|
1 /* Complex math module */ |
|
2 |
|
3 /* much code borrowed from mathmodule.c */ |
|
4 |
|
5 #include "Python.h" |
|
6 /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from |
|
7 float.h. We assume that FLT_RADIX is either 2 or 16. */ |
|
8 #include <float.h> |
|
9 |
|
10 #if (FLT_RADIX != 2 && FLT_RADIX != 16) |
|
11 #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16" |
|
12 #endif |
|
13 |
|
14 #ifndef M_LN2 |
|
15 #define M_LN2 (0.6931471805599453094) /* natural log of 2 */ |
|
16 #endif |
|
17 |
|
18 #ifndef M_LN10 |
|
19 #define M_LN10 (2.302585092994045684) /* natural log of 10 */ |
|
20 #endif |
|
21 |
|
22 /* |
|
23 CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log, |
|
24 inverse trig and inverse hyperbolic trig functions. Its log is used in the |
|
25 evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unecessary |
|
26 overflow. |
|
27 */ |
|
28 |
|
29 #define CM_LARGE_DOUBLE (DBL_MAX/4.) |
|
30 #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE)) |
|
31 #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE)) |
|
32 #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN)) |
|
33 |
|
34 /* |
|
35 CM_SCALE_UP is an odd integer chosen such that multiplication by |
|
36 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal. |
|
37 CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute |
|
38 square roots accurately when the real and imaginary parts of the argument |
|
39 are subnormal. |
|
40 */ |
|
41 |
|
42 #if FLT_RADIX==2 |
|
43 #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1) |
|
44 #elif FLT_RADIX==16 |
|
45 #define CM_SCALE_UP (4*DBL_MANT_DIG+1) |
|
46 #endif |
|
47 #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2) |
|
48 |
|
49 /* forward declarations */ |
|
50 static Py_complex c_asinh(Py_complex); |
|
51 static Py_complex c_atanh(Py_complex); |
|
52 static Py_complex c_cosh(Py_complex); |
|
53 static Py_complex c_sinh(Py_complex); |
|
54 static Py_complex c_sqrt(Py_complex); |
|
55 static Py_complex c_tanh(Py_complex); |
|
56 static PyObject * math_error(void); |
|
57 |
|
58 /* Code to deal with special values (infinities, NaNs, etc.). */ |
|
59 |
|
60 /* special_type takes a double and returns an integer code indicating |
|
61 the type of the double as follows: |
|
62 */ |
|
63 |
|
64 enum special_types { |
|
65 ST_NINF, /* 0, negative infinity */ |
|
66 ST_NEG, /* 1, negative finite number (nonzero) */ |
|
67 ST_NZERO, /* 2, -0. */ |
|
68 ST_PZERO, /* 3, +0. */ |
|
69 ST_POS, /* 4, positive finite number (nonzero) */ |
|
70 ST_PINF, /* 5, positive infinity */ |
|
71 ST_NAN, /* 6, Not a Number */ |
|
72 }; |
|
73 |
|
74 static enum special_types |
|
75 special_type(double d) |
|
76 { |
|
77 if (Py_IS_FINITE(d)) { |
|
78 if (d != 0) { |
|
79 if (copysign(1., d) == 1.) |
|
80 return ST_POS; |
|
81 else |
|
82 return ST_NEG; |
|
83 } |
|
84 else { |
|
85 if (copysign(1., d) == 1.) |
|
86 return ST_PZERO; |
|
87 else |
|
88 return ST_NZERO; |
|
89 } |
|
90 } |
|
91 if (Py_IS_NAN(d)) |
|
92 return ST_NAN; |
|
93 if (copysign(1., d) == 1.) |
|
94 return ST_PINF; |
|
95 else |
|
96 return ST_NINF; |
|
97 } |
|
98 |
|
99 #define SPECIAL_VALUE(z, table) \ |
|
100 if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \ |
|
101 errno = 0; \ |
|
102 return table[special_type((z).real)] \ |
|
103 [special_type((z).imag)]; \ |
|
104 } |
|
105 |
|
106 #define P Py_MATH_PI |
|
107 #define P14 0.25*Py_MATH_PI |
|
108 #define P12 0.5*Py_MATH_PI |
|
109 #define P34 0.75*Py_MATH_PI |
|
110 #define INF Py_HUGE_VAL |
|
111 #define N Py_NAN |
|
112 #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */ |
|
113 |
|
114 /* First, the C functions that do the real work. Each of the c_* |
|
115 functions computes and returns the C99 Annex G recommended result |
|
116 and also sets errno as follows: errno = 0 if no floating-point |
|
117 exception is associated with the result; errno = EDOM if C99 Annex |
|
118 G recommends raising divide-by-zero or invalid for this result; and |
|
119 errno = ERANGE where the overflow floating-point signal should be |
|
120 raised. |
|
121 */ |
|
122 |
|
123 static Py_complex acos_special_values[7][7]; |
|
124 |
|
125 static Py_complex |
|
126 c_acos(Py_complex z) |
|
127 { |
|
128 Py_complex s1, s2, r; |
|
129 |
|
130 SPECIAL_VALUE(z, acos_special_values); |
|
131 |
|
132 if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { |
|
133 /* avoid unnecessary overflow for large arguments */ |
|
134 r.real = atan2(fabs(z.imag), z.real); |
|
135 /* split into cases to make sure that the branch cut has the |
|
136 correct continuity on systems with unsigned zeros */ |
|
137 if (z.real < 0.) { |
|
138 r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) + |
|
139 M_LN2*2., z.imag); |
|
140 } else { |
|
141 r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) + |
|
142 M_LN2*2., -z.imag); |
|
143 } |
|
144 } else { |
|
145 s1.real = 1.-z.real; |
|
146 s1.imag = -z.imag; |
|
147 s1 = c_sqrt(s1); |
|
148 s2.real = 1.+z.real; |
|
149 s2.imag = z.imag; |
|
150 s2 = c_sqrt(s2); |
|
151 r.real = 2.*atan2(s1.real, s2.real); |
|
152 r.imag = asinh(s2.real*s1.imag - s2.imag*s1.real); |
|
153 } |
|
154 errno = 0; |
|
155 return r; |
|
156 } |
|
157 |
|
158 PyDoc_STRVAR(c_acos_doc, |
|
159 "acos(x)\n" |
|
160 "\n" |
|
161 "Return the arc cosine of x."); |
|
162 |
|
163 |
|
164 static Py_complex acosh_special_values[7][7]; |
|
165 |
|
166 static Py_complex |
|
167 c_acosh(Py_complex z) |
|
168 { |
|
169 Py_complex s1, s2, r; |
|
170 |
|
171 SPECIAL_VALUE(z, acosh_special_values); |
|
172 |
|
173 if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { |
|
174 /* avoid unnecessary overflow for large arguments */ |
|
175 r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.; |
|
176 r.imag = atan2(z.imag, z.real); |
|
177 } else { |
|
178 s1.real = z.real - 1.; |
|
179 s1.imag = z.imag; |
|
180 s1 = c_sqrt(s1); |
|
181 s2.real = z.real + 1.; |
|
182 s2.imag = z.imag; |
|
183 s2 = c_sqrt(s2); |
|
184 r.real = asinh(s1.real*s2.real + s1.imag*s2.imag); |
|
185 r.imag = 2.*atan2(s1.imag, s2.real); |
|
186 } |
|
187 errno = 0; |
|
188 return r; |
|
189 } |
|
190 |
|
191 PyDoc_STRVAR(c_acosh_doc, |
|
192 "acosh(x)\n" |
|
193 "\n" |
|
194 "Return the hyperbolic arccosine of x."); |
|
195 |
|
196 |
|
197 static Py_complex |
|
198 c_asin(Py_complex z) |
|
199 { |
|
200 /* asin(z) = -i asinh(iz) */ |
|
201 Py_complex s, r; |
|
202 s.real = -z.imag; |
|
203 s.imag = z.real; |
|
204 s = c_asinh(s); |
|
205 r.real = s.imag; |
|
206 r.imag = -s.real; |
|
207 return r; |
|
208 } |
|
209 |
|
210 PyDoc_STRVAR(c_asin_doc, |
|
211 "asin(x)\n" |
|
212 "\n" |
|
213 "Return the arc sine of x."); |
|
214 |
|
215 |
|
216 static Py_complex asinh_special_values[7][7]; |
|
217 |
|
218 static Py_complex |
|
219 c_asinh(Py_complex z) |
|
220 { |
|
221 Py_complex s1, s2, r; |
|
222 |
|
223 SPECIAL_VALUE(z, asinh_special_values); |
|
224 |
|
225 if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { |
|
226 if (z.imag >= 0.) { |
|
227 r.real = copysign(log(hypot(z.real/2., z.imag/2.)) + |
|
228 M_LN2*2., z.real); |
|
229 } else { |
|
230 r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) + |
|
231 M_LN2*2., -z.real); |
|
232 } |
|
233 r.imag = atan2(z.imag, fabs(z.real)); |
|
234 } else { |
|
235 s1.real = 1.+z.imag; |
|
236 s1.imag = -z.real; |
|
237 s1 = c_sqrt(s1); |
|
238 s2.real = 1.-z.imag; |
|
239 s2.imag = z.real; |
|
240 s2 = c_sqrt(s2); |
|
241 r.real = asinh(s1.real*s2.imag-s2.real*s1.imag); |
|
242 r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag); |
|
243 } |
|
244 errno = 0; |
|
245 return r; |
|
246 } |
|
247 |
|
248 PyDoc_STRVAR(c_asinh_doc, |
|
249 "asinh(x)\n" |
|
250 "\n" |
|
251 "Return the hyperbolic arc sine of x."); |
|
252 |
|
253 |
|
254 static Py_complex |
|
255 c_atan(Py_complex z) |
|
256 { |
|
257 /* atan(z) = -i atanh(iz) */ |
|
258 Py_complex s, r; |
|
259 s.real = -z.imag; |
|
260 s.imag = z.real; |
|
261 s = c_atanh(s); |
|
262 r.real = s.imag; |
|
263 r.imag = -s.real; |
|
264 return r; |
|
265 } |
|
266 |
|
267 /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow |
|
268 C99 for atan2(0., 0.). */ |
|
269 static double |
|
270 c_atan2(Py_complex z) |
|
271 { |
|
272 if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)) |
|
273 return Py_NAN; |
|
274 if (Py_IS_INFINITY(z.imag)) { |
|
275 if (Py_IS_INFINITY(z.real)) { |
|
276 if (copysign(1., z.real) == 1.) |
|
277 /* atan2(+-inf, +inf) == +-pi/4 */ |
|
278 return copysign(0.25*Py_MATH_PI, z.imag); |
|
279 else |
|
280 /* atan2(+-inf, -inf) == +-pi*3/4 */ |
|
281 return copysign(0.75*Py_MATH_PI, z.imag); |
|
282 } |
|
283 /* atan2(+-inf, x) == +-pi/2 for finite x */ |
|
284 return copysign(0.5*Py_MATH_PI, z.imag); |
|
285 } |
|
286 if (Py_IS_INFINITY(z.real) || z.imag == 0.) { |
|
287 if (copysign(1., z.real) == 1.) |
|
288 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ |
|
289 return copysign(0., z.imag); |
|
290 else |
|
291 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ |
|
292 return copysign(Py_MATH_PI, z.imag); |
|
293 } |
|
294 return atan2(z.imag, z.real); |
|
295 } |
|
296 |
|
297 PyDoc_STRVAR(c_atan_doc, |
|
298 "atan(x)\n" |
|
299 "\n" |
|
300 "Return the arc tangent of x."); |
|
301 |
|
302 |
|
303 static Py_complex atanh_special_values[7][7]; |
|
304 |
|
305 static Py_complex |
|
306 c_atanh(Py_complex z) |
|
307 { |
|
308 Py_complex r; |
|
309 double ay, h; |
|
310 |
|
311 SPECIAL_VALUE(z, atanh_special_values); |
|
312 |
|
313 /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */ |
|
314 if (z.real < 0.) { |
|
315 return c_neg(c_atanh(c_neg(z))); |
|
316 } |
|
317 |
|
318 ay = fabs(z.imag); |
|
319 if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) { |
|
320 /* |
|
321 if abs(z) is large then we use the approximation |
|
322 atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign |
|
323 of z.imag) |
|
324 */ |
|
325 h = hypot(z.real/2., z.imag/2.); /* safe from overflow */ |
|
326 r.real = z.real/4./h/h; |
|
327 /* the two negations in the next line cancel each other out |
|
328 except when working with unsigned zeros: they're there to |
|
329 ensure that the branch cut has the correct continuity on |
|
330 systems that don't support signed zeros */ |
|
331 r.imag = -copysign(Py_MATH_PI/2., -z.imag); |
|
332 errno = 0; |
|
333 } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) { |
|
334 /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */ |
|
335 if (ay == 0.) { |
|
336 r.real = INF; |
|
337 r.imag = z.imag; |
|
338 errno = EDOM; |
|
339 } else { |
|
340 r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.))); |
|
341 r.imag = copysign(atan2(2., -ay)/2, z.imag); |
|
342 errno = 0; |
|
343 } |
|
344 } else { |
|
345 r.real = log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.; |
|
346 r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.; |
|
347 errno = 0; |
|
348 } |
|
349 return r; |
|
350 } |
|
351 |
|
352 PyDoc_STRVAR(c_atanh_doc, |
|
353 "atanh(x)\n" |
|
354 "\n" |
|
355 "Return the hyperbolic arc tangent of x."); |
|
356 |
|
357 |
|
358 static Py_complex |
|
359 c_cos(Py_complex z) |
|
360 { |
|
361 /* cos(z) = cosh(iz) */ |
|
362 Py_complex r; |
|
363 r.real = -z.imag; |
|
364 r.imag = z.real; |
|
365 r = c_cosh(r); |
|
366 return r; |
|
367 } |
|
368 |
|
369 PyDoc_STRVAR(c_cos_doc, |
|
370 "cos(x)\n" |
|
371 "n" |
|
372 "Return the cosine of x."); |
|
373 |
|
374 |
|
375 /* cosh(infinity + i*y) needs to be dealt with specially */ |
|
376 static Py_complex cosh_special_values[7][7]; |
|
377 |
|
378 static Py_complex |
|
379 c_cosh(Py_complex z) |
|
380 { |
|
381 Py_complex r; |
|
382 double x_minus_one; |
|
383 |
|
384 /* special treatment for cosh(+/-inf + iy) if y is not a NaN */ |
|
385 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { |
|
386 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) && |
|
387 (z.imag != 0.)) { |
|
388 if (z.real > 0) { |
|
389 r.real = copysign(INF, cos(z.imag)); |
|
390 r.imag = copysign(INF, sin(z.imag)); |
|
391 } |
|
392 else { |
|
393 r.real = copysign(INF, cos(z.imag)); |
|
394 r.imag = -copysign(INF, sin(z.imag)); |
|
395 } |
|
396 } |
|
397 else { |
|
398 r = cosh_special_values[special_type(z.real)] |
|
399 [special_type(z.imag)]; |
|
400 } |
|
401 /* need to set errno = EDOM if y is +/- infinity and x is not |
|
402 a NaN */ |
|
403 if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) |
|
404 errno = EDOM; |
|
405 else |
|
406 errno = 0; |
|
407 return r; |
|
408 } |
|
409 |
|
410 if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { |
|
411 /* deal correctly with cases where cosh(z.real) overflows but |
|
412 cosh(z) does not. */ |
|
413 x_minus_one = z.real - copysign(1., z.real); |
|
414 r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E; |
|
415 r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E; |
|
416 } else { |
|
417 r.real = cos(z.imag) * cosh(z.real); |
|
418 r.imag = sin(z.imag) * sinh(z.real); |
|
419 } |
|
420 /* detect overflow, and set errno accordingly */ |
|
421 if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) |
|
422 errno = ERANGE; |
|
423 else |
|
424 errno = 0; |
|
425 return r; |
|
426 } |
|
427 |
|
428 PyDoc_STRVAR(c_cosh_doc, |
|
429 "cosh(x)\n" |
|
430 "n" |
|
431 "Return the hyperbolic cosine of x."); |
|
432 |
|
433 |
|
434 /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for |
|
435 finite y */ |
|
436 static Py_complex exp_special_values[7][7]; |
|
437 |
|
438 static Py_complex |
|
439 c_exp(Py_complex z) |
|
440 { |
|
441 Py_complex r; |
|
442 double l; |
|
443 |
|
444 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { |
|
445 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) |
|
446 && (z.imag != 0.)) { |
|
447 if (z.real > 0) { |
|
448 r.real = copysign(INF, cos(z.imag)); |
|
449 r.imag = copysign(INF, sin(z.imag)); |
|
450 } |
|
451 else { |
|
452 r.real = copysign(0., cos(z.imag)); |
|
453 r.imag = copysign(0., sin(z.imag)); |
|
454 } |
|
455 } |
|
456 else { |
|
457 r = exp_special_values[special_type(z.real)] |
|
458 [special_type(z.imag)]; |
|
459 } |
|
460 /* need to set errno = EDOM if y is +/- infinity and x is not |
|
461 a NaN and not -infinity */ |
|
462 if (Py_IS_INFINITY(z.imag) && |
|
463 (Py_IS_FINITE(z.real) || |
|
464 (Py_IS_INFINITY(z.real) && z.real > 0))) |
|
465 errno = EDOM; |
|
466 else |
|
467 errno = 0; |
|
468 return r; |
|
469 } |
|
470 |
|
471 if (z.real > CM_LOG_LARGE_DOUBLE) { |
|
472 l = exp(z.real-1.); |
|
473 r.real = l*cos(z.imag)*Py_MATH_E; |
|
474 r.imag = l*sin(z.imag)*Py_MATH_E; |
|
475 } else { |
|
476 l = exp(z.real); |
|
477 r.real = l*cos(z.imag); |
|
478 r.imag = l*sin(z.imag); |
|
479 } |
|
480 /* detect overflow, and set errno accordingly */ |
|
481 if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) |
|
482 errno = ERANGE; |
|
483 else |
|
484 errno = 0; |
|
485 return r; |
|
486 } |
|
487 |
|
488 PyDoc_STRVAR(c_exp_doc, |
|
489 "exp(x)\n" |
|
490 "\n" |
|
491 "Return the exponential value e**x."); |
|
492 |
|
493 |
|
494 static Py_complex log_special_values[7][7]; |
|
495 |
|
496 static Py_complex |
|
497 c_log(Py_complex z) |
|
498 { |
|
499 /* |
|
500 The usual formula for the real part is log(hypot(z.real, z.imag)). |
|
501 There are four situations where this formula is potentially |
|
502 problematic: |
|
503 |
|
504 (1) the absolute value of z is subnormal. Then hypot is subnormal, |
|
505 so has fewer than the usual number of bits of accuracy, hence may |
|
506 have large relative error. This then gives a large absolute error |
|
507 in the log. This can be solved by rescaling z by a suitable power |
|
508 of 2. |
|
509 |
|
510 (2) the absolute value of z is greater than DBL_MAX (e.g. when both |
|
511 z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX) |
|
512 Again, rescaling solves this. |
|
513 |
|
514 (3) the absolute value of z is close to 1. In this case it's |
|
515 difficult to achieve good accuracy, at least in part because a |
|
516 change of 1ulp in the real or imaginary part of z can result in a |
|
517 change of billions of ulps in the correctly rounded answer. |
|
518 |
|
519 (4) z = 0. The simplest thing to do here is to call the |
|
520 floating-point log with an argument of 0, and let its behaviour |
|
521 (returning -infinity, signaling a floating-point exception, setting |
|
522 errno, or whatever) determine that of c_log. So the usual formula |
|
523 is fine here. |
|
524 |
|
525 */ |
|
526 |
|
527 Py_complex r; |
|
528 double ax, ay, am, an, h; |
|
529 |
|
530 SPECIAL_VALUE(z, log_special_values); |
|
531 |
|
532 ax = fabs(z.real); |
|
533 ay = fabs(z.imag); |
|
534 |
|
535 if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) { |
|
536 r.real = log(hypot(ax/2., ay/2.)) + M_LN2; |
|
537 } else if (ax < DBL_MIN && ay < DBL_MIN) { |
|
538 if (ax > 0. || ay > 0.) { |
|
539 /* catch cases where hypot(ax, ay) is subnormal */ |
|
540 r.real = log(hypot(ldexp(ax, DBL_MANT_DIG), |
|
541 ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2; |
|
542 } |
|
543 else { |
|
544 /* log(+/-0. +/- 0i) */ |
|
545 r.real = -INF; |
|
546 r.imag = atan2(z.imag, z.real); |
|
547 errno = EDOM; |
|
548 return r; |
|
549 } |
|
550 } else { |
|
551 h = hypot(ax, ay); |
|
552 if (0.71 <= h && h <= 1.73) { |
|
553 am = ax > ay ? ax : ay; /* max(ax, ay) */ |
|
554 an = ax > ay ? ay : ax; /* min(ax, ay) */ |
|
555 r.real = log1p((am-1)*(am+1)+an*an)/2.; |
|
556 } else { |
|
557 r.real = log(h); |
|
558 } |
|
559 } |
|
560 r.imag = atan2(z.imag, z.real); |
|
561 errno = 0; |
|
562 return r; |
|
563 } |
|
564 |
|
565 |
|
566 static Py_complex |
|
567 c_log10(Py_complex z) |
|
568 { |
|
569 Py_complex r; |
|
570 int errno_save; |
|
571 |
|
572 r = c_log(z); |
|
573 errno_save = errno; /* just in case the divisions affect errno */ |
|
574 r.real = r.real / M_LN10; |
|
575 r.imag = r.imag / M_LN10; |
|
576 errno = errno_save; |
|
577 return r; |
|
578 } |
|
579 |
|
580 PyDoc_STRVAR(c_log10_doc, |
|
581 "log10(x)\n" |
|
582 "\n" |
|
583 "Return the base-10 logarithm of x."); |
|
584 |
|
585 |
|
586 static Py_complex |
|
587 c_sin(Py_complex z) |
|
588 { |
|
589 /* sin(z) = -i sin(iz) */ |
|
590 Py_complex s, r; |
|
591 s.real = -z.imag; |
|
592 s.imag = z.real; |
|
593 s = c_sinh(s); |
|
594 r.real = s.imag; |
|
595 r.imag = -s.real; |
|
596 return r; |
|
597 } |
|
598 |
|
599 PyDoc_STRVAR(c_sin_doc, |
|
600 "sin(x)\n" |
|
601 "\n" |
|
602 "Return the sine of x."); |
|
603 |
|
604 |
|
605 /* sinh(infinity + i*y) needs to be dealt with specially */ |
|
606 static Py_complex sinh_special_values[7][7]; |
|
607 |
|
608 static Py_complex |
|
609 c_sinh(Py_complex z) |
|
610 { |
|
611 Py_complex r; |
|
612 double x_minus_one; |
|
613 |
|
614 /* special treatment for sinh(+/-inf + iy) if y is finite and |
|
615 nonzero */ |
|
616 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { |
|
617 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) |
|
618 && (z.imag != 0.)) { |
|
619 if (z.real > 0) { |
|
620 r.real = copysign(INF, cos(z.imag)); |
|
621 r.imag = copysign(INF, sin(z.imag)); |
|
622 } |
|
623 else { |
|
624 r.real = -copysign(INF, cos(z.imag)); |
|
625 r.imag = copysign(INF, sin(z.imag)); |
|
626 } |
|
627 } |
|
628 else { |
|
629 r = sinh_special_values[special_type(z.real)] |
|
630 [special_type(z.imag)]; |
|
631 } |
|
632 /* need to set errno = EDOM if y is +/- infinity and x is not |
|
633 a NaN */ |
|
634 if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) |
|
635 errno = EDOM; |
|
636 else |
|
637 errno = 0; |
|
638 return r; |
|
639 } |
|
640 |
|
641 if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { |
|
642 x_minus_one = z.real - copysign(1., z.real); |
|
643 r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E; |
|
644 r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E; |
|
645 } else { |
|
646 r.real = cos(z.imag) * sinh(z.real); |
|
647 r.imag = sin(z.imag) * cosh(z.real); |
|
648 } |
|
649 /* detect overflow, and set errno accordingly */ |
|
650 if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) |
|
651 errno = ERANGE; |
|
652 else |
|
653 errno = 0; |
|
654 return r; |
|
655 } |
|
656 |
|
657 PyDoc_STRVAR(c_sinh_doc, |
|
658 "sinh(x)\n" |
|
659 "\n" |
|
660 "Return the hyperbolic sine of x."); |
|
661 |
|
662 |
|
663 static Py_complex sqrt_special_values[7][7]; |
|
664 |
|
665 static Py_complex |
|
666 c_sqrt(Py_complex z) |
|
667 { |
|
668 /* |
|
669 Method: use symmetries to reduce to the case when x = z.real and y |
|
670 = z.imag are nonnegative. Then the real part of the result is |
|
671 given by |
|
672 |
|
673 s = sqrt((x + hypot(x, y))/2) |
|
674 |
|
675 and the imaginary part is |
|
676 |
|
677 d = (y/2)/s |
|
678 |
|
679 If either x or y is very large then there's a risk of overflow in |
|
680 computation of the expression x + hypot(x, y). We can avoid this |
|
681 by rewriting the formula for s as: |
|
682 |
|
683 s = 2*sqrt(x/8 + hypot(x/8, y/8)) |
|
684 |
|
685 This costs us two extra multiplications/divisions, but avoids the |
|
686 overhead of checking for x and y large. |
|
687 |
|
688 If both x and y are subnormal then hypot(x, y) may also be |
|
689 subnormal, so will lack full precision. We solve this by rescaling |
|
690 x and y by a sufficiently large power of 2 to ensure that x and y |
|
691 are normal. |
|
692 */ |
|
693 |
|
694 |
|
695 Py_complex r; |
|
696 double s,d; |
|
697 double ax, ay; |
|
698 |
|
699 SPECIAL_VALUE(z, sqrt_special_values); |
|
700 |
|
701 if (z.real == 0. && z.imag == 0.) { |
|
702 r.real = 0.; |
|
703 r.imag = z.imag; |
|
704 return r; |
|
705 } |
|
706 |
|
707 ax = fabs(z.real); |
|
708 ay = fabs(z.imag); |
|
709 |
|
710 if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) { |
|
711 /* here we catch cases where hypot(ax, ay) is subnormal */ |
|
712 ax = ldexp(ax, CM_SCALE_UP); |
|
713 s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))), |
|
714 CM_SCALE_DOWN); |
|
715 } else { |
|
716 ax /= 8.; |
|
717 s = 2.*sqrt(ax + hypot(ax, ay/8.)); |
|
718 } |
|
719 d = ay/(2.*s); |
|
720 |
|
721 if (z.real >= 0.) { |
|
722 r.real = s; |
|
723 r.imag = copysign(d, z.imag); |
|
724 } else { |
|
725 r.real = d; |
|
726 r.imag = copysign(s, z.imag); |
|
727 } |
|
728 errno = 0; |
|
729 return r; |
|
730 } |
|
731 |
|
732 PyDoc_STRVAR(c_sqrt_doc, |
|
733 "sqrt(x)\n" |
|
734 "\n" |
|
735 "Return the square root of x."); |
|
736 |
|
737 |
|
738 static Py_complex |
|
739 c_tan(Py_complex z) |
|
740 { |
|
741 /* tan(z) = -i tanh(iz) */ |
|
742 Py_complex s, r; |
|
743 s.real = -z.imag; |
|
744 s.imag = z.real; |
|
745 s = c_tanh(s); |
|
746 r.real = s.imag; |
|
747 r.imag = -s.real; |
|
748 return r; |
|
749 } |
|
750 |
|
751 PyDoc_STRVAR(c_tan_doc, |
|
752 "tan(x)\n" |
|
753 "\n" |
|
754 "Return the tangent of x."); |
|
755 |
|
756 |
|
757 /* tanh(infinity + i*y) needs to be dealt with specially */ |
|
758 static Py_complex tanh_special_values[7][7]; |
|
759 |
|
760 static Py_complex |
|
761 c_tanh(Py_complex z) |
|
762 { |
|
763 /* Formula: |
|
764 |
|
765 tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) / |
|
766 (1+tan(y)^2 tanh(x)^2) |
|
767 |
|
768 To avoid excessive roundoff error, 1-tanh(x)^2 is better computed |
|
769 as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2 |
|
770 by 4 exp(-2*x) instead, to avoid possible overflow in the |
|
771 computation of cosh(x). |
|
772 |
|
773 */ |
|
774 |
|
775 Py_complex r; |
|
776 double tx, ty, cx, txty, denom; |
|
777 |
|
778 /* special treatment for tanh(+/-inf + iy) if y is finite and |
|
779 nonzero */ |
|
780 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { |
|
781 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) |
|
782 && (z.imag != 0.)) { |
|
783 if (z.real > 0) { |
|
784 r.real = 1.0; |
|
785 r.imag = copysign(0., |
|
786 2.*sin(z.imag)*cos(z.imag)); |
|
787 } |
|
788 else { |
|
789 r.real = -1.0; |
|
790 r.imag = copysign(0., |
|
791 2.*sin(z.imag)*cos(z.imag)); |
|
792 } |
|
793 } |
|
794 else { |
|
795 r = tanh_special_values[special_type(z.real)] |
|
796 [special_type(z.imag)]; |
|
797 } |
|
798 /* need to set errno = EDOM if z.imag is +/-infinity and |
|
799 z.real is finite */ |
|
800 if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real)) |
|
801 errno = EDOM; |
|
802 else |
|
803 errno = 0; |
|
804 return r; |
|
805 } |
|
806 |
|
807 /* danger of overflow in 2.*z.imag !*/ |
|
808 if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { |
|
809 r.real = copysign(1., z.real); |
|
810 r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real)); |
|
811 } else { |
|
812 tx = tanh(z.real); |
|
813 ty = tan(z.imag); |
|
814 cx = 1./cosh(z.real); |
|
815 txty = tx*ty; |
|
816 denom = 1. + txty*txty; |
|
817 r.real = tx*(1.+ty*ty)/denom; |
|
818 r.imag = ((ty/denom)*cx)*cx; |
|
819 } |
|
820 errno = 0; |
|
821 return r; |
|
822 } |
|
823 |
|
824 PyDoc_STRVAR(c_tanh_doc, |
|
825 "tanh(x)\n" |
|
826 "\n" |
|
827 "Return the hyperbolic tangent of x."); |
|
828 |
|
829 |
|
830 static PyObject * |
|
831 cmath_log(PyObject *self, PyObject *args) |
|
832 { |
|
833 Py_complex x; |
|
834 Py_complex y; |
|
835 |
|
836 if (!PyArg_ParseTuple(args, "D|D", &x, &y)) |
|
837 return NULL; |
|
838 |
|
839 errno = 0; |
|
840 PyFPE_START_PROTECT("complex function", return 0) |
|
841 x = c_log(x); |
|
842 if (PyTuple_GET_SIZE(args) == 2) { |
|
843 y = c_log(y); |
|
844 x = c_quot(x, y); |
|
845 } |
|
846 PyFPE_END_PROTECT(x) |
|
847 if (errno != 0) |
|
848 return math_error(); |
|
849 return PyComplex_FromCComplex(x); |
|
850 } |
|
851 |
|
852 PyDoc_STRVAR(cmath_log_doc, |
|
853 "log(x[, base]) -> the logarithm of x to the given base.\n\ |
|
854 If the base not specified, returns the natural logarithm (base e) of x."); |
|
855 |
|
856 |
|
857 /* And now the glue to make them available from Python: */ |
|
858 |
|
859 static PyObject * |
|
860 math_error(void) |
|
861 { |
|
862 if (errno == EDOM) |
|
863 PyErr_SetString(PyExc_ValueError, "math domain error"); |
|
864 else if (errno == ERANGE) |
|
865 PyErr_SetString(PyExc_OverflowError, "math range error"); |
|
866 else /* Unexpected math error */ |
|
867 PyErr_SetFromErrno(PyExc_ValueError); |
|
868 return NULL; |
|
869 } |
|
870 |
|
871 static PyObject * |
|
872 math_1(PyObject *args, Py_complex (*func)(Py_complex)) |
|
873 { |
|
874 Py_complex x,r ; |
|
875 if (!PyArg_ParseTuple(args, "D", &x)) |
|
876 return NULL; |
|
877 errno = 0; |
|
878 PyFPE_START_PROTECT("complex function", return 0); |
|
879 r = (*func)(x); |
|
880 PyFPE_END_PROTECT(r); |
|
881 if (errno == EDOM) { |
|
882 PyErr_SetString(PyExc_ValueError, "math domain error"); |
|
883 return NULL; |
|
884 } |
|
885 else if (errno == ERANGE) { |
|
886 PyErr_SetString(PyExc_OverflowError, "math range error"); |
|
887 return NULL; |
|
888 } |
|
889 else { |
|
890 return PyComplex_FromCComplex(r); |
|
891 } |
|
892 } |
|
893 |
|
894 #define FUNC1(stubname, func) \ |
|
895 static PyObject * stubname(PyObject *self, PyObject *args) { \ |
|
896 return math_1(args, func); \ |
|
897 } |
|
898 |
|
899 FUNC1(cmath_acos, c_acos) |
|
900 FUNC1(cmath_acosh, c_acosh) |
|
901 FUNC1(cmath_asin, c_asin) |
|
902 FUNC1(cmath_asinh, c_asinh) |
|
903 FUNC1(cmath_atan, c_atan) |
|
904 FUNC1(cmath_atanh, c_atanh) |
|
905 FUNC1(cmath_cos, c_cos) |
|
906 FUNC1(cmath_cosh, c_cosh) |
|
907 FUNC1(cmath_exp, c_exp) |
|
908 FUNC1(cmath_log10, c_log10) |
|
909 FUNC1(cmath_sin, c_sin) |
|
910 FUNC1(cmath_sinh, c_sinh) |
|
911 FUNC1(cmath_sqrt, c_sqrt) |
|
912 FUNC1(cmath_tan, c_tan) |
|
913 FUNC1(cmath_tanh, c_tanh) |
|
914 |
|
915 static PyObject * |
|
916 cmath_phase(PyObject *self, PyObject *args) |
|
917 { |
|
918 Py_complex z; |
|
919 double phi; |
|
920 if (!PyArg_ParseTuple(args, "D:phase", &z)) |
|
921 return NULL; |
|
922 errno = 0; |
|
923 PyFPE_START_PROTECT("arg function", return 0) |
|
924 phi = c_atan2(z); |
|
925 PyFPE_END_PROTECT(phi) |
|
926 if (errno != 0) |
|
927 return math_error(); |
|
928 else |
|
929 return PyFloat_FromDouble(phi); |
|
930 } |
|
931 |
|
932 PyDoc_STRVAR(cmath_phase_doc, |
|
933 "phase(z) -> float\n\n\ |
|
934 Return argument, also known as the phase angle, of a complex."); |
|
935 |
|
936 static PyObject * |
|
937 cmath_polar(PyObject *self, PyObject *args) |
|
938 { |
|
939 Py_complex z; |
|
940 double r, phi; |
|
941 if (!PyArg_ParseTuple(args, "D:polar", &z)) |
|
942 return NULL; |
|
943 PyFPE_START_PROTECT("polar function", return 0) |
|
944 phi = c_atan2(z); /* should not cause any exception */ |
|
945 r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */ |
|
946 PyFPE_END_PROTECT(r) |
|
947 if (errno != 0) |
|
948 return math_error(); |
|
949 else |
|
950 return Py_BuildValue("dd", r, phi); |
|
951 } |
|
952 |
|
953 PyDoc_STRVAR(cmath_polar_doc, |
|
954 "polar(z) -> r: float, phi: float\n\n\ |
|
955 Convert a complex from rectangular coordinates to polar coordinates. r is\n\ |
|
956 the distance from 0 and phi the phase angle."); |
|
957 |
|
958 /* |
|
959 rect() isn't covered by the C99 standard, but it's not too hard to |
|
960 figure out 'spirit of C99' rules for special value handing: |
|
961 |
|
962 rect(x, t) should behave like exp(log(x) + it) for positive-signed x |
|
963 rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x |
|
964 rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0) |
|
965 gives nan +- i0 with the sign of the imaginary part unspecified. |
|
966 |
|
967 */ |
|
968 |
|
969 static Py_complex rect_special_values[7][7]; |
|
970 |
|
971 static PyObject * |
|
972 cmath_rect(PyObject *self, PyObject *args) |
|
973 { |
|
974 Py_complex z; |
|
975 double r, phi; |
|
976 if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi)) |
|
977 return NULL; |
|
978 errno = 0; |
|
979 PyFPE_START_PROTECT("rect function", return 0) |
|
980 |
|
981 /* deal with special values */ |
|
982 if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) { |
|
983 /* if r is +/-infinity and phi is finite but nonzero then |
|
984 result is (+-INF +-INF i), but we need to compute cos(phi) |
|
985 and sin(phi) to figure out the signs. */ |
|
986 if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi) |
|
987 && (phi != 0.))) { |
|
988 if (r > 0) { |
|
989 z.real = copysign(INF, cos(phi)); |
|
990 z.imag = copysign(INF, sin(phi)); |
|
991 } |
|
992 else { |
|
993 z.real = -copysign(INF, cos(phi)); |
|
994 z.imag = -copysign(INF, sin(phi)); |
|
995 } |
|
996 } |
|
997 else { |
|
998 z = rect_special_values[special_type(r)] |
|
999 [special_type(phi)]; |
|
1000 } |
|
1001 /* need to set errno = EDOM if r is a nonzero number and phi |
|
1002 is infinite */ |
|
1003 if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi)) |
|
1004 errno = EDOM; |
|
1005 else |
|
1006 errno = 0; |
|
1007 } |
|
1008 else { |
|
1009 z.real = r * cos(phi); |
|
1010 z.imag = r * sin(phi); |
|
1011 errno = 0; |
|
1012 } |
|
1013 |
|
1014 PyFPE_END_PROTECT(z) |
|
1015 if (errno != 0) |
|
1016 return math_error(); |
|
1017 else |
|
1018 return PyComplex_FromCComplex(z); |
|
1019 } |
|
1020 |
|
1021 PyDoc_STRVAR(cmath_rect_doc, |
|
1022 "rect(r, phi) -> z: complex\n\n\ |
|
1023 Convert from polar coordinates to rectangular coordinates."); |
|
1024 |
|
1025 static PyObject * |
|
1026 cmath_isnan(PyObject *self, PyObject *args) |
|
1027 { |
|
1028 Py_complex z; |
|
1029 if (!PyArg_ParseTuple(args, "D:isnan", &z)) |
|
1030 return NULL; |
|
1031 return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)); |
|
1032 } |
|
1033 |
|
1034 PyDoc_STRVAR(cmath_isnan_doc, |
|
1035 "isnan(z) -> bool\n\ |
|
1036 Checks if the real or imaginary part of z not a number (NaN)"); |
|
1037 |
|
1038 static PyObject * |
|
1039 cmath_isinf(PyObject *self, PyObject *args) |
|
1040 { |
|
1041 Py_complex z; |
|
1042 if (!PyArg_ParseTuple(args, "D:isnan", &z)) |
|
1043 return NULL; |
|
1044 return PyBool_FromLong(Py_IS_INFINITY(z.real) || |
|
1045 Py_IS_INFINITY(z.imag)); |
|
1046 } |
|
1047 |
|
1048 PyDoc_STRVAR(cmath_isinf_doc, |
|
1049 "isinf(z) -> bool\n\ |
|
1050 Checks if the real or imaginary part of z is infinite."); |
|
1051 |
|
1052 |
|
1053 PyDoc_STRVAR(module_doc, |
|
1054 "This module is always available. It provides access to mathematical\n" |
|
1055 "functions for complex numbers."); |
|
1056 |
|
1057 static PyMethodDef cmath_methods[] = { |
|
1058 {"acos", cmath_acos, METH_VARARGS, c_acos_doc}, |
|
1059 {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc}, |
|
1060 {"asin", cmath_asin, METH_VARARGS, c_asin_doc}, |
|
1061 {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc}, |
|
1062 {"atan", cmath_atan, METH_VARARGS, c_atan_doc}, |
|
1063 {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc}, |
|
1064 {"cos", cmath_cos, METH_VARARGS, c_cos_doc}, |
|
1065 {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc}, |
|
1066 {"exp", cmath_exp, METH_VARARGS, c_exp_doc}, |
|
1067 {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc}, |
|
1068 {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc}, |
|
1069 {"log", cmath_log, METH_VARARGS, cmath_log_doc}, |
|
1070 {"log10", cmath_log10, METH_VARARGS, c_log10_doc}, |
|
1071 {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc}, |
|
1072 {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc}, |
|
1073 {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc}, |
|
1074 {"sin", cmath_sin, METH_VARARGS, c_sin_doc}, |
|
1075 {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc}, |
|
1076 {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc}, |
|
1077 {"tan", cmath_tan, METH_VARARGS, c_tan_doc}, |
|
1078 {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc}, |
|
1079 {NULL, NULL} /* sentinel */ |
|
1080 }; |
|
1081 |
|
1082 PyMODINIT_FUNC |
|
1083 initcmath(void) |
|
1084 { |
|
1085 PyObject *m; |
|
1086 |
|
1087 m = Py_InitModule3("cmath", cmath_methods, module_doc); |
|
1088 if (m == NULL) |
|
1089 return; |
|
1090 |
|
1091 PyModule_AddObject(m, "pi", |
|
1092 PyFloat_FromDouble(Py_MATH_PI)); |
|
1093 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); |
|
1094 |
|
1095 /* initialize special value tables */ |
|
1096 |
|
1097 #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY } |
|
1098 #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p; |
|
1099 |
|
1100 INIT_SPECIAL_VALUES(acos_special_values, { |
|
1101 C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF) |
|
1102 C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N) |
|
1103 C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N) |
|
1104 C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N) |
|
1105 C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N) |
|
1106 C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF) |
|
1107 C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N) |
|
1108 }) |
|
1109 |
|
1110 INIT_SPECIAL_VALUES(acosh_special_values, { |
|
1111 C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N) |
|
1112 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) |
|
1113 C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N) |
|
1114 C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N) |
|
1115 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) |
|
1116 C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) |
|
1117 C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N) |
|
1118 }) |
|
1119 |
|
1120 INIT_SPECIAL_VALUES(asinh_special_values, { |
|
1121 C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N) |
|
1122 C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N) |
|
1123 C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N) |
|
1124 C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N) |
|
1125 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) |
|
1126 C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) |
|
1127 C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N) |
|
1128 }) |
|
1129 |
|
1130 INIT_SPECIAL_VALUES(atanh_special_values, { |
|
1131 C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N) |
|
1132 C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N) |
|
1133 C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N) |
|
1134 C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N) |
|
1135 C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N) |
|
1136 C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N) |
|
1137 C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N) |
|
1138 }) |
|
1139 |
|
1140 INIT_SPECIAL_VALUES(cosh_special_values, { |
|
1141 C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N) |
|
1142 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|
1143 C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.) |
|
1144 C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.) |
|
1145 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|
1146 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) |
|
1147 C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N) |
|
1148 }) |
|
1149 |
|
1150 INIT_SPECIAL_VALUES(exp_special_values, { |
|
1151 C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.) |
|
1152 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|
1153 C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N) |
|
1154 C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N) |
|
1155 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|
1156 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) |
|
1157 C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) |
|
1158 }) |
|
1159 |
|
1160 INIT_SPECIAL_VALUES(log_special_values, { |
|
1161 C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N) |
|
1162 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) |
|
1163 C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N) |
|
1164 C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N) |
|
1165 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) |
|
1166 C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) |
|
1167 C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N) |
|
1168 }) |
|
1169 |
|
1170 INIT_SPECIAL_VALUES(sinh_special_values, { |
|
1171 C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N) |
|
1172 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|
1173 C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N) |
|
1174 C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N) |
|
1175 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|
1176 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) |
|
1177 C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) |
|
1178 }) |
|
1179 |
|
1180 INIT_SPECIAL_VALUES(sqrt_special_values, { |
|
1181 C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF) |
|
1182 C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N) |
|
1183 C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N) |
|
1184 C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N) |
|
1185 C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N) |
|
1186 C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N) |
|
1187 C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N) |
|
1188 }) |
|
1189 |
|
1190 INIT_SPECIAL_VALUES(tanh_special_values, { |
|
1191 C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.) |
|
1192 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|
1193 C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N) |
|
1194 C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N) |
|
1195 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|
1196 C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.) |
|
1197 C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) |
|
1198 }) |
|
1199 |
|
1200 INIT_SPECIAL_VALUES(rect_special_values, { |
|
1201 C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N) |
|
1202 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|
1203 C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.) |
|
1204 C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.) |
|
1205 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|
1206 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) |
|
1207 C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N) |
|
1208 }) |
|
1209 } |