffence between them
+    // we need to take into account this error level when restarting them
+    // so that we can ensure the error does not grow
+	// note sleep time cannot exceed 0xffffff00
+    TUint32 error = (t1-t2)&0xff;
+    TUint32 remainder = 0xffffff00-t1;
+    if (remainder > timeSlept) t1+=timeSlept;
+    else t1 = timeSlept - remainder;
+    T1.iTimerCount = t1;
+    T2.iTimerCount += timeSlept + error;
+	__e32_io_completion_barrier();
+	T1.iTimerCtrl |=  KNETimerCtrl_CAE;	// start   timer 1 first
+	__e32_io_completion_barrier();
+    T2.iTimerCtrl |=  KNETimerCtrl_CAE;	// start   timer 2
+	__e32_io_completion_barrier();
+
+#ifndef __NO_IDLE_HANDLER_PIL__
+    PMBTRACE8(KIdleTickSupression,KTimeSleptTimeNextInt,timeSlept,timeToNextInterrupt);
+    PMBTRACE8(KIdleTickSupression,KTIcksSlept,ticksSlept,timeToNextInterruptDelta);
+    PMBTRACE8(KMisc,0x20,timeIn,timerWrapped);
+#endif
+#endif	
+    }
+
+void DNE1_TBPowerController::IdleTickSuppresionEntry(TUint32 aWakeDelay, TInt aNextTimer)
+    {
+#ifdef __SMP__		
+	NETimer& NET = NETimer::Timer(0);
+    	
+    TUint32 cyclesInTick = NET.iTimerCount;
+	TUint32 cyclesFullTick= NET.iTimerReset;
+	__e32_io_completion_barrier();
+     
+    if (abs_u32diff(cyclesFullTick,cyclesInTick) < KTooCloseToTick || (NET.iGTInterrupt&KNETimerGTIInt_TCI)) 
+		return; // to close to edge of tick so we skip this one or even past it
+		
+    if (aNextTimer > KMaxSleepTicks) aNextTimer = KMaxSleepTicks;
+    iNextInterrupt = (aNextTimer)*KCyclesPerTick;//max time we can sleep	for
+	if	(iNextInterrupt > (KMaxTUint32-cyclesFullTick))
+		return;
+	// We need to wakeup just before the next timer expire is due	
+	iOriginalTimerExpire=cyclesFullTick;//this is where the current tick would have expired
+	iNextInterrupt+=(cyclesFullTick -aWakeDelay);//adjust next interrupt time from where we are now
+    
+    NET.iTimerReset = iNextInterrupt;
+    __e32_io_completion_barrier();	
+    NET.iGTInterrupt = KNETimerGTIInt_All;	// clear any pending interrupts
+	__e32_io_completion_barrier();
+#ifndef __NO_IDLE_HANDLER_PIL__
+    PMBTRACE8(KIdleTickSupression,KCyclesInTickCyclesFullTick,cyclesInTick,cyclesFullTick);
+    PMBTRACE4(KIdleTickSupression,KNextInterrupt,iNextInterrupt);
+#endif    
+//TO DO: Review method of setting iPostambleReuired flag
+	SCpuIdleHandler* pS = NKern::CpuIdleHandler();
+	pS->iPostambleRequired = ETrue;
+    // stop timers used in NKern::Timestamp, in hardware that will be used for
+    // product timers of this type would stop when entering low power mode
+    NETimer& T1 = NETimer::Timer(1);
+	NETimer& T2 = NETimer::Timer(2);
+    T2.iTimerCtrl &= ~ KNETimerCtrl_CAE;	// clear timer CAE to hold timer value
+	__e32_io_completion_barrier();
+	T1.iTimerCtrl &= ~ KNETimerCtrl_CAE; // stop timer 1 last (lets error increase
+	__e32_io_completion_barrier();       // but this should be ok as it shouldn't exceed 0xff
+    iIdleCount++;
+#endif	
+    }
+
+//-/-/-/-/-/-/-/-/-/ class TNE1_TBPowerController /-/-/-/-/-/-/-/-/-/
+
+
+EXPORT_C void TNE1_TBPowerController::WakeupEvent()
+	{
+	if(!iPowerController)
+		__PM_PANIC("Power Controller not present");
+	else if(iPowerController->iWakeupEventsOn)
+		{
+		iPowerController->iWakeupEventsOn=EFalse;		// one occurred, no longer track wakeup events
+		iPowerController->WakeupEvent();
+		}
+	}
+
+// NOTE: these are just enabler functions to simulate core retirement
+//       they would not stand to any scrutiny as the basis for a proper solution
+//       they are just here to allow to test the idle handler for robustness against retirement
+//       whilst we wait for a kernel solution
+// @pre thread context, interrupt on, kernel unlocked, no fast mutex held
+EXPORT_C void TNE1_TBPowerController::RetireCore(TInt aCpu,TRetireEngageCb& aCb)
+    {
+#if defined(__SMP__) && !defined(__NO_IDLE_HANDLER_PIL__) && defined(SIMULATE_RETIREMENT)
+    SRetireCall* call = new SRetireCall(aCpu,aCb);
+    if (call && aCpu < NKern::NumberOfCpus()) 
+        {
+        call->Call();
+        }
+    else
+        {
+        
+        if (!call) aCb.iResult = KErrNoMemory;
+        else 
+            {
+            aCb.iResult = KErrArgument;
+            delete call;
+            }
+        aCb.iDfc.Enque();
+        }
+#endif    
+    }
+
+// can be called from any core to engage any other core but caller must be outside idle thread
+// @pre thread context interrupt on no fast mutex held
+EXPORT_C void TNE1_TBPowerController::EngageCore(TInt aCpu, TRetireEngageCb& aCb)
+    {
+#if defined(__SMP__) && !defined(__NO_IDLE_HANDLER_PIL__) && defined(SIMULATE_RETIREMENT)
+    SEngageCall* call = new SEngageCall(aCpu,aCb);
+    if (call && aCpu < NKern::NumberOfCpus()) 
+        {
+        call->Call();
+        }
+    else
+        {
+        if (!call) aCb.iResult = KErrNoMemory;
+        else
+            {
+            aCb.iResult = KErrArgument;
+            delete call;
+            }
+        aCb.iDfc.Enque();
+        }
+#endif
+    }
+
+
+/**
+   Idle count is incremented everytime ITS takes place
+   @return idle count
+*/ 
+EXPORT_C TUint TNE1_TBPowerController::IdleCount()
+    {
+    return iPowerController->iIdleCount;
+    }
+
+
+//-/-/-/-/-/-/-/-/-/ class SRetireCall /-/-/-/-/-/-/-/-/-/
+
+SRetireCall::SRetireCall(TInt aCpu,TRetireEngageCb& aCb)
+#if defined(__SMP__) && !defined(__NO_IDLE_HANDLER_PIL__) && defined(SIMULATE_RETIREMENT)
+    :iTimer(RetireCoreDfcFn,(TAny*)this,
+            TNE1_TBPowerController::iIdleHandler->iRetireEngageQue,0),
+     iCpu(aCpu),iCb(aCb),iAllCpusMask(TIdleSupport::AllCpusMask())
+#endif
+    {};
+
+#if defined(__SMP__) && !defined(__NO_IDLE_HANDLER_PIL__) && defined(SIMULATE_RETIREMENT)
+void SRetireCall::RetireCoreDfcFn(TAny* aParam)
+    {
+    
+    SRetireCall* pC = (SRetireCall*) aParam;
+    
+    TUint32 cMask = 0x1<<pC->iCpu;
+    TUint32 toBeRetired = DNE1_SMPIdleHandler::iRetiredCores|cMask;
+    PMBTRACE4(KRetireCore,0x10,toBeRetired);
+    if (toBeRetired==pC->iAllCpusMask || (DNE1_SMPIdleHandler::iRetiredCores&cMask) )
+        {
+        //Make sure we don't retire all cores! at least one should run. Core might also already be retired
+        pC->iCb.iResult = KErrArgument;
+        pC->iCb.iDfc.Enque();
+        delete pC;
+        return;
+        }
+    //Ensure that timer interrupt only hits a cpu that is still active
+    // this won't be need when core retiring support is complete in the kernel
+    // as it will migrate all interrupts to remaining enaged cores
+    // also just for added realism make sure this thread can only run in cores that are still enaged
+    TUint32 enaged = (~toBeRetired)&pC->iAllCpusMask;
+    TInt targetCpu =  __e32_find_ls1_32(enaged);
+    TUint32 targetCpuMask = 0x1<<targetCpu;
+    PMBTRACE4(KRetireCore,0x11,targetCpu);
+    targetCpuMask <<= ((KIntIdOstMatchMsTimer %4)<<3);
+    TUint32 clear = ~(0xff << ((KHwBaseGlobalIntDist%4)<<3));
+    GicDistributor* GIC = (GicDistributor*) KHwBaseGlobalIntDist;
+    GIC->iTarget[KIntIdOstMatchMsTimer>>2]&=clear;
+    __e32_io_completion_barrier();
+    GIC->iTarget[KIntIdOstMatchMsTimer>>2]|=targetCpuMask;
+    __e32_io_completion_barrier();
+    NKern::ThreadSetCpuAffinity(NKern::CurrentThread(),targetCpu);
+    TNE1_TBPowerController::iIdleHandler->ResetSyncPoints(); 
+    DNE1_SMPIdleHandler::iRetiredCores=toBeRetired;
+    PMBTRACE4(KRetireCore,0x12,DNE1_SMPIdleHandler::iRetiredCores);//,DNE1_TBPowerController::iEngagingCores);
+    // queue callback
+    pC->iCb.iResult = KErrNone;
+    pC->iCb.iDfc.Enque();
+    delete pC;
+    }
+#endif
+
+//-/-/-/-/-/-/-/-/-/ class SEngageCall /-/-/-/-/-/-/-/-/-/
+
+SEngageCall::SEngageCall(TInt aCpu,TRetireEngageCb& aCb)
+#if defined(__SMP__) && !defined(__NO_IDLE_HANDLER_PIL__) && defined(SIMULATE_RETIREMENT)
+    :iDfc(EngageCoreDfcFn,(TAny*)this,
+          TNE1_TBPowerController::iIdleHandler->iRetireEngageQue,0),iCpu(aCpu),iCb(aCb)
+#endif
+    {};
+
+#if defined(__SMP__) && !defined(__NO_IDLE_HANDLER_PIL__) && defined(SIMULATE_RETIREMENT)
+void SEngageCall::EngageCoreDfcFn(TAny* aParam)
+    {
+    SEngageCall* pC = (SEngageCall*) aParam;
+    TUint32 cMask = 0x1<<pC->iCpu;
+    PMBTRACE4(KEngageCore,0x10,cMask);
+    if ((~DNE1_SMPIdleHandler::iRetiredCores)&cMask )
+        {
+        //core is already engaged
+        pC->iCb.iResult = KErrArgument;
+        pC->iCb.iDfc.Enque();
+        delete pC;
+        return;
+        }
+
+    TNE1_TBPowerController::iIdleHandler->ResetSyncPoints();  
+    TIdleSupport::MarkCoreEngaged(cMask);
+    DNE1_SMPIdleHandler::iRetiredCores&=~cMask;                // This will free calling CPU
+    PMBTRACE4(KEngageCore,0x11,DNE1_SMPIdleHandler::iRetiredCores);
+    pC->iCb.iResult = KErrNone;
+    pC->iCb.iDfc.Enque();
+    delete pC;
+    }
+#endif
+
+
+
+TInt BinaryPowerInit();		// the Symbian example Battery Monitor and Power HAL handling
+
+GLDEF_C TInt KernelModuleEntry(TInt aReason)
+	{
+	if(aReason==KModuleEntryReasonVariantInit0)
+		{
+		//
+		//
+		//
+		__KTRACE_OPT(KPOWER, Kern::Printf("Starting NE1_TBVariant Resource controller"));
+		return KErrNone;
+		}
+	else if(aReason==KModuleEntryReasonExtensionInit0)
+		{
+		__KTRACE_OPT(KPOWER, Kern::Printf("Starting NE1_TBVariant power controller"));
+		//
+		// TO DO: (optional)
+		//
+		// Start the Kernel-side Battery Monitor and hook a Power HAL handling function.
+		// Symbian provides example code for both of the above in \e32\include\driver\binpower.h
+		// You may want to write your own versions.
+		// The call below starts the example Battery Monitor and hooks the example Power HAL handling function
+		// At the end we return an error to make sure that the entry point is not called again with
+		// KModuleEntryReasonExtensionInit1 (which would call the constructor of TheResourceManager again)
+		//
+		TInt r = BinaryPowerInit();
+		if (r!= KErrNone)
+			__PM_PANIC("Can't initialise Binary Power model");
+		DNE1_TBPowerController* c = new DNE1_TBPowerController();
+		if(c)
+			return KErrGeneral;
+		else
+			__PM_PANIC("Can't create Power Controller");
+		}
+	else if(aReason==KModuleEntryReasonExtensionInit1)
+		{
+        // doesn't get called
+		}
+	return KErrArgument;
+	}
+