
Disclaimer; this page originates from the original SVP Wiki. Some of the instructions might be out of date, and “attached to this page” files can be missing. This information is provided for information only and can highlight some design ideas that can be benefitial for the Symbian Foundation/QEMU community.
1. Introduction

QEmu comes with a build-in GDB stub which makes it possible to control the simulation environment from the GDB debugger. This is equivalent of having a Trace32 ICE hooked up to a development board. However, GDB doesn't understand the E32 format and E32 doesn't contain any debug information. We need to feed elf files (with debug information) to GDB to make stepping etc possible. We also need to rename some sections in the elf files the ARM C compiler produces to make GDB understand them.

We need to make some changes to abld and rombuild in order to automatically setup GDB debug sessions. At some point in the build process the postlinker elf2e32 is invoked on the elf files produced by armcc or gcc. The change in the 'cl_bpabi.pm' file extends the building process to run one extra command right after elf2e32. This command produces a new file with the same name as the e32 image (in the same directory) with the extension ".elfinfo". This file contains the name of the elf file of which the e32 image is based and an md5 sum of the entire elf file.

When all the necessary files have been built we invoke the "rombuild" tool to build the ROM image. The rombuild tool creates a logfile (called ROMBUILD.log) in which you will find (among other things) a list of all e32 images in the ROM and the entry point of this image (expressed in virtual address). The modified rombuild tool attached to this page adds 2 extra lines per e32 image in the ROMBUILD.log file containing the name of the elf file on which the e32 image is based and the md5 checksum of that elf file (extracted from the ".elfinfo" file).

Finally when we launch a GDB debug session we use a tool called "setup_gdb" (found in the smtools.zip file). This command scans the ROMBUILD.log file, extracts the names of the elf files, and entry point in the ROM. It also checks the checksum of the elf files to make sure we are feeding the correct files to GDB. The output of this tool is a "gdbinit" file containing all the commands necessary to setup the GDB debug session.

2. Prerequisites

· Install GDB, we are using the "arm-elf-gdb" flavour. There's a windows installer attached to this page. This installer contains the entire arm-elf-* tool suite. Please note that you have to put the installation in a path without spaces, i.e. "C:\Program Files\yagarto" will not do. Make sure the yagarto\bin directory is added to your PATH environment variable.

· unzip the smtools.zip files somewhere on your system and make sure this directory is in the PATH both when you run abld and GDB! The command for adding something to the path is set PATH=%PATH%;
· replace \epoc32\tools\cl_bpabi.pm with the file with the same found attached to this page

· replace \epoc32\tools\rombuild.exe with the file with the same found attached to this page

3. Re-build you ROM

Rebuild all files in the ROM. This will include entering various directories (see here) and doing $abld clean armv5 and then $abld build armv5. Now you should see a number of ".elfinfo" files in the \epoc32\release\armv5\udeb directory.

Go to \src\cedar\generic\base\e32\rombuild and re-run the command $ rom -v syborg -i armv5 -b udeb. If you check the file called ROMBUILD.log you can now see that it has been updated with information about the elf files.

4. Setting up GDB

Each time you launch a debug session you have to run the "setup_gdb" tool. As described above this tool scans the ROMBUILD.log file and produce an init file for GDB necessary to setup a debug session. This tool also uses the "arm-elf-objcopy" command, so make sure this command in your path.
Invoke tool like this;

$ setup_gdb -l <rom log file> -r <rom image file> >.gdbinit
The tool will create a temp directory called gdb_tmp (containing the elf files used by this ROM in a format GDB understands) and a file called .gdbinit

The tool will write an error message if there's a MD5 mismatch, and if you use the "-v" flag, it will write a warning of missing elf files.

The .gdbinit file is the default configuration file for GDB. It sets up a remote connection to the debugger and loads the elf files created by the script.

5. Advanced Usage

The setup_gdb tool supports some additional argument to control the order of the elffiles and the "-readnow" argument in the gdbinit files. See GDB oddities below for an explanation why you want to do this.
setup_gdb support that you specify any number of substrings, which will be matched to the names of the elf files found in the ROMBUILD.log. The order of these substring are significant, the one you pass first is the given highest priority, followed by argument 2 etc.

The matching elf files will be put first in the gdbinit files, if many names match, they will be sorted according to the argument order of the substrings.

For each elf file with a matching name the "-readnow" flag will be added at the end of the add-symbol-file line.

Examples;

· $ setup_gdb --l <rom log file> -r <rom image file> snap >.gdbinit
All elf files with a name containing the substring snap will be put first in the gdbinit file.

· $ setup_gdb --l <rom log file> -r <rom image file> snap svp >.gdbinit
All elf files with a name containing the substring snap or svp will be put first in the gdbinit file. Names containing snap will come before names with svp.

6. Using GDB

7. Eclipse/CDT

You can use standard Eclipse/CDT installation to run a debug Simulator session, but you will need to install an extra CDT plug-in called gdbjtag. You can find Eclipse attached to this page which contains all you need.

The Eclipse integration with the QEmu is still very much in the prototype stage. Each time you change a file, you have to leave Eclipse and go to a command line and re-compile the file and build the ROM "by hand".

8. Setting up a project

Make sure the setup_gdb and make is in the path.

1. Start eclipse, you need to start eclipse the same directory as your project!

2. Create a new C++ project

3. Download the example Makefile attached to this page and change the arguments to setup_gdb to reflect the files you want to debug (see advanced usage above). Save your changes in the eclipse project directory. Now Eclipse will run this makefile (and thereby run setup_gdb) each time you launch a debug session.

4. Set the project type to Makefile project
5. Press finish

6. Right-click on the project name (in the project explorer) and select properties

7. Under C/C++ Build / Settings go to the Binary parsers tab and select GNU Elf Parser
8. Change the addr2line and c+filt commands to arm-elf-addr2line and arm-elf-c+file. You might have to add the full path to these executables depending on you PATH setup.

9. Press OK and notice the change in the Project Explorer.

10. Expand the elf containing the code you want to debug, let's say ewsrv.elf

11. Bring up the cpp file you are interested in and enter and set a breakpoint, let's say on E32Main (line 2124) in ws_main.cpp

9. Setting up a debug target

1. Select the Run / Open Debug Dialog... menu option

2. In the debug wizard, create a new GDB Hardware Debugging launch configuration

3. Change the name to something meaningful, select your current project and add any .elf file in C/C++ Application (which one doesn't matter)

4. Go to the Debugger tab and change the GDB command to arm-elf-gdb. You might have to add the full path to these executables depending on you PATH setup.

5. In the Remove Target pane, un-tick "Use remote target"

6. Go to the Startup tab

7. In the Run Commands pane add a line with just the character 'c'

8. Press the Debug button and your session should launch and stop at E32Main in the ws_main.cpp file

Please note that you have to re-start the simulator each time you want to restart a debug session.

10. Text mode

Launch the setup_gdb tool, you probably want to pass it a substring of the elf file you want to debug, let's say it's winsrv
$ setup_gdb --l -r <rom image file> winsrv >.gdbinit

Start the debugger

$ arm-elf-gdb
Make sure you start gdb from the same directory as your .gdbinit file.

(gdb) b E32Main
(gdb) c
11. Breakpoints in Qemu

Breakpoints in Qemu doesn't work as normal software breakpoints (instruction replacement / exception handling) as one might suspect, but are in effect hardware/"onchip" breakpoints. QEmu keeps an internal list of active breakpoints and inserts a magic instruction at these addresses at translation time. Note that all addresses are virtual.

12. GDB oddities

Sometimes when looking at local variables GDB crashes (and the debug session is killed). This is because of different interpretations of the DWARF2 format by armcc and gdb. The solution is to use the 'gcce' abld target or update your armcc compiler to version 3.1 (and use the --dwarf3 flag when compiling). The incompatible DWARF formats also means stepping will be "odd".
GDB can't handle clashing symbol names when you use the add-symbol-file command. There are quite a few clashing symbol names in a Symbian ROM. Each application has an E32Main symbol for instance. If symbols clash, GDB will only remember the one that was loaded first. This means that you might want to reorganize the order of the files in the .gdbinit file before you launch arm-elf-gdb. Put the file you are most interested in first. The setup_gdb tool can help you control the order of files in the gdbinit file, see above.

Eclipse doesn't set breakpoints on symbol names, rather on filename / line number. In order for this to work, you have to tell GDB to read the entire DWARF information of the elf flies (rather than just scanning the symbol file data). To do this you have to add "readnow" at the end of each add-symbol-file line in the gdbinit file. The setup_gdb tool can help you control the usage of "-readnow" in the gdbinit file, see above.

Why not put "-readnow" on all files in gdbinit? 2 reasons, first it makes the launch of GDB much slower, and it makes GDB use A LOT of memory. Therefore we try to limit the "-readnow" lines.

