|
1 ------------------------------------------------------------------------ |
|
2 -- dqFMA.decTest -- decQuad Fused Multiply Add -- |
|
3 -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- |
|
4 ------------------------------------------------------------------------ |
|
5 -- Please see the document "General Decimal Arithmetic Testcases" -- |
|
6 -- at http://www2.hursley.ibm.com/decimal for the description of -- |
|
7 -- these testcases. -- |
|
8 -- -- |
|
9 -- These testcases are experimental ('beta' versions), and they -- |
|
10 -- may contain errors. They are offered on an as-is basis. In -- |
|
11 -- particular, achieving the same results as the tests here is not -- |
|
12 -- a guarantee that an implementation complies with any Standard -- |
|
13 -- or specification. The tests are not exhaustive. -- |
|
14 -- -- |
|
15 -- Please send comments, suggestions, and corrections to the author: -- |
|
16 -- Mike Cowlishaw, IBM Fellow -- |
|
17 -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- |
|
18 -- mfc@uk.ibm.com -- |
|
19 ------------------------------------------------------------------------ |
|
20 version: 2.58 |
|
21 |
|
22 extended: 1 |
|
23 clamp: 1 |
|
24 precision: 34 |
|
25 maxExponent: 6144 |
|
26 minExponent: -6143 |
|
27 rounding: half_even |
|
28 |
|
29 -- These tests comprese three parts: |
|
30 -- 1. Sanity checks and other three-operand tests (especially those |
|
31 -- where the fused operation makes a difference) |
|
32 -- 2. Multiply tests (third operand is neutral zero [0E+emax]) |
|
33 -- 3. Addition tests (first operand is 1) |
|
34 -- The multiply and addition tests are extensive because FMA may have |
|
35 -- its own dedicated multiplication or addition routine(s), and they |
|
36 -- also inherently check the left-to-right properties. |
|
37 |
|
38 -- Sanity checks |
|
39 dqfma0001 fma 1 1 1 -> 2 |
|
40 dqfma0002 fma 1 1 2 -> 3 |
|
41 dqfma0003 fma 2 2 3 -> 7 |
|
42 dqfma0004 fma 9 9 9 -> 90 |
|
43 dqfma0005 fma -1 1 1 -> 0 |
|
44 dqfma0006 fma -1 1 2 -> 1 |
|
45 dqfma0007 fma -2 2 3 -> -1 |
|
46 dqfma0008 fma -9 9 9 -> -72 |
|
47 dqfma0011 fma 1 -1 1 -> 0 |
|
48 dqfma0012 fma 1 -1 2 -> 1 |
|
49 dqfma0013 fma 2 -2 3 -> -1 |
|
50 dqfma0014 fma 9 -9 9 -> -72 |
|
51 dqfma0015 fma 1 1 -1 -> 0 |
|
52 dqfma0016 fma 1 1 -2 -> -1 |
|
53 dqfma0017 fma 2 2 -3 -> 1 |
|
54 dqfma0018 fma 9 9 -9 -> 72 |
|
55 |
|
56 -- non-integer exacts |
|
57 dqfma0100 fma 25.2 63.6 -438 -> 1164.72 |
|
58 dqfma0101 fma 0.301 0.380 334 -> 334.114380 |
|
59 dqfma0102 fma 49.2 -4.8 23.3 -> -212.86 |
|
60 dqfma0103 fma 4.22 0.079 -94.6 -> -94.26662 |
|
61 dqfma0104 fma 903 0.797 0.887 -> 720.578 |
|
62 dqfma0105 fma 6.13 -161 65.9 -> -921.03 |
|
63 dqfma0106 fma 28.2 727 5.45 -> 20506.85 |
|
64 dqfma0107 fma 4 605 688 -> 3108 |
|
65 dqfma0108 fma 93.3 0.19 0.226 -> 17.953 |
|
66 dqfma0109 fma 0.169 -341 5.61 -> -52.019 |
|
67 dqfma0110 fma -72.2 30 -51.2 -> -2217.2 |
|
68 dqfma0111 fma -0.409 13 20.4 -> 15.083 |
|
69 dqfma0112 fma 317 77.0 19.0 -> 24428.0 |
|
70 dqfma0113 fma 47 6.58 1.62 -> 310.88 |
|
71 dqfma0114 fma 1.36 0.984 0.493 -> 1.83124 |
|
72 dqfma0115 fma 72.7 274 1.56 -> 19921.36 |
|
73 dqfma0116 fma 335 847 83 -> 283828 |
|
74 dqfma0117 fma 666 0.247 25.4 -> 189.902 |
|
75 dqfma0118 fma -3.87 3.06 78.0 -> 66.1578 |
|
76 dqfma0119 fma 0.742 192 35.6 -> 178.064 |
|
77 dqfma0120 fma -91.6 5.29 0.153 -> -484.411 |
|
78 |
|
79 -- cases where result is different from separate multiply + add; each |
|
80 -- is preceded by the result of unfused multiply and add |
|
81 -- [this is about 20% of all similar cases in general] |
|
82 -- -> 4.500119002100000209469729375698778E+38 |
|
83 dqfma0202 fma 68537985861355864457.5694 6565875762972086605.85969 35892634447236753.172812 -> 4.500119002100000209469729375698779E+38 Inexact Rounded |
|
84 -- -> 5.996248469584594346858881620185514E+41 |
|
85 dqfma0208 fma 89261822344727628571.9 6717595845654131383336.89 5061036497288796076266.11 -> 5.996248469584594346858881620185513E+41 Inexact Rounded |
|
86 -- -> 1.899242968678256924021594770874070E+34 |
|
87 dqfma0210 fma 320506237232448685.495971 59257597764017967.984448 3205615239077711589912.85 -> 1.899242968678256924021594770874071E+34 Inexact Rounded |
|
88 -- -> 7.078596978842809537929699954860309E+37 |
|
89 dqfma0215 fma 220247843259112263.17995 321392340287987979002.80 47533279819997167655440 -> 7.078596978842809537929699954860308E+37 Inexact Rounded |
|
90 -- -> 1.224955667581427559754106862350743E+37 |
|
91 dqfma0226 fma 23880729790368880412.1449 512947333827064719.55407 217117438419590824502.963 -> 1.224955667581427559754106862350744E+37 Inexact Rounded |
|
92 -- -> -2.530094043253148806272276368579144E+42 |
|
93 dqfma0229 fma 2539892357016099706.4126 -996142232667504817717435 53682082598315949425.937 -> -2.530094043253148806272276368579143E+42 Inexact Rounded |
|
94 -- -> 1.713387085759711954319391412788454E+37 |
|
95 dqfma0233 fma 4546339491341624464.0804 3768717864169205581 83578980278690395184.620 -> 1.713387085759711954319391412788453E+37 Inexact Rounded |
|
96 -- -> 4.062275663405823716411579117771547E+35 |
|
97 dqfma0235 fma 409242119433816131.42253 992633815166741501.477249 70179636544416756129546 -> 4.062275663405823716411579117771548E+35 Inexact Rounded |
|
98 -- -> 6.002604327732568490562249875306823E+47 |
|
99 dqfma0258 fma 817941336593541742159684 733867339769310729266598 78563844650942419311830.8 -> 6.002604327732568490562249875306822E+47 Inexact Rounded |
|
100 -- -> -2.027022514381452197510103395283874E+39 |
|
101 dqfma0264 fma 387617310169161270.737532 -5229442703414956061216.62 57665666816652967150473.5 -> -2.027022514381452197510103395283873E+39 Inexact Rounded |
|
102 -- -> -7.856525039803554001144089842730361E+37 |
|
103 dqfma0267 fma -847655845720565274701.210 92685316564117739.83984 22780950041376424429.5686 -> -7.856525039803554001144089842730360E+37 Inexact Rounded |
|
104 -- -> 1.695515562011520746125607502237559E+38 |
|
105 dqfma0268 fma 21590290365127685.3675 7853139227576541379426.8 -3275859437236180.761544 -> 1.695515562011520746125607502237558E+38 Inexact Rounded |
|
106 -- -> -8.448422935783289219748115038014710E+38 |
|
107 dqfma0269 fma -974320636272862697.971586 867109103641860247440.756 -9775170775902454762.98 -> -8.448422935783289219748115038014709E+38 Inexact Rounded |
|
108 |
|
109 -- Cases where multiply would overflow or underflow if separate |
|
110 dqfma0300 fma 9e+6144 10 0 -> Infinity Overflow Inexact Rounded |
|
111 dqfma0301 fma 1e+6144 10 0 -> Infinity Overflow Inexact Rounded |
|
112 dqfma0302 fma 1e+6144 10 -1e+6144 -> 9.000000000000000000000000000000000E+6144 Clamped |
|
113 dqfma0303 fma 1e+6144 10 -9e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped |
|
114 -- subnormal etc. |
|
115 dqfma0305 fma 1e-6176 0.1 0 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
116 dqfma0306 fma 1e-6176 0.1 1 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
117 dqfma0307 fma 1e-6176 0.1 1e-6176 -> 1E-6176 Underflow Subnormal Inexact Rounded |
|
118 |
|
119 -- Infinite combinations |
|
120 dqfma0800 fma Inf Inf Inf -> Infinity |
|
121 dqfma0801 fma Inf Inf -Inf -> NaN Invalid_operation |
|
122 dqfma0802 fma Inf -Inf Inf -> NaN Invalid_operation |
|
123 dqfma0803 fma Inf -Inf -Inf -> -Infinity |
|
124 dqfma0804 fma -Inf Inf Inf -> NaN Invalid_operation |
|
125 dqfma0805 fma -Inf Inf -Inf -> -Infinity |
|
126 dqfma0806 fma -Inf -Inf Inf -> Infinity |
|
127 dqfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation |
|
128 |
|
129 -- Triple NaN propagation |
|
130 dqfma0900 fma NaN2 NaN3 NaN5 -> NaN2 |
|
131 dqfma0901 fma 0 NaN3 NaN5 -> NaN3 |
|
132 dqfma0902 fma 0 0 NaN5 -> NaN5 |
|
133 -- first sNaN wins (consider qNaN from earlier sNaN being |
|
134 -- overridden by an sNaN in third operand) |
|
135 dqfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation |
|
136 dqfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation |
|
137 dqfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation |
|
138 dqfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation |
|
139 dqfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation |
|
140 dqfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation |
|
141 |
|
142 -- MULTIPLICATION TESTS ------------------------------------------------ |
|
143 rounding: half_even |
|
144 |
|
145 -- sanity checks |
|
146 dqfma2000 fma 2 2 0e+6144 -> 4 |
|
147 dqfma2001 fma 2 3 0e+6144 -> 6 |
|
148 dqfma2002 fma 5 1 0e+6144 -> 5 |
|
149 dqfma2003 fma 5 2 0e+6144 -> 10 |
|
150 dqfma2004 fma 1.20 2 0e+6144 -> 2.40 |
|
151 dqfma2005 fma 1.20 0 0e+6144 -> 0.00 |
|
152 dqfma2006 fma 1.20 -2 0e+6144 -> -2.40 |
|
153 dqfma2007 fma -1.20 2 0e+6144 -> -2.40 |
|
154 dqfma2008 fma -1.20 0 0e+6144 -> 0.00 |
|
155 dqfma2009 fma -1.20 -2 0e+6144 -> 2.40 |
|
156 dqfma2010 fma 5.09 7.1 0e+6144 -> 36.139 |
|
157 dqfma2011 fma 2.5 4 0e+6144 -> 10.0 |
|
158 dqfma2012 fma 2.50 4 0e+6144 -> 10.00 |
|
159 dqfma2013 fma 1.23456789 1.0000000000000000000000000000 0e+6144 -> 1.234567890000000000000000000000000 Rounded |
|
160 dqfma2015 fma 2.50 4 0e+6144 -> 10.00 |
|
161 dqfma2016 fma 9.99999999999999999 9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded |
|
162 dqfma2017 fma 9.99999999999999999 -9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded |
|
163 dqfma2018 fma -9.99999999999999999 9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded |
|
164 dqfma2019 fma -9.99999999999999999 -9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded |
|
165 |
|
166 -- zeros, etc. |
|
167 dqfma2021 fma 0 0 0e+6144 -> 0 |
|
168 dqfma2022 fma 0 -0 0e+6144 -> 0 |
|
169 dqfma2023 fma -0 0 0e+6144 -> 0 |
|
170 dqfma2024 fma -0 -0 0e+6144 -> 0 |
|
171 dqfma2025 fma -0.0 -0.0 0e+6144 -> 0.00 |
|
172 dqfma2026 fma -0.0 -0.0 0e+6144 -> 0.00 |
|
173 dqfma2027 fma -0.0 -0.0 0e+6144 -> 0.00 |
|
174 dqfma2028 fma -0.0 -0.0 0e+6144 -> 0.00 |
|
175 dqfma2030 fma 5.00 1E-3 0e+6144 -> 0.00500 |
|
176 dqfma2031 fma 00.00 0.000 0e+6144 -> 0.00000 |
|
177 dqfma2032 fma 00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0 |
|
178 dqfma2033 fma 0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0 |
|
179 dqfma2034 fma -5.00 1E-3 0e+6144 -> -0.00500 |
|
180 dqfma2035 fma -00.00 0.000 0e+6144 -> 0.00000 |
|
181 dqfma2036 fma -00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0 |
|
182 dqfma2037 fma -0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0 |
|
183 dqfma2038 fma 5.00 -1E-3 0e+6144 -> -0.00500 |
|
184 dqfma2039 fma 00.00 -0.000 0e+6144 -> 0.00000 |
|
185 dqfma2040 fma 00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0 |
|
186 dqfma2041 fma 0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0 |
|
187 dqfma2042 fma -5.00 -1E-3 0e+6144 -> 0.00500 |
|
188 dqfma2043 fma -00.00 -0.000 0e+6144 -> 0.00000 |
|
189 dqfma2044 fma -00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0 |
|
190 dqfma2045 fma -0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0 |
|
191 |
|
192 -- examples from decarith |
|
193 dqfma2050 fma 1.20 3 0e+6144 -> 3.60 |
|
194 dqfma2051 fma 7 3 0e+6144 -> 21 |
|
195 dqfma2052 fma 0.9 0.8 0e+6144 -> 0.72 |
|
196 dqfma2053 fma 0.9 -0 0e+6144 -> 0.0 |
|
197 dqfma2054 fma 654321 654321 0e+6144 -> 428135971041 |
|
198 |
|
199 dqfma2060 fma 123.45 1e7 0e+6144 -> 1.2345E+9 |
|
200 dqfma2061 fma 123.45 1e8 0e+6144 -> 1.2345E+10 |
|
201 dqfma2062 fma 123.45 1e+9 0e+6144 -> 1.2345E+11 |
|
202 dqfma2063 fma 123.45 1e10 0e+6144 -> 1.2345E+12 |
|
203 dqfma2064 fma 123.45 1e11 0e+6144 -> 1.2345E+13 |
|
204 dqfma2065 fma 123.45 1e12 0e+6144 -> 1.2345E+14 |
|
205 dqfma2066 fma 123.45 1e13 0e+6144 -> 1.2345E+15 |
|
206 |
|
207 |
|
208 -- test some intermediate lengths |
|
209 -- 1234567890123456 |
|
210 dqfma2080 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9 |
|
211 dqfma2084 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9 |
|
212 dqfma2090 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9 |
|
213 dqfma2094 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9 |
|
214 |
|
215 -- test some more edge cases and carries |
|
216 dqfma2101 fma 9 9 0e+6144 -> 81 |
|
217 dqfma2102 fma 9 90 0e+6144 -> 810 |
|
218 dqfma2103 fma 9 900 0e+6144 -> 8100 |
|
219 dqfma2104 fma 9 9000 0e+6144 -> 81000 |
|
220 dqfma2105 fma 9 90000 0e+6144 -> 810000 |
|
221 dqfma2106 fma 9 900000 0e+6144 -> 8100000 |
|
222 dqfma2107 fma 9 9000000 0e+6144 -> 81000000 |
|
223 dqfma2108 fma 9 90000000 0e+6144 -> 810000000 |
|
224 dqfma2109 fma 9 900000000 0e+6144 -> 8100000000 |
|
225 dqfma2110 fma 9 9000000000 0e+6144 -> 81000000000 |
|
226 dqfma2111 fma 9 90000000000 0e+6144 -> 810000000000 |
|
227 dqfma2112 fma 9 900000000000 0e+6144 -> 8100000000000 |
|
228 dqfma2113 fma 9 9000000000000 0e+6144 -> 81000000000000 |
|
229 dqfma2114 fma 9 90000000000000 0e+6144 -> 810000000000000 |
|
230 dqfma2115 fma 9 900000000000000 0e+6144 -> 8100000000000000 |
|
231 --dqfma2116 fma 9 9000000000000000 0e+6144 -> 81000000000000000 |
|
232 --dqfma2117 fma 9 90000000000000000 0e+6144 -> 810000000000000000 |
|
233 --dqfma2118 fma 9 900000000000000000 0e+6144 -> 8100000000000000000 |
|
234 --dqfma2119 fma 9 9000000000000000000 0e+6144 -> 81000000000000000000 |
|
235 --dqfma2120 fma 9 90000000000000000000 0e+6144 -> 810000000000000000000 |
|
236 --dqfma2121 fma 9 900000000000000000000 0e+6144 -> 8100000000000000000000 |
|
237 --dqfma2122 fma 9 9000000000000000000000 0e+6144 -> 81000000000000000000000 |
|
238 --dqfma2123 fma 9 90000000000000000000000 0e+6144 -> 810000000000000000000000 |
|
239 -- test some more edge cases without carries |
|
240 dqfma2131 fma 3 3 0e+6144 -> 9 |
|
241 dqfma2132 fma 3 30 0e+6144 -> 90 |
|
242 dqfma2133 fma 3 300 0e+6144 -> 900 |
|
243 dqfma2134 fma 3 3000 0e+6144 -> 9000 |
|
244 dqfma2135 fma 3 30000 0e+6144 -> 90000 |
|
245 dqfma2136 fma 3 300000 0e+6144 -> 900000 |
|
246 dqfma2137 fma 3 3000000 0e+6144 -> 9000000 |
|
247 dqfma2138 fma 3 30000000 0e+6144 -> 90000000 |
|
248 dqfma2139 fma 3 300000000 0e+6144 -> 900000000 |
|
249 dqfma2140 fma 3 3000000000 0e+6144 -> 9000000000 |
|
250 dqfma2141 fma 3 30000000000 0e+6144 -> 90000000000 |
|
251 dqfma2142 fma 3 300000000000 0e+6144 -> 900000000000 |
|
252 dqfma2143 fma 3 3000000000000 0e+6144 -> 9000000000000 |
|
253 dqfma2144 fma 3 30000000000000 0e+6144 -> 90000000000000 |
|
254 dqfma2145 fma 3 300000000000000 0e+6144 -> 900000000000000 |
|
255 dqfma2146 fma 3 3000000000000000 0e+6144 -> 9000000000000000 |
|
256 dqfma2147 fma 3 30000000000000000 0e+6144 -> 90000000000000000 |
|
257 dqfma2148 fma 3 300000000000000000 0e+6144 -> 900000000000000000 |
|
258 dqfma2149 fma 3 3000000000000000000 0e+6144 -> 9000000000000000000 |
|
259 dqfma2150 fma 3 30000000000000000000 0e+6144 -> 90000000000000000000 |
|
260 dqfma2151 fma 3 300000000000000000000 0e+6144 -> 900000000000000000000 |
|
261 dqfma2152 fma 3 3000000000000000000000 0e+6144 -> 9000000000000000000000 |
|
262 dqfma2153 fma 3 30000000000000000000000 0e+6144 -> 90000000000000000000000 |
|
263 |
|
264 dqfma2263 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0e+6144 -> 145433.2908011933696719165119928296 Inexact Rounded |
|
265 |
|
266 -- test some edge cases with exact rounding |
|
267 dqfma2301 fma 900000000000000000 9 0e+6144 -> 8100000000000000000 |
|
268 dqfma2302 fma 900000000000000000 90 0e+6144 -> 81000000000000000000 |
|
269 dqfma2303 fma 900000000000000000 900 0e+6144 -> 810000000000000000000 |
|
270 dqfma2304 fma 900000000000000000 9000 0e+6144 -> 8100000000000000000000 |
|
271 dqfma2305 fma 900000000000000000 90000 0e+6144 -> 81000000000000000000000 |
|
272 dqfma2306 fma 900000000000000000 900000 0e+6144 -> 810000000000000000000000 |
|
273 dqfma2307 fma 900000000000000000 9000000 0e+6144 -> 8100000000000000000000000 |
|
274 dqfma2308 fma 900000000000000000 90000000 0e+6144 -> 81000000000000000000000000 |
|
275 dqfma2309 fma 900000000000000000 900000000 0e+6144 -> 810000000000000000000000000 |
|
276 dqfma2310 fma 900000000000000000 9000000000 0e+6144 -> 8100000000000000000000000000 |
|
277 dqfma2311 fma 900000000000000000 90000000000 0e+6144 -> 81000000000000000000000000000 |
|
278 dqfma2312 fma 900000000000000000 900000000000 0e+6144 -> 810000000000000000000000000000 |
|
279 dqfma2313 fma 900000000000000000 9000000000000 0e+6144 -> 8100000000000000000000000000000 |
|
280 dqfma2314 fma 900000000000000000 90000000000000 0e+6144 -> 81000000000000000000000000000000 |
|
281 dqfma2315 fma 900000000000000000 900000000000000 0e+6144 -> 810000000000000000000000000000000 |
|
282 dqfma2316 fma 900000000000000000 9000000000000000 0e+6144 -> 8100000000000000000000000000000000 |
|
283 dqfma2317 fma 9000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+34 Rounded |
|
284 dqfma2318 fma 90000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+35 Rounded |
|
285 dqfma2319 fma 900000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+36 Rounded |
|
286 dqfma2320 fma 9000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+37 Rounded |
|
287 dqfma2321 fma 90000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+38 Rounded |
|
288 dqfma2322 fma 900000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+39 Rounded |
|
289 dqfma2323 fma 9000000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+40 Rounded |
|
290 |
|
291 -- tryzeros cases |
|
292 dqfma2504 fma 0E-4260 1000E-4260 0e+6144 -> 0E-6176 Clamped |
|
293 dqfma2505 fma 100E+4260 0E+4260 0e+6144 -> 0E+6111 Clamped |
|
294 |
|
295 -- mixed with zeros |
|
296 dqfma2541 fma 0 -1 0e+6144 -> 0 |
|
297 dqfma2542 fma -0 -1 0e+6144 -> 0 |
|
298 dqfma2543 fma 0 1 0e+6144 -> 0 |
|
299 dqfma2544 fma -0 1 0e+6144 -> 0 |
|
300 dqfma2545 fma -1 0 0e+6144 -> 0 |
|
301 dqfma2546 fma -1 -0 0e+6144 -> 0 |
|
302 dqfma2547 fma 1 0 0e+6144 -> 0 |
|
303 dqfma2548 fma 1 -0 0e+6144 -> 0 |
|
304 |
|
305 dqfma2551 fma 0.0 -1 0e+6144 -> 0.0 |
|
306 dqfma2552 fma -0.0 -1 0e+6144 -> 0.0 |
|
307 dqfma2553 fma 0.0 1 0e+6144 -> 0.0 |
|
308 dqfma2554 fma -0.0 1 0e+6144 -> 0.0 |
|
309 dqfma2555 fma -1.0 0 0e+6144 -> 0.0 |
|
310 dqfma2556 fma -1.0 -0 0e+6144 -> 0.0 |
|
311 dqfma2557 fma 1.0 0 0e+6144 -> 0.0 |
|
312 dqfma2558 fma 1.0 -0 0e+6144 -> 0.0 |
|
313 |
|
314 dqfma2561 fma 0 -1.0 0e+6144 -> 0.0 |
|
315 dqfma2562 fma -0 -1.0 0e+6144 -> 0.0 |
|
316 dqfma2563 fma 0 1.0 0e+6144 -> 0.0 |
|
317 dqfma2564 fma -0 1.0 0e+6144 -> 0.0 |
|
318 dqfma2565 fma -1 0.0 0e+6144 -> 0.0 |
|
319 dqfma2566 fma -1 -0.0 0e+6144 -> 0.0 |
|
320 dqfma2567 fma 1 0.0 0e+6144 -> 0.0 |
|
321 dqfma2568 fma 1 -0.0 0e+6144 -> 0.0 |
|
322 |
|
323 dqfma2571 fma 0.0 -1.0 0e+6144 -> 0.00 |
|
324 dqfma2572 fma -0.0 -1.0 0e+6144 -> 0.00 |
|
325 dqfma2573 fma 0.0 1.0 0e+6144 -> 0.00 |
|
326 dqfma2574 fma -0.0 1.0 0e+6144 -> 0.00 |
|
327 dqfma2575 fma -1.0 0.0 0e+6144 -> 0.00 |
|
328 dqfma2576 fma -1.0 -0.0 0e+6144 -> 0.00 |
|
329 dqfma2577 fma 1.0 0.0 0e+6144 -> 0.00 |
|
330 dqfma2578 fma 1.0 -0.0 0e+6144 -> 0.00 |
|
331 dqfma2579 fma 1.0 0.0 0e+6144 -> 0.00 |
|
332 dqfma2530 fma -1.0 -0.0 0e+6144 -> 0.00 |
|
333 dqfma2531 fma -1.0 0.0 0e+6144 -> 0.00 |
|
334 dqfma2532 fma 1.0 -0.0 -0e+6144 -> -0.00 |
|
335 dqfma2533 fma 1.0 0.0 -0e+6144 -> 0.00 |
|
336 dqfma2534 fma -1.0 -0.0 -0e+6144 -> 0.00 |
|
337 dqfma2535 fma -1.0 0.0 -0e+6144 -> -0.00 |
|
338 |
|
339 |
|
340 -- Specials |
|
341 dqfma2580 fma Inf -Inf 0e+6144 -> -Infinity |
|
342 dqfma2581 fma Inf -1000 0e+6144 -> -Infinity |
|
343 dqfma2582 fma Inf -1 0e+6144 -> -Infinity |
|
344 dqfma2583 fma Inf -0 0e+6144 -> NaN Invalid_operation |
|
345 dqfma2584 fma Inf 0 0e+6144 -> NaN Invalid_operation |
|
346 dqfma2585 fma Inf 1 0e+6144 -> Infinity |
|
347 dqfma2586 fma Inf 1000 0e+6144 -> Infinity |
|
348 dqfma2587 fma Inf Inf 0e+6144 -> Infinity |
|
349 dqfma2588 fma -1000 Inf 0e+6144 -> -Infinity |
|
350 dqfma2589 fma -Inf Inf 0e+6144 -> -Infinity |
|
351 dqfma2590 fma -1 Inf 0e+6144 -> -Infinity |
|
352 dqfma2591 fma -0 Inf 0e+6144 -> NaN Invalid_operation |
|
353 dqfma2592 fma 0 Inf 0e+6144 -> NaN Invalid_operation |
|
354 dqfma2593 fma 1 Inf 0e+6144 -> Infinity |
|
355 dqfma2594 fma 1000 Inf 0e+6144 -> Infinity |
|
356 dqfma2595 fma Inf Inf 0e+6144 -> Infinity |
|
357 |
|
358 dqfma2600 fma -Inf -Inf 0e+6144 -> Infinity |
|
359 dqfma2601 fma -Inf -1000 0e+6144 -> Infinity |
|
360 dqfma2602 fma -Inf -1 0e+6144 -> Infinity |
|
361 dqfma2603 fma -Inf -0 0e+6144 -> NaN Invalid_operation |
|
362 dqfma2604 fma -Inf 0 0e+6144 -> NaN Invalid_operation |
|
363 dqfma2605 fma -Inf 1 0e+6144 -> -Infinity |
|
364 dqfma2606 fma -Inf 1000 0e+6144 -> -Infinity |
|
365 dqfma2607 fma -Inf Inf 0e+6144 -> -Infinity |
|
366 dqfma2608 fma -1000 Inf 0e+6144 -> -Infinity |
|
367 dqfma2609 fma -Inf -Inf 0e+6144 -> Infinity |
|
368 dqfma2610 fma -1 -Inf 0e+6144 -> Infinity |
|
369 dqfma2611 fma -0 -Inf 0e+6144 -> NaN Invalid_operation |
|
370 dqfma2612 fma 0 -Inf 0e+6144 -> NaN Invalid_operation |
|
371 dqfma2613 fma 1 -Inf 0e+6144 -> -Infinity |
|
372 dqfma2614 fma 1000 -Inf 0e+6144 -> -Infinity |
|
373 dqfma2615 fma Inf -Inf 0e+6144 -> -Infinity |
|
374 |
|
375 dqfma2621 fma NaN -Inf 0e+6144 -> NaN |
|
376 dqfma2622 fma NaN -1000 0e+6144 -> NaN |
|
377 dqfma2623 fma NaN -1 0e+6144 -> NaN |
|
378 dqfma2624 fma NaN -0 0e+6144 -> NaN |
|
379 dqfma2625 fma NaN 0 0e+6144 -> NaN |
|
380 dqfma2626 fma NaN 1 0e+6144 -> NaN |
|
381 dqfma2627 fma NaN 1000 0e+6144 -> NaN |
|
382 dqfma2628 fma NaN Inf 0e+6144 -> NaN |
|
383 dqfma2629 fma NaN NaN 0e+6144 -> NaN |
|
384 dqfma2630 fma -Inf NaN 0e+6144 -> NaN |
|
385 dqfma2631 fma -1000 NaN 0e+6144 -> NaN |
|
386 dqfma2632 fma -1 NaN 0e+6144 -> NaN |
|
387 dqfma2633 fma -0 NaN 0e+6144 -> NaN |
|
388 dqfma2634 fma 0 NaN 0e+6144 -> NaN |
|
389 dqfma2635 fma 1 NaN 0e+6144 -> NaN |
|
390 dqfma2636 fma 1000 NaN 0e+6144 -> NaN |
|
391 dqfma2637 fma Inf NaN 0e+6144 -> NaN |
|
392 |
|
393 dqfma2641 fma sNaN -Inf 0e+6144 -> NaN Invalid_operation |
|
394 dqfma2642 fma sNaN -1000 0e+6144 -> NaN Invalid_operation |
|
395 dqfma2643 fma sNaN -1 0e+6144 -> NaN Invalid_operation |
|
396 dqfma2644 fma sNaN -0 0e+6144 -> NaN Invalid_operation |
|
397 dqfma2645 fma sNaN 0 0e+6144 -> NaN Invalid_operation |
|
398 dqfma2646 fma sNaN 1 0e+6144 -> NaN Invalid_operation |
|
399 dqfma2647 fma sNaN 1000 0e+6144 -> NaN Invalid_operation |
|
400 dqfma2648 fma sNaN NaN 0e+6144 -> NaN Invalid_operation |
|
401 dqfma2649 fma sNaN sNaN 0e+6144 -> NaN Invalid_operation |
|
402 dqfma2650 fma NaN sNaN 0e+6144 -> NaN Invalid_operation |
|
403 dqfma2651 fma -Inf sNaN 0e+6144 -> NaN Invalid_operation |
|
404 dqfma2652 fma -1000 sNaN 0e+6144 -> NaN Invalid_operation |
|
405 dqfma2653 fma -1 sNaN 0e+6144 -> NaN Invalid_operation |
|
406 dqfma2654 fma -0 sNaN 0e+6144 -> NaN Invalid_operation |
|
407 dqfma2655 fma 0 sNaN 0e+6144 -> NaN Invalid_operation |
|
408 dqfma2656 fma 1 sNaN 0e+6144 -> NaN Invalid_operation |
|
409 dqfma2657 fma 1000 sNaN 0e+6144 -> NaN Invalid_operation |
|
410 dqfma2658 fma Inf sNaN 0e+6144 -> NaN Invalid_operation |
|
411 dqfma2659 fma NaN sNaN 0e+6144 -> NaN Invalid_operation |
|
412 |
|
413 -- propagating NaNs |
|
414 dqfma2661 fma NaN9 -Inf 0e+6144 -> NaN9 |
|
415 dqfma2662 fma NaN8 999 0e+6144 -> NaN8 |
|
416 dqfma2663 fma NaN71 Inf 0e+6144 -> NaN71 |
|
417 dqfma2664 fma NaN6 NaN5 0e+6144 -> NaN6 |
|
418 dqfma2665 fma -Inf NaN4 0e+6144 -> NaN4 |
|
419 dqfma2666 fma -999 NaN33 0e+6144 -> NaN33 |
|
420 dqfma2667 fma Inf NaN2 0e+6144 -> NaN2 |
|
421 |
|
422 dqfma2671 fma sNaN99 -Inf 0e+6144 -> NaN99 Invalid_operation |
|
423 dqfma2672 fma sNaN98 -11 0e+6144 -> NaN98 Invalid_operation |
|
424 dqfma2673 fma sNaN97 NaN 0e+6144 -> NaN97 Invalid_operation |
|
425 dqfma2674 fma sNaN16 sNaN94 0e+6144 -> NaN16 Invalid_operation |
|
426 dqfma2675 fma NaN95 sNaN93 0e+6144 -> NaN93 Invalid_operation |
|
427 dqfma2676 fma -Inf sNaN92 0e+6144 -> NaN92 Invalid_operation |
|
428 dqfma2677 fma 088 sNaN91 0e+6144 -> NaN91 Invalid_operation |
|
429 dqfma2678 fma Inf sNaN90 0e+6144 -> NaN90 Invalid_operation |
|
430 dqfma2679 fma NaN sNaN89 0e+6144 -> NaN89 Invalid_operation |
|
431 |
|
432 dqfma2681 fma -NaN9 -Inf 0e+6144 -> -NaN9 |
|
433 dqfma2682 fma -NaN8 999 0e+6144 -> -NaN8 |
|
434 dqfma2683 fma -NaN71 Inf 0e+6144 -> -NaN71 |
|
435 dqfma2684 fma -NaN6 -NaN5 0e+6144 -> -NaN6 |
|
436 dqfma2685 fma -Inf -NaN4 0e+6144 -> -NaN4 |
|
437 dqfma2686 fma -999 -NaN33 0e+6144 -> -NaN33 |
|
438 dqfma2687 fma Inf -NaN2 0e+6144 -> -NaN2 |
|
439 |
|
440 dqfma2691 fma -sNaN99 -Inf 0e+6144 -> -NaN99 Invalid_operation |
|
441 dqfma2692 fma -sNaN98 -11 0e+6144 -> -NaN98 Invalid_operation |
|
442 dqfma2693 fma -sNaN97 NaN 0e+6144 -> -NaN97 Invalid_operation |
|
443 dqfma2694 fma -sNaN16 -sNaN94 0e+6144 -> -NaN16 Invalid_operation |
|
444 dqfma2695 fma -NaN95 -sNaN93 0e+6144 -> -NaN93 Invalid_operation |
|
445 dqfma2696 fma -Inf -sNaN92 0e+6144 -> -NaN92 Invalid_operation |
|
446 dqfma2697 fma 088 -sNaN91 0e+6144 -> -NaN91 Invalid_operation |
|
447 dqfma2698 fma Inf -sNaN90 0e+6144 -> -NaN90 Invalid_operation |
|
448 dqfma2699 fma -NaN -sNaN89 0e+6144 -> -NaN89 Invalid_operation |
|
449 |
|
450 dqfma2701 fma -NaN -Inf 0e+6144 -> -NaN |
|
451 dqfma2702 fma -NaN 999 0e+6144 -> -NaN |
|
452 dqfma2703 fma -NaN Inf 0e+6144 -> -NaN |
|
453 dqfma2704 fma -NaN -NaN 0e+6144 -> -NaN |
|
454 dqfma2705 fma -Inf -NaN0 0e+6144 -> -NaN |
|
455 dqfma2706 fma -999 -NaN 0e+6144 -> -NaN |
|
456 dqfma2707 fma Inf -NaN 0e+6144 -> -NaN |
|
457 |
|
458 dqfma2711 fma -sNaN -Inf 0e+6144 -> -NaN Invalid_operation |
|
459 dqfma2712 fma -sNaN -11 0e+6144 -> -NaN Invalid_operation |
|
460 dqfma2713 fma -sNaN00 NaN 0e+6144 -> -NaN Invalid_operation |
|
461 dqfma2714 fma -sNaN -sNaN 0e+6144 -> -NaN Invalid_operation |
|
462 dqfma2715 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation |
|
463 dqfma2716 fma -Inf -sNaN 0e+6144 -> -NaN Invalid_operation |
|
464 dqfma2717 fma 088 -sNaN 0e+6144 -> -NaN Invalid_operation |
|
465 dqfma2718 fma Inf -sNaN 0e+6144 -> -NaN Invalid_operation |
|
466 dqfma2719 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation |
|
467 |
|
468 -- overflow and underflow tests .. note subnormal results |
|
469 -- signs |
|
470 dqfma2751 fma 1e+4277 1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded |
|
471 dqfma2752 fma 1e+4277 -1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded |
|
472 dqfma2753 fma -1e+4277 1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded |
|
473 dqfma2754 fma -1e+4277 -1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded |
|
474 dqfma2755 fma 1e-4277 1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
475 dqfma2756 fma 1e-4277 -1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
476 dqfma2757 fma -1e-4277 1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
477 dqfma2758 fma -1e-4277 -1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
478 |
|
479 -- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) |
|
480 dqfma2760 fma 1e-6069 1e-101 0e+6144 -> 1E-6170 Subnormal |
|
481 dqfma2761 fma 1e-6069 1e-102 0e+6144 -> 1E-6171 Subnormal |
|
482 dqfma2762 fma 1e-6069 1e-103 0e+6144 -> 1E-6172 Subnormal |
|
483 dqfma2763 fma 1e-6069 1e-104 0e+6144 -> 1E-6173 Subnormal |
|
484 dqfma2764 fma 1e-6069 1e-105 0e+6144 -> 1E-6174 Subnormal |
|
485 dqfma2765 fma 1e-6069 1e-106 0e+6144 -> 1E-6175 Subnormal |
|
486 dqfma2766 fma 1e-6069 1e-107 0e+6144 -> 1E-6176 Subnormal |
|
487 dqfma2767 fma 1e-6069 1e-108 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
488 dqfma2768 fma 1e-6069 1e-109 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
489 dqfma2769 fma 1e-6069 1e-110 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
490 -- [no equivalent of 'subnormal' for overflow] |
|
491 dqfma2770 fma 1e+40 1e+6101 0e+6144 -> 1.000000000000000000000000000000E+6141 Clamped |
|
492 dqfma2771 fma 1e+40 1e+6102 0e+6144 -> 1.0000000000000000000000000000000E+6142 Clamped |
|
493 dqfma2772 fma 1e+40 1e+6103 0e+6144 -> 1.00000000000000000000000000000000E+6143 Clamped |
|
494 dqfma2773 fma 1e+40 1e+6104 0e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped |
|
495 dqfma2774 fma 1e+40 1e+6105 0e+6144 -> Infinity Overflow Inexact Rounded |
|
496 dqfma2775 fma 1e+40 1e+6106 0e+6144 -> Infinity Overflow Inexact Rounded |
|
497 dqfma2776 fma 1e+40 1e+6107 0e+6144 -> Infinity Overflow Inexact Rounded |
|
498 dqfma2777 fma 1e+40 1e+6108 0e+6144 -> Infinity Overflow Inexact Rounded |
|
499 dqfma2778 fma 1e+40 1e+6109 0e+6144 -> Infinity Overflow Inexact Rounded |
|
500 dqfma2779 fma 1e+40 1e+6110 0e+6144 -> Infinity Overflow Inexact Rounded |
|
501 |
|
502 dqfma2801 fma 1.0000E-6172 1 0e+6144 -> 1.0000E-6172 Subnormal |
|
503 dqfma2802 fma 1.000E-6172 1e-1 0e+6144 -> 1.000E-6173 Subnormal |
|
504 dqfma2803 fma 1.00E-6172 1e-2 0e+6144 -> 1.00E-6174 Subnormal |
|
505 dqfma2804 fma 1.0E-6172 1e-3 0e+6144 -> 1.0E-6175 Subnormal |
|
506 dqfma2805 fma 1.0E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal Rounded |
|
507 dqfma2806 fma 1.3E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded |
|
508 dqfma2807 fma 1.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded |
|
509 dqfma2808 fma 1.7E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded |
|
510 dqfma2809 fma 2.3E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded |
|
511 dqfma2810 fma 2.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded |
|
512 dqfma2811 fma 2.7E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded |
|
513 dqfma2812 fma 1.49E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded |
|
514 dqfma2813 fma 1.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded |
|
515 dqfma2814 fma 1.51E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded |
|
516 dqfma2815 fma 2.49E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded |
|
517 dqfma2816 fma 2.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded |
|
518 dqfma2817 fma 2.51E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded |
|
519 |
|
520 dqfma2818 fma 1E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal |
|
521 dqfma2819 fma 3E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
522 dqfma2820 fma 5E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
523 dqfma2821 fma 7E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded |
|
524 dqfma2822 fma 9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded |
|
525 dqfma2823 fma 9.9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded |
|
526 |
|
527 dqfma2824 fma 1E-6172 -1e-4 0e+6144 -> -1E-6176 Subnormal |
|
528 dqfma2825 fma 3E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
529 dqfma2826 fma -5E-6172 1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
530 dqfma2827 fma 7E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded |
|
531 dqfma2828 fma -9E-6172 1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded |
|
532 dqfma2829 fma 9.9E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded |
|
533 dqfma2830 fma 3.0E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
534 |
|
535 dqfma2831 fma 1.0E-5977 1e-200 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped |
|
536 dqfma2832 fma 1.0E-5977 1e-199 0e+6144 -> 1E-6176 Subnormal Rounded |
|
537 dqfma2833 fma 1.0E-5977 1e-198 0e+6144 -> 1.0E-6175 Subnormal |
|
538 dqfma2834 fma 2.0E-5977 2e-198 0e+6144 -> 4.0E-6175 Subnormal |
|
539 dqfma2835 fma 4.0E-5977 4e-198 0e+6144 -> 1.60E-6174 Subnormal |
|
540 dqfma2836 fma 10.0E-5977 10e-198 0e+6144 -> 1.000E-6173 Subnormal |
|
541 dqfma2837 fma 30.0E-5977 30e-198 0e+6144 -> 9.000E-6173 Subnormal |
|
542 dqfma2838 fma 40.0E-5982 40e-166 0e+6144 -> 1.6000E-6145 Subnormal |
|
543 dqfma2839 fma 40.0E-5982 40e-165 0e+6144 -> 1.6000E-6144 Subnormal |
|
544 dqfma2840 fma 40.0E-5982 40e-164 0e+6144 -> 1.6000E-6143 |
|
545 |
|
546 -- Long operand overflow may be a different path |
|
547 dqfma2870 fma 100 9.999E+6143 0e+6144 -> Infinity Inexact Overflow Rounded |
|
548 dqfma2871 fma 100 -9.999E+6143 0e+6144 -> -Infinity Inexact Overflow Rounded |
|
549 dqfma2872 fma 9.999E+6143 100 0e+6144 -> Infinity Inexact Overflow Rounded |
|
550 dqfma2873 fma -9.999E+6143 100 0e+6144 -> -Infinity Inexact Overflow Rounded |
|
551 |
|
552 -- check for double-rounded subnormals |
|
553 dqfma2881 fma 1.2347E-6133 1.2347E-40 0e+6144 -> 1.524E-6173 Inexact Rounded Subnormal Underflow |
|
554 dqfma2882 fma 1.234E-6133 1.234E-40 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow |
|
555 dqfma2883 fma 1.23E-6133 1.23E-40 0e+6144 -> 1.513E-6173 Inexact Rounded Subnormal Underflow |
|
556 dqfma2884 fma 1.2E-6133 1.2E-40 0e+6144 -> 1.44E-6173 Subnormal |
|
557 dqfma2885 fma 1.2E-6133 1.2E-41 0e+6144 -> 1.44E-6174 Subnormal |
|
558 dqfma2886 fma 1.2E-6133 1.2E-42 0e+6144 -> 1.4E-6175 Subnormal Inexact Rounded Underflow |
|
559 dqfma2887 fma 1.2E-6133 1.3E-42 0e+6144 -> 1.6E-6175 Subnormal Inexact Rounded Underflow |
|
560 dqfma2888 fma 1.3E-6133 1.3E-42 0e+6144 -> 1.7E-6175 Subnormal Inexact Rounded Underflow |
|
561 dqfma2889 fma 1.3E-6133 1.3E-43 0e+6144 -> 2E-6176 Subnormal Inexact Rounded Underflow |
|
562 dqfma2890 fma 1.3E-6134 1.3E-43 0e+6144 -> 0E-6176 Clamped Subnormal Inexact Rounded Underflow |
|
563 |
|
564 dqfma2891 fma 1.2345E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow |
|
565 dqfma2892 fma 1.23456E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow |
|
566 dqfma2893 fma 1.2345E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow |
|
567 dqfma2894 fma 1.23456E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow |
|
568 dqfma2895 fma 1.2345E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow |
|
569 dqfma2896 fma 1.23456E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow |
|
570 |
|
571 -- Now explore the case where we get a normal result with Underflow |
|
572 -- prove operands are exact |
|
573 dqfma2906 fma 9.999999999999999999999999999999999E-6143 1 0e+6144 -> 9.999999999999999999999999999999999E-6143 |
|
574 dqfma2907 fma 1 0.09999999999999999999999999999999999 0e+6144 -> 0.09999999999999999999999999999999999 |
|
575 -- the next rounds to Nmin |
|
576 dqfma2908 fma 9.999999999999999999999999999999999E-6143 0.09999999999999999999999999999999999 0e+6144 -> 1.000000000000000000000000000000000E-6143 Underflow Inexact Subnormal Rounded |
|
577 |
|
578 -- hugest |
|
579 dqfma2909 fma 9999999999999999999999999999999999 9999999999999999999999999999999999 0e+6144 -> 9.999999999999999999999999999999998E+67 Inexact Rounded |
|
580 |
|
581 -- Examples from SQL proposal (Krishna Kulkarni) |
|
582 precision: 34 |
|
583 rounding: half_up |
|
584 maxExponent: 6144 |
|
585 minExponent: -6143 |
|
586 dqfma21001 fma 130E-2 120E-2 0e+6144 -> 1.5600 |
|
587 dqfma21002 fma 130E-2 12E-1 0e+6144 -> 1.560 |
|
588 dqfma21003 fma 130E-2 1E0 0e+6144 -> 1.30 |
|
589 dqfma21004 fma 1E2 1E4 0e+6144 -> 1E+6 |
|
590 |
|
591 -- Null tests |
|
592 dqfma2990 fma 10 # 0e+6144 -> NaN Invalid_operation |
|
593 dqfma2991 fma # 10 0e+6144 -> NaN Invalid_operation |
|
594 |
|
595 |
|
596 -- ADDITION TESTS ------------------------------------------------------ |
|
597 rounding: half_even |
|
598 |
|
599 -- [first group are 'quick confidence check'] |
|
600 dqadd3001 fma 1 1 1 -> 2 |
|
601 dqadd3002 fma 1 2 3 -> 5 |
|
602 dqadd3003 fma 1 '5.75' '3.3' -> 9.05 |
|
603 dqadd3004 fma 1 '5' '-3' -> 2 |
|
604 dqadd3005 fma 1 '-5' '-3' -> -8 |
|
605 dqadd3006 fma 1 '-7' '2.5' -> -4.5 |
|
606 dqadd3007 fma 1 '0.7' '0.3' -> 1.0 |
|
607 dqadd3008 fma 1 '1.25' '1.25' -> 2.50 |
|
608 dqadd3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789' |
|
609 dqadd3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800' |
|
610 |
|
611 -- 1234567890123456 1234567890123456 |
|
612 dqadd3011 fma 1 '0.4444444444444444444444444444444446' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Inexact Rounded |
|
613 dqadd3012 fma 1 '0.4444444444444444444444444444444445' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Rounded |
|
614 dqadd3013 fma 1 '0.4444444444444444444444444444444444' '0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999' |
|
615 dqadd3014 fma 1 '4444444444444444444444444444444444' '0.49' -> '4444444444444444444444444444444444' Inexact Rounded |
|
616 dqadd3015 fma 1 '4444444444444444444444444444444444' '0.499' -> '4444444444444444444444444444444444' Inexact Rounded |
|
617 dqadd3016 fma 1 '4444444444444444444444444444444444' '0.4999' -> '4444444444444444444444444444444444' Inexact Rounded |
|
618 dqadd3017 fma 1 '4444444444444444444444444444444444' '0.5000' -> '4444444444444444444444444444444444' Inexact Rounded |
|
619 dqadd3018 fma 1 '4444444444444444444444444444444444' '0.5001' -> '4444444444444444444444444444444445' Inexact Rounded |
|
620 dqadd3019 fma 1 '4444444444444444444444444444444444' '0.501' -> '4444444444444444444444444444444445' Inexact Rounded |
|
621 dqadd3020 fma 1 '4444444444444444444444444444444444' '0.51' -> '4444444444444444444444444444444445' Inexact Rounded |
|
622 |
|
623 dqadd3021 fma 1 0 1 -> 1 |
|
624 dqadd3022 fma 1 1 1 -> 2 |
|
625 dqadd3023 fma 1 2 1 -> 3 |
|
626 dqadd3024 fma 1 3 1 -> 4 |
|
627 dqadd3025 fma 1 4 1 -> 5 |
|
628 dqadd3026 fma 1 5 1 -> 6 |
|
629 dqadd3027 fma 1 6 1 -> 7 |
|
630 dqadd3028 fma 1 7 1 -> 8 |
|
631 dqadd3029 fma 1 8 1 -> 9 |
|
632 dqadd3030 fma 1 9 1 -> 10 |
|
633 |
|
634 -- some carrying effects |
|
635 dqadd3031 fma 1 '0.9998' '0.0000' -> '0.9998' |
|
636 dqadd3032 fma 1 '0.9998' '0.0001' -> '0.9999' |
|
637 dqadd3033 fma 1 '0.9998' '0.0002' -> '1.0000' |
|
638 dqadd3034 fma 1 '0.9998' '0.0003' -> '1.0001' |
|
639 |
|
640 dqadd3035 fma 1 '70' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded |
|
641 dqadd3036 fma 1 '700' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded |
|
642 dqadd3037 fma 1 '7000' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded |
|
643 dqadd3038 fma 1 '70000' '10000e+34' -> '1.000000000000000000000000000000001E+38' Inexact Rounded |
|
644 dqadd3039 fma 1 '700000' '10000e+34' -> '1.000000000000000000000000000000007E+38' Rounded |
|
645 |
|
646 -- symmetry: |
|
647 dqadd3040 fma 1 '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded |
|
648 dqadd3041 fma 1 '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded |
|
649 dqadd3042 fma 1 '10000e+34' '7000' -> '1.000000000000000000000000000000000E+38' Inexact Rounded |
|
650 dqadd3044 fma 1 '10000e+34' '70000' -> '1.000000000000000000000000000000001E+38' Inexact Rounded |
|
651 dqadd3045 fma 1 '10000e+34' '700000' -> '1.000000000000000000000000000000007E+38' Rounded |
|
652 |
|
653 -- same, without rounding |
|
654 dqadd3046 fma 1 '10000e+9' '7' -> '10000000000007' |
|
655 dqadd3047 fma 1 '10000e+9' '70' -> '10000000000070' |
|
656 dqadd3048 fma 1 '10000e+9' '700' -> '10000000000700' |
|
657 dqadd3049 fma 1 '10000e+9' '7000' -> '10000000007000' |
|
658 dqadd3050 fma 1 '10000e+9' '70000' -> '10000000070000' |
|
659 dqadd3051 fma 1 '10000e+9' '700000' -> '10000000700000' |
|
660 dqadd3052 fma 1 '10000e+9' '7000000' -> '10000007000000' |
|
661 |
|
662 -- examples from decarith |
|
663 dqadd3053 fma 1 '12' '7.00' -> '19.00' |
|
664 dqadd3054 fma 1 '1.3' '-1.07' -> '0.23' |
|
665 dqadd3055 fma 1 '1.3' '-1.30' -> '0.00' |
|
666 dqadd3056 fma 1 '1.3' '-2.07' -> '-0.77' |
|
667 dqadd3057 fma 1 '1E+2' '1E+4' -> '1.01E+4' |
|
668 |
|
669 -- leading zero preservation |
|
670 dqadd3061 fma 1 1 '0.0001' -> '1.0001' |
|
671 dqadd3062 fma 1 1 '0.00001' -> '1.00001' |
|
672 dqadd3063 fma 1 1 '0.000001' -> '1.000001' |
|
673 dqadd3064 fma 1 1 '0.0000001' -> '1.0000001' |
|
674 dqadd3065 fma 1 1 '0.00000001' -> '1.00000001' |
|
675 |
|
676 -- some funny zeros [in case of bad signum] |
|
677 dqadd3070 fma 1 1 0 -> 1 |
|
678 dqadd3071 fma 1 1 0. -> 1 |
|
679 dqadd3072 fma 1 1 .0 -> 1.0 |
|
680 dqadd3073 fma 1 1 0.0 -> 1.0 |
|
681 dqadd3074 fma 1 1 0.00 -> 1.00 |
|
682 dqadd3075 fma 1 0 1 -> 1 |
|
683 dqadd3076 fma 1 0. 1 -> 1 |
|
684 dqadd3077 fma 1 .0 1 -> 1.0 |
|
685 dqadd3078 fma 1 0.0 1 -> 1.0 |
|
686 dqadd3079 fma 1 0.00 1 -> 1.00 |
|
687 |
|
688 -- some carries |
|
689 dqadd3080 fma 1 999999998 1 -> 999999999 |
|
690 dqadd3081 fma 1 999999999 1 -> 1000000000 |
|
691 dqadd3082 fma 1 99999999 1 -> 100000000 |
|
692 dqadd3083 fma 1 9999999 1 -> 10000000 |
|
693 dqadd3084 fma 1 999999 1 -> 1000000 |
|
694 dqadd3085 fma 1 99999 1 -> 100000 |
|
695 dqadd3086 fma 1 9999 1 -> 10000 |
|
696 dqadd3087 fma 1 999 1 -> 1000 |
|
697 dqadd3088 fma 1 99 1 -> 100 |
|
698 dqadd3089 fma 1 9 1 -> 10 |
|
699 |
|
700 |
|
701 -- more LHS swaps |
|
702 dqadd3090 fma 1 '-56267E-10' 0 -> '-0.0000056267' |
|
703 dqadd3091 fma 1 '-56267E-6' 0 -> '-0.056267' |
|
704 dqadd3092 fma 1 '-56267E-5' 0 -> '-0.56267' |
|
705 dqadd3093 fma 1 '-56267E-4' 0 -> '-5.6267' |
|
706 dqadd3094 fma 1 '-56267E-3' 0 -> '-56.267' |
|
707 dqadd3095 fma 1 '-56267E-2' 0 -> '-562.67' |
|
708 dqadd3096 fma 1 '-56267E-1' 0 -> '-5626.7' |
|
709 dqadd3097 fma 1 '-56267E-0' 0 -> '-56267' |
|
710 dqadd3098 fma 1 '-5E-10' 0 -> '-5E-10' |
|
711 dqadd3099 fma 1 '-5E-7' 0 -> '-5E-7' |
|
712 dqadd3100 fma 1 '-5E-6' 0 -> '-0.000005' |
|
713 dqadd3101 fma 1 '-5E-5' 0 -> '-0.00005' |
|
714 dqadd3102 fma 1 '-5E-4' 0 -> '-0.0005' |
|
715 dqadd3103 fma 1 '-5E-1' 0 -> '-0.5' |
|
716 dqadd3104 fma 1 '-5E0' 0 -> '-5' |
|
717 dqadd3105 fma 1 '-5E1' 0 -> '-50' |
|
718 dqadd3106 fma 1 '-5E5' 0 -> '-500000' |
|
719 dqadd3107 fma 1 '-5E33' 0 -> '-5000000000000000000000000000000000' |
|
720 dqadd3108 fma 1 '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded |
|
721 dqadd3109 fma 1 '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded |
|
722 dqadd3110 fma 1 '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded |
|
723 dqadd3111 fma 1 '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded |
|
724 |
|
725 -- more RHS swaps |
|
726 dqadd3113 fma 1 0 '-56267E-10' -> '-0.0000056267' |
|
727 dqadd3114 fma 1 0 '-56267E-6' -> '-0.056267' |
|
728 dqadd3116 fma 1 0 '-56267E-5' -> '-0.56267' |
|
729 dqadd3117 fma 1 0 '-56267E-4' -> '-5.6267' |
|
730 dqadd3119 fma 1 0 '-56267E-3' -> '-56.267' |
|
731 dqadd3120 fma 1 0 '-56267E-2' -> '-562.67' |
|
732 dqadd3121 fma 1 0 '-56267E-1' -> '-5626.7' |
|
733 dqadd3122 fma 1 0 '-56267E-0' -> '-56267' |
|
734 dqadd3123 fma 1 0 '-5E-10' -> '-5E-10' |
|
735 dqadd3124 fma 1 0 '-5E-7' -> '-5E-7' |
|
736 dqadd3125 fma 1 0 '-5E-6' -> '-0.000005' |
|
737 dqadd3126 fma 1 0 '-5E-5' -> '-0.00005' |
|
738 dqadd3127 fma 1 0 '-5E-4' -> '-0.0005' |
|
739 dqadd3128 fma 1 0 '-5E-1' -> '-0.5' |
|
740 dqadd3129 fma 1 0 '-5E0' -> '-5' |
|
741 dqadd3130 fma 1 0 '-5E1' -> '-50' |
|
742 dqadd3131 fma 1 0 '-5E5' -> '-500000' |
|
743 dqadd3132 fma 1 0 '-5E33' -> '-5000000000000000000000000000000000' |
|
744 dqadd3133 fma 1 0 '-5E34' -> '-5.000000000000000000000000000000000E+34' Rounded |
|
745 dqadd3134 fma 1 0 '-5E35' -> '-5.000000000000000000000000000000000E+35' Rounded |
|
746 dqadd3135 fma 1 0 '-5E36' -> '-5.000000000000000000000000000000000E+36' Rounded |
|
747 dqadd3136 fma 1 0 '-5E100' -> '-5.000000000000000000000000000000000E+100' Rounded |
|
748 |
|
749 -- related |
|
750 dqadd3137 fma 1 1 '0E-39' -> '1.000000000000000000000000000000000' Rounded |
|
751 dqadd3138 fma 1 -1 '0E-39' -> '-1.000000000000000000000000000000000' Rounded |
|
752 dqadd3139 fma 1 '0E-39' 1 -> '1.000000000000000000000000000000000' Rounded |
|
753 dqadd3140 fma 1 '0E-39' -1 -> '-1.000000000000000000000000000000000' Rounded |
|
754 dqadd3141 fma 1 1E+29 0.0000 -> '100000000000000000000000000000.0000' |
|
755 dqadd3142 fma 1 1E+29 0.00000 -> '100000000000000000000000000000.0000' Rounded |
|
756 dqadd3143 fma 1 0.000 1E+30 -> '1000000000000000000000000000000.000' |
|
757 dqadd3144 fma 1 0.0000 1E+30 -> '1000000000000000000000000000000.000' Rounded |
|
758 |
|
759 -- [some of the next group are really constructor tests] |
|
760 dqadd3146 fma 1 '00.0' 0 -> '0.0' |
|
761 dqadd3147 fma 1 '0.00' 0 -> '0.00' |
|
762 dqadd3148 fma 1 0 '0.00' -> '0.00' |
|
763 dqadd3149 fma 1 0 '00.0' -> '0.0' |
|
764 dqadd3150 fma 1 '00.0' '0.00' -> '0.00' |
|
765 dqadd3151 fma 1 '0.00' '00.0' -> '0.00' |
|
766 dqadd3152 fma 1 '3' '.3' -> '3.3' |
|
767 dqadd3153 fma 1 '3.' '.3' -> '3.3' |
|
768 dqadd3154 fma 1 '3.0' '.3' -> '3.3' |
|
769 dqadd3155 fma 1 '3.00' '.3' -> '3.30' |
|
770 dqadd3156 fma 1 '3' '3' -> '6' |
|
771 dqadd3157 fma 1 '3' '+3' -> '6' |
|
772 dqadd3158 fma 1 '3' '-3' -> '0' |
|
773 dqadd3159 fma 1 '0.3' '-0.3' -> '0.0' |
|
774 dqadd3160 fma 1 '0.03' '-0.03' -> '0.00' |
|
775 |
|
776 -- try borderline precision, with carries, etc. |
|
777 dqadd3161 fma 1 '1E+12' '-1' -> '999999999999' |
|
778 dqadd3162 fma 1 '1E+12' '1.11' -> '1000000000001.11' |
|
779 dqadd3163 fma 1 '1.11' '1E+12' -> '1000000000001.11' |
|
780 dqadd3164 fma 1 '-1' '1E+12' -> '999999999999' |
|
781 dqadd3165 fma 1 '7E+12' '-1' -> '6999999999999' |
|
782 dqadd3166 fma 1 '7E+12' '1.11' -> '7000000000001.11' |
|
783 dqadd3167 fma 1 '1.11' '7E+12' -> '7000000000001.11' |
|
784 dqadd3168 fma 1 '-1' '7E+12' -> '6999999999999' |
|
785 |
|
786 rounding: half_up |
|
787 dqadd3170 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555567' -> '5.000000000000000000000000000000001' Inexact Rounded |
|
788 dqadd3171 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555566' -> '5.000000000000000000000000000000001' Inexact Rounded |
|
789 dqadd3172 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555565' -> '5.000000000000000000000000000000001' Inexact Rounded |
|
790 dqadd3173 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555564' -> '5.000000000000000000000000000000000' Inexact Rounded |
|
791 dqadd3174 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555553' -> '4.999999999999999999999999999999999' Inexact Rounded |
|
792 dqadd3175 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555552' -> '4.999999999999999999999999999999999' Inexact Rounded |
|
793 dqadd3176 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555551' -> '4.999999999999999999999999999999999' Inexact Rounded |
|
794 dqadd3177 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555550' -> '4.999999999999999999999999999999999' Rounded |
|
795 dqadd3178 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555545' -> '4.999999999999999999999999999999999' Inexact Rounded |
|
796 dqadd3179 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555544' -> '4.999999999999999999999999999999998' Inexact Rounded |
|
797 dqadd3180 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555543' -> '4.999999999999999999999999999999998' Inexact Rounded |
|
798 dqadd3181 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555542' -> '4.999999999999999999999999999999998' Inexact Rounded |
|
799 dqadd3182 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555541' -> '4.999999999999999999999999999999998' Inexact Rounded |
|
800 dqadd3183 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555540' -> '4.999999999999999999999999999999998' Rounded |
|
801 |
|
802 -- and some more, including residue effects and different roundings |
|
803 rounding: half_up |
|
804 dqadd3200 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789' |
|
805 dqadd3201 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded |
|
806 dqadd3202 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded |
|
807 dqadd3203 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded |
|
808 dqadd3204 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded |
|
809 dqadd3205 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded |
|
810 dqadd3206 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded |
|
811 dqadd3207 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded |
|
812 dqadd3208 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded |
|
813 dqadd3209 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded |
|
814 dqadd3210 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded |
|
815 dqadd3211 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded |
|
816 dqadd3212 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded |
|
817 dqadd3213 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded |
|
818 dqadd3214 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded |
|
819 dqadd3215 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded |
|
820 dqadd3216 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790' |
|
821 dqadd3217 fma 1 '1231234567890123456784560123456789' 1.000000001 -> '1231234567890123456784560123456790' Inexact Rounded |
|
822 dqadd3218 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded |
|
823 dqadd3219 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded |
|
824 |
|
825 rounding: half_even |
|
826 dqadd3220 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789' |
|
827 dqadd3221 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded |
|
828 dqadd3222 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded |
|
829 dqadd3223 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded |
|
830 dqadd3224 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded |
|
831 dqadd3225 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded |
|
832 dqadd3226 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded |
|
833 dqadd3227 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded |
|
834 dqadd3228 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded |
|
835 dqadd3229 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded |
|
836 dqadd3230 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded |
|
837 dqadd3231 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded |
|
838 dqadd3232 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded |
|
839 dqadd3233 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded |
|
840 dqadd3234 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded |
|
841 dqadd3235 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded |
|
842 dqadd3236 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790' |
|
843 dqadd3237 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded |
|
844 dqadd3238 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded |
|
845 dqadd3239 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded |
|
846 -- critical few with even bottom digit... |
|
847 dqadd3240 fma 1 '1231234567890123456784560123456788' 0.499999999 -> '1231234567890123456784560123456788' Inexact Rounded |
|
848 dqadd3241 fma 1 '1231234567890123456784560123456788' 0.5 -> '1231234567890123456784560123456788' Inexact Rounded |
|
849 dqadd3242 fma 1 '1231234567890123456784560123456788' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded |
|
850 |
|
851 rounding: down |
|
852 dqadd3250 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789' |
|
853 dqadd3251 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded |
|
854 dqadd3252 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded |
|
855 dqadd3253 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded |
|
856 dqadd3254 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded |
|
857 dqadd3255 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded |
|
858 dqadd3256 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded |
|
859 dqadd3257 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded |
|
860 dqadd3258 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456789' Inexact Rounded |
|
861 dqadd3259 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded |
|
862 dqadd3260 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456789' Inexact Rounded |
|
863 dqadd3261 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456789' Inexact Rounded |
|
864 dqadd3262 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456789' Inexact Rounded |
|
865 dqadd3263 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456789' Inexact Rounded |
|
866 dqadd3264 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456789' Inexact Rounded |
|
867 dqadd3265 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456789' Inexact Rounded |
|
868 dqadd3266 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790' |
|
869 dqadd3267 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded |
|
870 dqadd3268 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded |
|
871 dqadd3269 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded |
|
872 |
|
873 -- 1 in last place tests |
|
874 rounding: half_up |
|
875 dqadd3301 fma 1 -1 1 -> 0 |
|
876 dqadd3302 fma 1 0 1 -> 1 |
|
877 dqadd3303 fma 1 1 1 -> 2 |
|
878 dqadd3304 fma 1 12 1 -> 13 |
|
879 dqadd3305 fma 1 98 1 -> 99 |
|
880 dqadd3306 fma 1 99 1 -> 100 |
|
881 dqadd3307 fma 1 100 1 -> 101 |
|
882 dqadd3308 fma 1 101 1 -> 102 |
|
883 dqadd3309 fma 1 -1 -1 -> -2 |
|
884 dqadd3310 fma 1 0 -1 -> -1 |
|
885 dqadd3311 fma 1 1 -1 -> 0 |
|
886 dqadd3312 fma 1 12 -1 -> 11 |
|
887 dqadd3313 fma 1 98 -1 -> 97 |
|
888 dqadd3314 fma 1 99 -1 -> 98 |
|
889 dqadd3315 fma 1 100 -1 -> 99 |
|
890 dqadd3316 fma 1 101 -1 -> 100 |
|
891 |
|
892 dqadd3321 fma 1 -0.01 0.01 -> 0.00 |
|
893 dqadd3322 fma 1 0.00 0.01 -> 0.01 |
|
894 dqadd3323 fma 1 0.01 0.01 -> 0.02 |
|
895 dqadd3324 fma 1 0.12 0.01 -> 0.13 |
|
896 dqadd3325 fma 1 0.98 0.01 -> 0.99 |
|
897 dqadd3326 fma 1 0.99 0.01 -> 1.00 |
|
898 dqadd3327 fma 1 1.00 0.01 -> 1.01 |
|
899 dqadd3328 fma 1 1.01 0.01 -> 1.02 |
|
900 dqadd3329 fma 1 -0.01 -0.01 -> -0.02 |
|
901 dqadd3330 fma 1 0.00 -0.01 -> -0.01 |
|
902 dqadd3331 fma 1 0.01 -0.01 -> 0.00 |
|
903 dqadd3332 fma 1 0.12 -0.01 -> 0.11 |
|
904 dqadd3333 fma 1 0.98 -0.01 -> 0.97 |
|
905 dqadd3334 fma 1 0.99 -0.01 -> 0.98 |
|
906 dqadd3335 fma 1 1.00 -0.01 -> 0.99 |
|
907 dqadd3336 fma 1 1.01 -0.01 -> 1.00 |
|
908 |
|
909 -- some more cases where adding 0 affects the coefficient |
|
910 dqadd3340 fma 1 1E+3 0 -> 1000 |
|
911 dqadd3341 fma 1 1E+33 0 -> 1000000000000000000000000000000000 |
|
912 dqadd3342 fma 1 1E+34 0 -> 1.000000000000000000000000000000000E+34 Rounded |
|
913 dqadd3343 fma 1 1E+35 0 -> 1.000000000000000000000000000000000E+35 Rounded |
|
914 -- which simply follow from these cases ... |
|
915 dqadd3344 fma 1 1E+3 1 -> 1001 |
|
916 dqadd3345 fma 1 1E+33 1 -> 1000000000000000000000000000000001 |
|
917 dqadd3346 fma 1 1E+34 1 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
918 dqadd3347 fma 1 1E+35 1 -> 1.000000000000000000000000000000000E+35 Inexact Rounded |
|
919 dqadd3348 fma 1 1E+3 7 -> 1007 |
|
920 dqadd3349 fma 1 1E+33 7 -> 1000000000000000000000000000000007 |
|
921 dqadd3350 fma 1 1E+34 7 -> 1.000000000000000000000000000000001E+34 Inexact Rounded |
|
922 dqadd3351 fma 1 1E+35 7 -> 1.000000000000000000000000000000000E+35 Inexact Rounded |
|
923 |
|
924 -- tryzeros cases |
|
925 rounding: half_up |
|
926 dqadd3360 fma 1 0E+50 10000E+1 -> 1.0000E+5 |
|
927 dqadd3361 fma 1 0E-50 10000E+1 -> 100000.0000000000000000000000000000 Rounded |
|
928 dqadd3362 fma 1 10000E+1 0E-50 -> 100000.0000000000000000000000000000 Rounded |
|
929 dqadd3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000000000000000000000 Rounded Inexact |
|
930 dqadd3364 fma 1 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0E+6111 |
|
931 -- 1 234567890123456789012345678901234 |
|
932 |
|
933 -- a curiosity from JSR 13 testing |
|
934 rounding: half_down |
|
935 dqadd3370 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814 |
|
936 dqadd3371 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact |
|
937 rounding: half_up |
|
938 dqadd3372 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814 |
|
939 dqadd3373 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact |
|
940 rounding: half_even |
|
941 dqadd3374 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814 |
|
942 dqadd3375 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact |
|
943 |
|
944 -- ulp replacement tests |
|
945 dqadd3400 fma 1 1 77e-32 -> 1.00000000000000000000000000000077 |
|
946 dqadd3401 fma 1 1 77e-33 -> 1.000000000000000000000000000000077 |
|
947 dqadd3402 fma 1 1 77e-34 -> 1.000000000000000000000000000000008 Inexact Rounded |
|
948 dqadd3403 fma 1 1 77e-35 -> 1.000000000000000000000000000000001 Inexact Rounded |
|
949 dqadd3404 fma 1 1 77e-36 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
950 dqadd3405 fma 1 1 77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
951 dqadd3406 fma 1 1 77e-299 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
952 |
|
953 dqadd3410 fma 1 10 77e-32 -> 10.00000000000000000000000000000077 |
|
954 dqadd3411 fma 1 10 77e-33 -> 10.00000000000000000000000000000008 Inexact Rounded |
|
955 dqadd3412 fma 1 10 77e-34 -> 10.00000000000000000000000000000001 Inexact Rounded |
|
956 dqadd3413 fma 1 10 77e-35 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
957 dqadd3414 fma 1 10 77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
958 dqadd3415 fma 1 10 77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
959 dqadd3416 fma 1 10 77e-299 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
960 |
|
961 dqadd3420 fma 1 77e-32 1 -> 1.00000000000000000000000000000077 |
|
962 dqadd3421 fma 1 77e-33 1 -> 1.000000000000000000000000000000077 |
|
963 dqadd3422 fma 1 77e-34 1 -> 1.000000000000000000000000000000008 Inexact Rounded |
|
964 dqadd3423 fma 1 77e-35 1 -> 1.000000000000000000000000000000001 Inexact Rounded |
|
965 dqadd3424 fma 1 77e-36 1 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
966 dqadd3425 fma 1 77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
967 dqadd3426 fma 1 77e-299 1 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
968 |
|
969 dqadd3430 fma 1 77e-32 10 -> 10.00000000000000000000000000000077 |
|
970 dqadd3431 fma 1 77e-33 10 -> 10.00000000000000000000000000000008 Inexact Rounded |
|
971 dqadd3432 fma 1 77e-34 10 -> 10.00000000000000000000000000000001 Inexact Rounded |
|
972 dqadd3433 fma 1 77e-35 10 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
973 dqadd3434 fma 1 77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
974 dqadd3435 fma 1 77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
975 dqadd3436 fma 1 77e-299 10 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
976 |
|
977 -- negative ulps |
|
978 dqadd36440 fma 1 1 -77e-32 -> 0.99999999999999999999999999999923 |
|
979 dqadd36441 fma 1 1 -77e-33 -> 0.999999999999999999999999999999923 |
|
980 dqadd36442 fma 1 1 -77e-34 -> 0.9999999999999999999999999999999923 |
|
981 dqadd36443 fma 1 1 -77e-35 -> 0.9999999999999999999999999999999992 Inexact Rounded |
|
982 dqadd36444 fma 1 1 -77e-36 -> 0.9999999999999999999999999999999999 Inexact Rounded |
|
983 dqadd36445 fma 1 1 -77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
984 dqadd36446 fma 1 1 -77e-99 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
985 |
|
986 dqadd36450 fma 1 10 -77e-32 -> 9.99999999999999999999999999999923 |
|
987 dqadd36451 fma 1 10 -77e-33 -> 9.999999999999999999999999999999923 |
|
988 dqadd36452 fma 1 10 -77e-34 -> 9.999999999999999999999999999999992 Inexact Rounded |
|
989 dqadd36453 fma 1 10 -77e-35 -> 9.999999999999999999999999999999999 Inexact Rounded |
|
990 dqadd36454 fma 1 10 -77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
991 dqadd36455 fma 1 10 -77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
992 dqadd36456 fma 1 10 -77e-99 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
993 |
|
994 dqadd36460 fma 1 -77e-32 1 -> 0.99999999999999999999999999999923 |
|
995 dqadd36461 fma 1 -77e-33 1 -> 0.999999999999999999999999999999923 |
|
996 dqadd36462 fma 1 -77e-34 1 -> 0.9999999999999999999999999999999923 |
|
997 dqadd36463 fma 1 -77e-35 1 -> 0.9999999999999999999999999999999992 Inexact Rounded |
|
998 dqadd36464 fma 1 -77e-36 1 -> 0.9999999999999999999999999999999999 Inexact Rounded |
|
999 dqadd36465 fma 1 -77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
1000 dqadd36466 fma 1 -77e-99 1 -> 1.000000000000000000000000000000000 Inexact Rounded |
|
1001 |
|
1002 dqadd36470 fma 1 -77e-32 10 -> 9.99999999999999999999999999999923 |
|
1003 dqadd36471 fma 1 -77e-33 10 -> 9.999999999999999999999999999999923 |
|
1004 dqadd36472 fma 1 -77e-34 10 -> 9.999999999999999999999999999999992 Inexact Rounded |
|
1005 dqadd36473 fma 1 -77e-35 10 -> 9.999999999999999999999999999999999 Inexact Rounded |
|
1006 dqadd36474 fma 1 -77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
1007 dqadd36475 fma 1 -77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
1008 dqadd36476 fma 1 -77e-99 10 -> 10.00000000000000000000000000000000 Inexact Rounded |
|
1009 |
|
1010 -- negative ulps |
|
1011 dqadd36480 fma 1 -1 77e-32 -> -0.99999999999999999999999999999923 |
|
1012 dqadd36481 fma 1 -1 77e-33 -> -0.999999999999999999999999999999923 |
|
1013 dqadd36482 fma 1 -1 77e-34 -> -0.9999999999999999999999999999999923 |
|
1014 dqadd36483 fma 1 -1 77e-35 -> -0.9999999999999999999999999999999992 Inexact Rounded |
|
1015 dqadd36484 fma 1 -1 77e-36 -> -0.9999999999999999999999999999999999 Inexact Rounded |
|
1016 dqadd36485 fma 1 -1 77e-37 -> -1.000000000000000000000000000000000 Inexact Rounded |
|
1017 dqadd36486 fma 1 -1 77e-99 -> -1.000000000000000000000000000000000 Inexact Rounded |
|
1018 |
|
1019 dqadd36490 fma 1 -10 77e-32 -> -9.99999999999999999999999999999923 |
|
1020 dqadd36491 fma 1 -10 77e-33 -> -9.999999999999999999999999999999923 |
|
1021 dqadd36492 fma 1 -10 77e-34 -> -9.999999999999999999999999999999992 Inexact Rounded |
|
1022 dqadd36493 fma 1 -10 77e-35 -> -9.999999999999999999999999999999999 Inexact Rounded |
|
1023 dqadd36494 fma 1 -10 77e-36 -> -10.00000000000000000000000000000000 Inexact Rounded |
|
1024 dqadd36495 fma 1 -10 77e-37 -> -10.00000000000000000000000000000000 Inexact Rounded |
|
1025 dqadd36496 fma 1 -10 77e-99 -> -10.00000000000000000000000000000000 Inexact Rounded |
|
1026 |
|
1027 dqadd36500 fma 1 77e-32 -1 -> -0.99999999999999999999999999999923 |
|
1028 dqadd36501 fma 1 77e-33 -1 -> -0.999999999999999999999999999999923 |
|
1029 dqadd36502 fma 1 77e-34 -1 -> -0.9999999999999999999999999999999923 |
|
1030 dqadd36503 fma 1 77e-35 -1 -> -0.9999999999999999999999999999999992 Inexact Rounded |
|
1031 dqadd36504 fma 1 77e-36 -1 -> -0.9999999999999999999999999999999999 Inexact Rounded |
|
1032 dqadd36505 fma 1 77e-37 -1 -> -1.000000000000000000000000000000000 Inexact Rounded |
|
1033 dqadd36506 fma 1 77e-99 -1 -> -1.000000000000000000000000000000000 Inexact Rounded |
|
1034 |
|
1035 dqadd36510 fma 1 77e-32 -10 -> -9.99999999999999999999999999999923 |
|
1036 dqadd36511 fma 1 77e-33 -10 -> -9.999999999999999999999999999999923 |
|
1037 dqadd36512 fma 1 77e-34 -10 -> -9.999999999999999999999999999999992 Inexact Rounded |
|
1038 dqadd36513 fma 1 77e-35 -10 -> -9.999999999999999999999999999999999 Inexact Rounded |
|
1039 dqadd36514 fma 1 77e-36 -10 -> -10.00000000000000000000000000000000 Inexact Rounded |
|
1040 dqadd36515 fma 1 77e-37 -10 -> -10.00000000000000000000000000000000 Inexact Rounded |
|
1041 dqadd36516 fma 1 77e-99 -10 -> -10.00000000000000000000000000000000 Inexact Rounded |
|
1042 |
|
1043 -- and some more residue effects and different roundings |
|
1044 rounding: half_up |
|
1045 dqadd36540 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789' |
|
1046 dqadd36541 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1047 dqadd36542 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1048 dqadd36543 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1049 dqadd36544 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1050 dqadd36545 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1051 dqadd36546 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1052 dqadd36547 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1053 dqadd36548 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1054 dqadd36549 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1055 dqadd36550 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1056 dqadd36551 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1057 dqadd36552 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1058 dqadd36553 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1059 dqadd36554 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1060 dqadd36555 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1061 dqadd36556 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790' |
|
1062 dqadd36557 fma 1 '9876543219876543216543210123456789' 1.000000001 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1063 dqadd36558 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1064 dqadd36559 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1065 |
|
1066 rounding: half_even |
|
1067 dqadd36560 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789' |
|
1068 dqadd36561 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1069 dqadd36562 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1070 dqadd36563 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1071 dqadd36564 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1072 dqadd36565 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1073 dqadd36566 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1074 dqadd36567 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1075 dqadd36568 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1076 dqadd36569 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1077 dqadd36570 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1078 dqadd36571 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1079 dqadd36572 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1080 dqadd36573 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1081 dqadd36574 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1082 dqadd36575 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1083 dqadd36576 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790' |
|
1084 dqadd36577 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1085 dqadd36578 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1086 dqadd36579 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1087 |
|
1088 -- critical few with even bottom digit... |
|
1089 dqadd37540 fma 1 '9876543219876543216543210123456788' 0.499999999 -> '9876543219876543216543210123456788' Inexact Rounded |
|
1090 dqadd37541 fma 1 '9876543219876543216543210123456788' 0.5 -> '9876543219876543216543210123456788' Inexact Rounded |
|
1091 dqadd37542 fma 1 '9876543219876543216543210123456788' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1092 |
|
1093 rounding: down |
|
1094 dqadd37550 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789' |
|
1095 dqadd37551 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1096 dqadd37552 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1097 dqadd37553 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1098 dqadd37554 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1099 dqadd37555 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1100 dqadd37556 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1101 dqadd37557 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1102 dqadd37558 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1103 dqadd37559 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1104 dqadd37560 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1105 dqadd37561 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1106 dqadd37562 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1107 dqadd37563 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1108 dqadd37564 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1109 dqadd37565 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456789' Inexact Rounded |
|
1110 dqadd37566 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790' |
|
1111 dqadd37567 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1112 dqadd37568 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1113 dqadd37569 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded |
|
1114 |
|
1115 -- more zeros, etc. |
|
1116 rounding: half_even |
|
1117 |
|
1118 dqadd37701 fma 1 5.00 1.00E-3 -> 5.00100 |
|
1119 dqadd37702 fma 1 00.00 0.000 -> 0.000 |
|
1120 dqadd37703 fma 1 00.00 0E-3 -> 0.000 |
|
1121 dqadd37704 fma 1 0E-3 00.00 -> 0.000 |
|
1122 |
|
1123 dqadd37710 fma 1 0E+3 00.00 -> 0.00 |
|
1124 dqadd37711 fma 1 0E+3 00.0 -> 0.0 |
|
1125 dqadd37712 fma 1 0E+3 00. -> 0 |
|
1126 dqadd37713 fma 1 0E+3 00.E+1 -> 0E+1 |
|
1127 dqadd37714 fma 1 0E+3 00.E+2 -> 0E+2 |
|
1128 dqadd37715 fma 1 0E+3 00.E+3 -> 0E+3 |
|
1129 dqadd37716 fma 1 0E+3 00.E+4 -> 0E+3 |
|
1130 dqadd37717 fma 1 0E+3 00.E+5 -> 0E+3 |
|
1131 dqadd37718 fma 1 0E+3 -00.0 -> 0.0 |
|
1132 dqadd37719 fma 1 0E+3 -00. -> 0 |
|
1133 dqadd37731 fma 1 0E+3 -00.E+1 -> 0E+1 |
|
1134 |
|
1135 dqadd37720 fma 1 00.00 0E+3 -> 0.00 |
|
1136 dqadd37721 fma 1 00.0 0E+3 -> 0.0 |
|
1137 dqadd37722 fma 1 00. 0E+3 -> 0 |
|
1138 dqadd37723 fma 1 00.E+1 0E+3 -> 0E+1 |
|
1139 dqadd37724 fma 1 00.E+2 0E+3 -> 0E+2 |
|
1140 dqadd37725 fma 1 00.E+3 0E+3 -> 0E+3 |
|
1141 dqadd37726 fma 1 00.E+4 0E+3 -> 0E+3 |
|
1142 dqadd37727 fma 1 00.E+5 0E+3 -> 0E+3 |
|
1143 dqadd37728 fma 1 -00.00 0E+3 -> 0.00 |
|
1144 dqadd37729 fma 1 -00.0 0E+3 -> 0.0 |
|
1145 dqadd37730 fma 1 -00. 0E+3 -> 0 |
|
1146 |
|
1147 dqadd37732 fma 1 0 0 -> 0 |
|
1148 dqadd37733 fma 1 0 -0 -> 0 |
|
1149 dqadd37734 fma 1 -0 0 -> 0 |
|
1150 dqadd37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case |
|
1151 |
|
1152 dqadd37736 fma 1 1 -1 -> 0 |
|
1153 dqadd37737 fma 1 -1 -1 -> -2 |
|
1154 dqadd37738 fma 1 1 1 -> 2 |
|
1155 dqadd37739 fma 1 -1 1 -> 0 |
|
1156 |
|
1157 dqadd37741 fma 1 0 -1 -> -1 |
|
1158 dqadd37742 fma 1 -0 -1 -> -1 |
|
1159 dqadd37743 fma 1 0 1 -> 1 |
|
1160 dqadd37744 fma 1 -0 1 -> 1 |
|
1161 dqadd37745 fma 1 -1 0 -> -1 |
|
1162 dqadd37746 fma 1 -1 -0 -> -1 |
|
1163 dqadd37747 fma 1 1 0 -> 1 |
|
1164 dqadd37748 fma 1 1 -0 -> 1 |
|
1165 |
|
1166 dqadd37751 fma 1 0.0 -1 -> -1.0 |
|
1167 dqadd37752 fma 1 -0.0 -1 -> -1.0 |
|
1168 dqadd37753 fma 1 0.0 1 -> 1.0 |
|
1169 dqadd37754 fma 1 -0.0 1 -> 1.0 |
|
1170 dqadd37755 fma 1 -1.0 0 -> -1.0 |
|
1171 dqadd37756 fma 1 -1.0 -0 -> -1.0 |
|
1172 dqadd37757 fma 1 1.0 0 -> 1.0 |
|
1173 dqadd37758 fma 1 1.0 -0 -> 1.0 |
|
1174 |
|
1175 dqadd37761 fma 1 0 -1.0 -> -1.0 |
|
1176 dqadd37762 fma 1 -0 -1.0 -> -1.0 |
|
1177 dqadd37763 fma 1 0 1.0 -> 1.0 |
|
1178 dqadd37764 fma 1 -0 1.0 -> 1.0 |
|
1179 dqadd37765 fma 1 -1 0.0 -> -1.0 |
|
1180 dqadd37766 fma 1 -1 -0.0 -> -1.0 |
|
1181 dqadd37767 fma 1 1 0.0 -> 1.0 |
|
1182 dqadd37768 fma 1 1 -0.0 -> 1.0 |
|
1183 |
|
1184 dqadd37771 fma 1 0.0 -1.0 -> -1.0 |
|
1185 dqadd37772 fma 1 -0.0 -1.0 -> -1.0 |
|
1186 dqadd37773 fma 1 0.0 1.0 -> 1.0 |
|
1187 dqadd37774 fma 1 -0.0 1.0 -> 1.0 |
|
1188 dqadd37775 fma 1 -1.0 0.0 -> -1.0 |
|
1189 dqadd37776 fma 1 -1.0 -0.0 -> -1.0 |
|
1190 dqadd37777 fma 1 1.0 0.0 -> 1.0 |
|
1191 dqadd37778 fma 1 1.0 -0.0 -> 1.0 |
|
1192 |
|
1193 -- Specials |
|
1194 dqadd37780 fma 1 -Inf -Inf -> -Infinity |
|
1195 dqadd37781 fma 1 -Inf -1000 -> -Infinity |
|
1196 dqadd37782 fma 1 -Inf -1 -> -Infinity |
|
1197 dqadd37783 fma 1 -Inf -0 -> -Infinity |
|
1198 dqadd37784 fma 1 -Inf 0 -> -Infinity |
|
1199 dqadd37785 fma 1 -Inf 1 -> -Infinity |
|
1200 dqadd37786 fma 1 -Inf 1000 -> -Infinity |
|
1201 dqadd37787 fma 1 -1000 -Inf -> -Infinity |
|
1202 dqadd37788 fma 1 -Inf -Inf -> -Infinity |
|
1203 dqadd37789 fma 1 -1 -Inf -> -Infinity |
|
1204 dqadd37790 fma 1 -0 -Inf -> -Infinity |
|
1205 dqadd37791 fma 1 0 -Inf -> -Infinity |
|
1206 dqadd37792 fma 1 1 -Inf -> -Infinity |
|
1207 dqadd37793 fma 1 1000 -Inf -> -Infinity |
|
1208 dqadd37794 fma 1 Inf -Inf -> NaN Invalid_operation |
|
1209 |
|
1210 dqadd37800 fma 1 Inf -Inf -> NaN Invalid_operation |
|
1211 dqadd37801 fma 1 Inf -1000 -> Infinity |
|
1212 dqadd37802 fma 1 Inf -1 -> Infinity |
|
1213 dqadd37803 fma 1 Inf -0 -> Infinity |
|
1214 dqadd37804 fma 1 Inf 0 -> Infinity |
|
1215 dqadd37805 fma 1 Inf 1 -> Infinity |
|
1216 dqadd37806 fma 1 Inf 1000 -> Infinity |
|
1217 dqadd37807 fma 1 Inf Inf -> Infinity |
|
1218 dqadd37808 fma 1 -1000 Inf -> Infinity |
|
1219 dqadd37809 fma 1 -Inf Inf -> NaN Invalid_operation |
|
1220 dqadd37810 fma 1 -1 Inf -> Infinity |
|
1221 dqadd37811 fma 1 -0 Inf -> Infinity |
|
1222 dqadd37812 fma 1 0 Inf -> Infinity |
|
1223 dqadd37813 fma 1 1 Inf -> Infinity |
|
1224 dqadd37814 fma 1 1000 Inf -> Infinity |
|
1225 dqadd37815 fma 1 Inf Inf -> Infinity |
|
1226 |
|
1227 dqadd37821 fma 1 NaN -Inf -> NaN |
|
1228 dqadd37822 fma 1 NaN -1000 -> NaN |
|
1229 dqadd37823 fma 1 NaN -1 -> NaN |
|
1230 dqadd37824 fma 1 NaN -0 -> NaN |
|
1231 dqadd37825 fma 1 NaN 0 -> NaN |
|
1232 dqadd37826 fma 1 NaN 1 -> NaN |
|
1233 dqadd37827 fma 1 NaN 1000 -> NaN |
|
1234 dqadd37828 fma 1 NaN Inf -> NaN |
|
1235 dqadd37829 fma 1 NaN NaN -> NaN |
|
1236 dqadd37830 fma 1 -Inf NaN -> NaN |
|
1237 dqadd37831 fma 1 -1000 NaN -> NaN |
|
1238 dqadd37832 fma 1 -1 NaN -> NaN |
|
1239 dqadd37833 fma 1 -0 NaN -> NaN |
|
1240 dqadd37834 fma 1 0 NaN -> NaN |
|
1241 dqadd37835 fma 1 1 NaN -> NaN |
|
1242 dqadd37836 fma 1 1000 NaN -> NaN |
|
1243 dqadd37837 fma 1 Inf NaN -> NaN |
|
1244 |
|
1245 dqadd37841 fma 1 sNaN -Inf -> NaN Invalid_operation |
|
1246 dqadd37842 fma 1 sNaN -1000 -> NaN Invalid_operation |
|
1247 dqadd37843 fma 1 sNaN -1 -> NaN Invalid_operation |
|
1248 dqadd37844 fma 1 sNaN -0 -> NaN Invalid_operation |
|
1249 dqadd37845 fma 1 sNaN 0 -> NaN Invalid_operation |
|
1250 dqadd37846 fma 1 sNaN 1 -> NaN Invalid_operation |
|
1251 dqadd37847 fma 1 sNaN 1000 -> NaN Invalid_operation |
|
1252 dqadd37848 fma 1 sNaN NaN -> NaN Invalid_operation |
|
1253 dqadd37849 fma 1 sNaN sNaN -> NaN Invalid_operation |
|
1254 dqadd37850 fma 1 NaN sNaN -> NaN Invalid_operation |
|
1255 dqadd37851 fma 1 -Inf sNaN -> NaN Invalid_operation |
|
1256 dqadd37852 fma 1 -1000 sNaN -> NaN Invalid_operation |
|
1257 dqadd37853 fma 1 -1 sNaN -> NaN Invalid_operation |
|
1258 dqadd37854 fma 1 -0 sNaN -> NaN Invalid_operation |
|
1259 dqadd37855 fma 1 0 sNaN -> NaN Invalid_operation |
|
1260 dqadd37856 fma 1 1 sNaN -> NaN Invalid_operation |
|
1261 dqadd37857 fma 1 1000 sNaN -> NaN Invalid_operation |
|
1262 dqadd37858 fma 1 Inf sNaN -> NaN Invalid_operation |
|
1263 dqadd37859 fma 1 NaN sNaN -> NaN Invalid_operation |
|
1264 |
|
1265 -- propagating NaNs |
|
1266 dqadd37861 fma 1 NaN1 -Inf -> NaN1 |
|
1267 dqadd37862 fma 1 +NaN2 -1000 -> NaN2 |
|
1268 dqadd37863 fma 1 NaN3 1000 -> NaN3 |
|
1269 dqadd37864 fma 1 NaN4 Inf -> NaN4 |
|
1270 dqadd37865 fma 1 NaN5 +NaN6 -> NaN5 |
|
1271 dqadd37866 fma 1 -Inf NaN7 -> NaN7 |
|
1272 dqadd37867 fma 1 -1000 NaN8 -> NaN8 |
|
1273 dqadd37868 fma 1 1000 NaN9 -> NaN9 |
|
1274 dqadd37869 fma 1 Inf +NaN10 -> NaN10 |
|
1275 dqadd37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation |
|
1276 dqadd37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation |
|
1277 dqadd37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation |
|
1278 dqadd37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation |
|
1279 dqadd37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation |
|
1280 dqadd37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation |
|
1281 dqadd37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation |
|
1282 dqadd37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation |
|
1283 dqadd37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation |
|
1284 dqadd37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation |
|
1285 dqadd37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation |
|
1286 dqadd37882 fma 1 -NaN26 NaN28 -> -NaN26 |
|
1287 dqadd37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation |
|
1288 dqadd37884 fma 1 1000 -NaN30 -> -NaN30 |
|
1289 dqadd37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation |
|
1290 |
|
1291 -- Here we explore near the boundary of rounding a subnormal to Nmin |
|
1292 dqadd37575 fma 1 1E-6143 -1E-6176 -> 9.99999999999999999999999999999999E-6144 Subnormal |
|
1293 dqadd37576 fma 1 -1E-6143 +1E-6176 -> -9.99999999999999999999999999999999E-6144 Subnormal |
|
1294 |
|
1295 -- check overflow edge case |
|
1296 -- 1234567890123456 |
|
1297 dqadd37972 apply 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 |
|
1298 dqadd37973 fma 1 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1299 dqadd37974 fma 1 9999999999999999999999999999999999E+6111 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1300 dqadd37975 fma 1 9999999999999999999999999999999999E+6111 1E+6111 -> Infinity Overflow Inexact Rounded |
|
1301 dqadd37976 fma 1 9999999999999999999999999999999999E+6111 9E+6110 -> Infinity Overflow Inexact Rounded |
|
1302 dqadd37977 fma 1 9999999999999999999999999999999999E+6111 8E+6110 -> Infinity Overflow Inexact Rounded |
|
1303 dqadd37978 fma 1 9999999999999999999999999999999999E+6111 7E+6110 -> Infinity Overflow Inexact Rounded |
|
1304 dqadd37979 fma 1 9999999999999999999999999999999999E+6111 6E+6110 -> Infinity Overflow Inexact Rounded |
|
1305 dqadd37980 fma 1 9999999999999999999999999999999999E+6111 5E+6110 -> Infinity Overflow Inexact Rounded |
|
1306 dqadd37981 fma 1 9999999999999999999999999999999999E+6111 4E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1307 dqadd37982 fma 1 9999999999999999999999999999999999E+6111 3E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1308 dqadd37983 fma 1 9999999999999999999999999999999999E+6111 2E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1309 dqadd37984 fma 1 9999999999999999999999999999999999E+6111 1E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1310 |
|
1311 dqadd37985 apply -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144 |
|
1312 dqadd37986 fma 1 -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1313 dqadd37987 fma 1 -9999999999999999999999999999999999E+6111 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1314 dqadd37988 fma 1 -9999999999999999999999999999999999E+6111 -1E+6111 -> -Infinity Overflow Inexact Rounded |
|
1315 dqadd37989 fma 1 -9999999999999999999999999999999999E+6111 -9E+6110 -> -Infinity Overflow Inexact Rounded |
|
1316 dqadd37990 fma 1 -9999999999999999999999999999999999E+6111 -8E+6110 -> -Infinity Overflow Inexact Rounded |
|
1317 dqadd37991 fma 1 -9999999999999999999999999999999999E+6111 -7E+6110 -> -Infinity Overflow Inexact Rounded |
|
1318 dqadd37992 fma 1 -9999999999999999999999999999999999E+6111 -6E+6110 -> -Infinity Overflow Inexact Rounded |
|
1319 dqadd37993 fma 1 -9999999999999999999999999999999999E+6111 -5E+6110 -> -Infinity Overflow Inexact Rounded |
|
1320 dqadd37994 fma 1 -9999999999999999999999999999999999E+6111 -4E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1321 dqadd37995 fma 1 -9999999999999999999999999999999999E+6111 -3E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1322 dqadd37996 fma 1 -9999999999999999999999999999999999E+6111 -2E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1323 dqadd37997 fma 1 -9999999999999999999999999999999999E+6111 -1E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded |
|
1324 |
|
1325 -- And for round down full and subnormal results |
|
1326 rounding: down |
|
1327 dqadd371100 fma 1 1e+2 -1e-6143 -> 99.99999999999999999999999999999999 Rounded Inexact |
|
1328 dqadd371101 fma 1 1e+1 -1e-6143 -> 9.999999999999999999999999999999999 Rounded Inexact |
|
1329 dqadd371103 fma 1 +1 -1e-6143 -> 0.9999999999999999999999999999999999 Rounded Inexact |
|
1330 dqadd371104 fma 1 1e-1 -1e-6143 -> 0.09999999999999999999999999999999999 Rounded Inexact |
|
1331 dqadd371105 fma 1 1e-2 -1e-6143 -> 0.009999999999999999999999999999999999 Rounded Inexact |
|
1332 dqadd371106 fma 1 1e-3 -1e-6143 -> 0.0009999999999999999999999999999999999 Rounded Inexact |
|
1333 dqadd371107 fma 1 1e-4 -1e-6143 -> 0.00009999999999999999999999999999999999 Rounded Inexact |
|
1334 dqadd371108 fma 1 1e-5 -1e-6143 -> 0.000009999999999999999999999999999999999 Rounded Inexact |
|
1335 dqadd371109 fma 1 1e-6 -1e-6143 -> 9.999999999999999999999999999999999E-7 Rounded Inexact |
|
1336 |
|
1337 rounding: ceiling |
|
1338 dqadd371110 fma 1 -1e+2 +1e-6143 -> -99.99999999999999999999999999999999 Rounded Inexact |
|
1339 dqadd371111 fma 1 -1e+1 +1e-6143 -> -9.999999999999999999999999999999999 Rounded Inexact |
|
1340 dqadd371113 fma 1 -1 +1e-6143 -> -0.9999999999999999999999999999999999 Rounded Inexact |
|
1341 dqadd371114 fma 1 -1e-1 +1e-6143 -> -0.09999999999999999999999999999999999 Rounded Inexact |
|
1342 dqadd371115 fma 1 -1e-2 +1e-6143 -> -0.009999999999999999999999999999999999 Rounded Inexact |
|
1343 dqadd371116 fma 1 -1e-3 +1e-6143 -> -0.0009999999999999999999999999999999999 Rounded Inexact |
|
1344 dqadd371117 fma 1 -1e-4 +1e-6143 -> -0.00009999999999999999999999999999999999 Rounded Inexact |
|
1345 dqadd371118 fma 1 -1e-5 +1e-6143 -> -0.000009999999999999999999999999999999999 Rounded Inexact |
|
1346 dqadd371119 fma 1 -1e-6 +1e-6143 -> -9.999999999999999999999999999999999E-7 Rounded Inexact |
|
1347 |
|
1348 -- tests based on Gunnar Degnbol's edge case |
|
1349 rounding: half_even |
|
1350 |
|
1351 dqadd371300 fma 1 1E34 -0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1352 dqadd371310 fma 1 1E34 -0.51 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1353 dqadd371311 fma 1 1E34 -0.501 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1354 dqadd371312 fma 1 1E34 -0.5001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1355 dqadd371313 fma 1 1E34 -0.50001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1356 dqadd371314 fma 1 1E34 -0.500001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1357 dqadd371315 fma 1 1E34 -0.5000001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1358 dqadd371316 fma 1 1E34 -0.50000001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1359 dqadd371317 fma 1 1E34 -0.500000001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1360 dqadd371318 fma 1 1E34 -0.5000000001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1361 dqadd371319 fma 1 1E34 -0.50000000001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1362 dqadd371320 fma 1 1E34 -0.500000000001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1363 dqadd371321 fma 1 1E34 -0.5000000000001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1364 dqadd371322 fma 1 1E34 -0.50000000000001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1365 dqadd371323 fma 1 1E34 -0.500000000000001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1366 dqadd371324 fma 1 1E34 -0.5000000000000001 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1367 dqadd371325 fma 1 1E34 -0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1368 dqadd371326 fma 1 1E34 -0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1369 dqadd371327 fma 1 1E34 -0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1370 dqadd371328 fma 1 1E34 -0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1371 dqadd371329 fma 1 1E34 -0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1372 dqadd371330 fma 1 1E34 -0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1373 dqadd371331 fma 1 1E34 -0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1374 dqadd371332 fma 1 1E34 -0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1375 dqadd371333 fma 1 1E34 -0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1376 dqadd371334 fma 1 1E34 -0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1377 dqadd371335 fma 1 1E34 -0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1378 dqadd371336 fma 1 1E34 -0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1379 dqadd371337 fma 1 1E34 -0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1380 dqadd371338 fma 1 1E34 -0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1381 dqadd371339 fma 1 1E34 -0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1382 |
|
1383 dqadd371340 fma 1 1E34 -5000000.000010001 -> 9999999999999999999999999995000000 Inexact Rounded |
|
1384 dqadd371341 fma 1 1E34 -5000000.000000001 -> 9999999999999999999999999995000000 Inexact Rounded |
|
1385 |
|
1386 dqadd371349 fma 1 9999999999999999999999999999999999 0.4 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1387 dqadd371350 fma 1 9999999999999999999999999999999999 0.49 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1388 dqadd371351 fma 1 9999999999999999999999999999999999 0.499 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1389 dqadd371352 fma 1 9999999999999999999999999999999999 0.4999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1390 dqadd371353 fma 1 9999999999999999999999999999999999 0.49999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1391 dqadd371354 fma 1 9999999999999999999999999999999999 0.499999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1392 dqadd371355 fma 1 9999999999999999999999999999999999 0.4999999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1393 dqadd371356 fma 1 9999999999999999999999999999999999 0.49999999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1394 dqadd371357 fma 1 9999999999999999999999999999999999 0.499999999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1395 dqadd371358 fma 1 9999999999999999999999999999999999 0.4999999999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1396 dqadd371359 fma 1 9999999999999999999999999999999999 0.49999999999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1397 dqadd371360 fma 1 9999999999999999999999999999999999 0.499999999999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1398 dqadd371361 fma 1 9999999999999999999999999999999999 0.4999999999999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1399 dqadd371362 fma 1 9999999999999999999999999999999999 0.49999999999999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1400 dqadd371363 fma 1 9999999999999999999999999999999999 0.499999999999999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1401 dqadd371364 fma 1 9999999999999999999999999999999999 0.4999999999999999 -> 9999999999999999999999999999999999 Inexact Rounded |
|
1402 dqadd371365 fma 1 9999999999999999999999999999999999 0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1403 dqadd371367 fma 1 9999999999999999999999999999999999 0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1404 dqadd371368 fma 1 9999999999999999999999999999999999 0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1405 dqadd371369 fma 1 9999999999999999999999999999999999 0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1406 dqadd371370 fma 1 9999999999999999999999999999999999 0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1407 dqadd371371 fma 1 9999999999999999999999999999999999 0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1408 dqadd371372 fma 1 9999999999999999999999999999999999 0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1409 dqadd371373 fma 1 9999999999999999999999999999999999 0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1410 dqadd371374 fma 1 9999999999999999999999999999999999 0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1411 dqadd371375 fma 1 9999999999999999999999999999999999 0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1412 dqadd371376 fma 1 9999999999999999999999999999999999 0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1413 dqadd371377 fma 1 9999999999999999999999999999999999 0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1414 dqadd371378 fma 1 9999999999999999999999999999999999 0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1415 dqadd371379 fma 1 9999999999999999999999999999999999 0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1416 dqadd371380 fma 1 9999999999999999999999999999999999 0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1417 dqadd371381 fma 1 9999999999999999999999999999999999 0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1418 dqadd371382 fma 1 9999999999999999999999999999999999 0.5000000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1419 dqadd371383 fma 1 9999999999999999999999999999999999 0.500000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1420 dqadd371384 fma 1 9999999999999999999999999999999999 0.50000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1421 dqadd371385 fma 1 9999999999999999999999999999999999 0.5000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1422 dqadd371386 fma 1 9999999999999999999999999999999999 0.500000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1423 dqadd371387 fma 1 9999999999999999999999999999999999 0.50000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1424 dqadd371388 fma 1 9999999999999999999999999999999999 0.5000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1425 dqadd371389 fma 1 9999999999999999999999999999999999 0.500000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1426 dqadd371390 fma 1 9999999999999999999999999999999999 0.50000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1427 dqadd371391 fma 1 9999999999999999999999999999999999 0.5000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1428 dqadd371392 fma 1 9999999999999999999999999999999999 0.500001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1429 dqadd371393 fma 1 9999999999999999999999999999999999 0.50001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1430 dqadd371394 fma 1 9999999999999999999999999999999999 0.5001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1431 dqadd371395 fma 1 9999999999999999999999999999999999 0.501 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1432 dqadd371396 fma 1 9999999999999999999999999999999999 0.51 -> 1.000000000000000000000000000000000E+34 Inexact Rounded |
|
1433 |
|
1434 -- More GD edge cases, where difference between the unadjusted |
|
1435 -- exponents is larger than the maximum precision and one side is 0 |
|
1436 dqadd371420 fma 1 0 1.123456789987654321123456789012345 -> 1.123456789987654321123456789012345 |
|
1437 dqadd371421 fma 1 0 1.123456789987654321123456789012345E-1 -> 0.1123456789987654321123456789012345 |
|
1438 dqadd371422 fma 1 0 1.123456789987654321123456789012345E-2 -> 0.01123456789987654321123456789012345 |
|
1439 dqadd371423 fma 1 0 1.123456789987654321123456789012345E-3 -> 0.001123456789987654321123456789012345 |
|
1440 dqadd371424 fma 1 0 1.123456789987654321123456789012345E-4 -> 0.0001123456789987654321123456789012345 |
|
1441 dqadd371425 fma 1 0 1.123456789987654321123456789012345E-5 -> 0.00001123456789987654321123456789012345 |
|
1442 dqadd371426 fma 1 0 1.123456789987654321123456789012345E-6 -> 0.000001123456789987654321123456789012345 |
|
1443 dqadd371427 fma 1 0 1.123456789987654321123456789012345E-7 -> 1.123456789987654321123456789012345E-7 |
|
1444 dqadd371428 fma 1 0 1.123456789987654321123456789012345E-8 -> 1.123456789987654321123456789012345E-8 |
|
1445 dqadd371429 fma 1 0 1.123456789987654321123456789012345E-9 -> 1.123456789987654321123456789012345E-9 |
|
1446 dqadd371430 fma 1 0 1.123456789987654321123456789012345E-10 -> 1.123456789987654321123456789012345E-10 |
|
1447 dqadd371431 fma 1 0 1.123456789987654321123456789012345E-11 -> 1.123456789987654321123456789012345E-11 |
|
1448 dqadd371432 fma 1 0 1.123456789987654321123456789012345E-12 -> 1.123456789987654321123456789012345E-12 |
|
1449 dqadd371433 fma 1 0 1.123456789987654321123456789012345E-13 -> 1.123456789987654321123456789012345E-13 |
|
1450 dqadd371434 fma 1 0 1.123456789987654321123456789012345E-14 -> 1.123456789987654321123456789012345E-14 |
|
1451 dqadd371435 fma 1 0 1.123456789987654321123456789012345E-15 -> 1.123456789987654321123456789012345E-15 |
|
1452 dqadd371436 fma 1 0 1.123456789987654321123456789012345E-16 -> 1.123456789987654321123456789012345E-16 |
|
1453 dqadd371437 fma 1 0 1.123456789987654321123456789012345E-17 -> 1.123456789987654321123456789012345E-17 |
|
1454 dqadd371438 fma 1 0 1.123456789987654321123456789012345E-18 -> 1.123456789987654321123456789012345E-18 |
|
1455 dqadd371439 fma 1 0 1.123456789987654321123456789012345E-19 -> 1.123456789987654321123456789012345E-19 |
|
1456 dqadd371440 fma 1 0 1.123456789987654321123456789012345E-20 -> 1.123456789987654321123456789012345E-20 |
|
1457 dqadd371441 fma 1 0 1.123456789987654321123456789012345E-21 -> 1.123456789987654321123456789012345E-21 |
|
1458 dqadd371442 fma 1 0 1.123456789987654321123456789012345E-22 -> 1.123456789987654321123456789012345E-22 |
|
1459 dqadd371443 fma 1 0 1.123456789987654321123456789012345E-23 -> 1.123456789987654321123456789012345E-23 |
|
1460 dqadd371444 fma 1 0 1.123456789987654321123456789012345E-24 -> 1.123456789987654321123456789012345E-24 |
|
1461 dqadd371445 fma 1 0 1.123456789987654321123456789012345E-25 -> 1.123456789987654321123456789012345E-25 |
|
1462 dqadd371446 fma 1 0 1.123456789987654321123456789012345E-26 -> 1.123456789987654321123456789012345E-26 |
|
1463 dqadd371447 fma 1 0 1.123456789987654321123456789012345E-27 -> 1.123456789987654321123456789012345E-27 |
|
1464 dqadd371448 fma 1 0 1.123456789987654321123456789012345E-28 -> 1.123456789987654321123456789012345E-28 |
|
1465 dqadd371449 fma 1 0 1.123456789987654321123456789012345E-29 -> 1.123456789987654321123456789012345E-29 |
|
1466 dqadd371450 fma 1 0 1.123456789987654321123456789012345E-30 -> 1.123456789987654321123456789012345E-30 |
|
1467 dqadd371451 fma 1 0 1.123456789987654321123456789012345E-31 -> 1.123456789987654321123456789012345E-31 |
|
1468 dqadd371452 fma 1 0 1.123456789987654321123456789012345E-32 -> 1.123456789987654321123456789012345E-32 |
|
1469 dqadd371453 fma 1 0 1.123456789987654321123456789012345E-33 -> 1.123456789987654321123456789012345E-33 |
|
1470 dqadd371454 fma 1 0 1.123456789987654321123456789012345E-34 -> 1.123456789987654321123456789012345E-34 |
|
1471 dqadd371455 fma 1 0 1.123456789987654321123456789012345E-35 -> 1.123456789987654321123456789012345E-35 |
|
1472 dqadd371456 fma 1 0 1.123456789987654321123456789012345E-36 -> 1.123456789987654321123456789012345E-36 |
|
1473 |
|
1474 -- same, reversed 0 |
|
1475 dqadd371460 fma 1 1.123456789987654321123456789012345 0 -> 1.123456789987654321123456789012345 |
|
1476 dqadd371461 fma 1 1.123456789987654321123456789012345E-1 0 -> 0.1123456789987654321123456789012345 |
|
1477 dqadd371462 fma 1 1.123456789987654321123456789012345E-2 0 -> 0.01123456789987654321123456789012345 |
|
1478 dqadd371463 fma 1 1.123456789987654321123456789012345E-3 0 -> 0.001123456789987654321123456789012345 |
|
1479 dqadd371464 fma 1 1.123456789987654321123456789012345E-4 0 -> 0.0001123456789987654321123456789012345 |
|
1480 dqadd371465 fma 1 1.123456789987654321123456789012345E-5 0 -> 0.00001123456789987654321123456789012345 |
|
1481 dqadd371466 fma 1 1.123456789987654321123456789012345E-6 0 -> 0.000001123456789987654321123456789012345 |
|
1482 dqadd371467 fma 1 1.123456789987654321123456789012345E-7 0 -> 1.123456789987654321123456789012345E-7 |
|
1483 dqadd371468 fma 1 1.123456789987654321123456789012345E-8 0 -> 1.123456789987654321123456789012345E-8 |
|
1484 dqadd371469 fma 1 1.123456789987654321123456789012345E-9 0 -> 1.123456789987654321123456789012345E-9 |
|
1485 dqadd371470 fma 1 1.123456789987654321123456789012345E-10 0 -> 1.123456789987654321123456789012345E-10 |
|
1486 dqadd371471 fma 1 1.123456789987654321123456789012345E-11 0 -> 1.123456789987654321123456789012345E-11 |
|
1487 dqadd371472 fma 1 1.123456789987654321123456789012345E-12 0 -> 1.123456789987654321123456789012345E-12 |
|
1488 dqadd371473 fma 1 1.123456789987654321123456789012345E-13 0 -> 1.123456789987654321123456789012345E-13 |
|
1489 dqadd371474 fma 1 1.123456789987654321123456789012345E-14 0 -> 1.123456789987654321123456789012345E-14 |
|
1490 dqadd371475 fma 1 1.123456789987654321123456789012345E-15 0 -> 1.123456789987654321123456789012345E-15 |
|
1491 dqadd371476 fma 1 1.123456789987654321123456789012345E-16 0 -> 1.123456789987654321123456789012345E-16 |
|
1492 dqadd371477 fma 1 1.123456789987654321123456789012345E-17 0 -> 1.123456789987654321123456789012345E-17 |
|
1493 dqadd371478 fma 1 1.123456789987654321123456789012345E-18 0 -> 1.123456789987654321123456789012345E-18 |
|
1494 dqadd371479 fma 1 1.123456789987654321123456789012345E-19 0 -> 1.123456789987654321123456789012345E-19 |
|
1495 dqadd371480 fma 1 1.123456789987654321123456789012345E-20 0 -> 1.123456789987654321123456789012345E-20 |
|
1496 dqadd371481 fma 1 1.123456789987654321123456789012345E-21 0 -> 1.123456789987654321123456789012345E-21 |
|
1497 dqadd371482 fma 1 1.123456789987654321123456789012345E-22 0 -> 1.123456789987654321123456789012345E-22 |
|
1498 dqadd371483 fma 1 1.123456789987654321123456789012345E-23 0 -> 1.123456789987654321123456789012345E-23 |
|
1499 dqadd371484 fma 1 1.123456789987654321123456789012345E-24 0 -> 1.123456789987654321123456789012345E-24 |
|
1500 dqadd371485 fma 1 1.123456789987654321123456789012345E-25 0 -> 1.123456789987654321123456789012345E-25 |
|
1501 dqadd371486 fma 1 1.123456789987654321123456789012345E-26 0 -> 1.123456789987654321123456789012345E-26 |
|
1502 dqadd371487 fma 1 1.123456789987654321123456789012345E-27 0 -> 1.123456789987654321123456789012345E-27 |
|
1503 dqadd371488 fma 1 1.123456789987654321123456789012345E-28 0 -> 1.123456789987654321123456789012345E-28 |
|
1504 dqadd371489 fma 1 1.123456789987654321123456789012345E-29 0 -> 1.123456789987654321123456789012345E-29 |
|
1505 dqadd371490 fma 1 1.123456789987654321123456789012345E-30 0 -> 1.123456789987654321123456789012345E-30 |
|
1506 dqadd371491 fma 1 1.123456789987654321123456789012345E-31 0 -> 1.123456789987654321123456789012345E-31 |
|
1507 dqadd371492 fma 1 1.123456789987654321123456789012345E-32 0 -> 1.123456789987654321123456789012345E-32 |
|
1508 dqadd371493 fma 1 1.123456789987654321123456789012345E-33 0 -> 1.123456789987654321123456789012345E-33 |
|
1509 dqadd371494 fma 1 1.123456789987654321123456789012345E-34 0 -> 1.123456789987654321123456789012345E-34 |
|
1510 dqadd371495 fma 1 1.123456789987654321123456789012345E-35 0 -> 1.123456789987654321123456789012345E-35 |
|
1511 dqadd371496 fma 1 1.123456789987654321123456789012345E-36 0 -> 1.123456789987654321123456789012345E-36 |
|
1512 |
|
1513 -- same, Es on the 0 |
|
1514 dqadd371500 fma 1 1.123456789987654321123456789012345 0E-0 -> 1.123456789987654321123456789012345 |
|
1515 dqadd371501 fma 1 1.123456789987654321123456789012345 0E-1 -> 1.123456789987654321123456789012345 |
|
1516 dqadd371502 fma 1 1.123456789987654321123456789012345 0E-2 -> 1.123456789987654321123456789012345 |
|
1517 dqadd371503 fma 1 1.123456789987654321123456789012345 0E-3 -> 1.123456789987654321123456789012345 |
|
1518 dqadd371504 fma 1 1.123456789987654321123456789012345 0E-4 -> 1.123456789987654321123456789012345 |
|
1519 dqadd371505 fma 1 1.123456789987654321123456789012345 0E-5 -> 1.123456789987654321123456789012345 |
|
1520 dqadd371506 fma 1 1.123456789987654321123456789012345 0E-6 -> 1.123456789987654321123456789012345 |
|
1521 dqadd371507 fma 1 1.123456789987654321123456789012345 0E-7 -> 1.123456789987654321123456789012345 |
|
1522 dqadd371508 fma 1 1.123456789987654321123456789012345 0E-8 -> 1.123456789987654321123456789012345 |
|
1523 dqadd371509 fma 1 1.123456789987654321123456789012345 0E-9 -> 1.123456789987654321123456789012345 |
|
1524 dqadd371510 fma 1 1.123456789987654321123456789012345 0E-10 -> 1.123456789987654321123456789012345 |
|
1525 dqadd371511 fma 1 1.123456789987654321123456789012345 0E-11 -> 1.123456789987654321123456789012345 |
|
1526 dqadd371512 fma 1 1.123456789987654321123456789012345 0E-12 -> 1.123456789987654321123456789012345 |
|
1527 dqadd371513 fma 1 1.123456789987654321123456789012345 0E-13 -> 1.123456789987654321123456789012345 |
|
1528 dqadd371514 fma 1 1.123456789987654321123456789012345 0E-14 -> 1.123456789987654321123456789012345 |
|
1529 dqadd371515 fma 1 1.123456789987654321123456789012345 0E-15 -> 1.123456789987654321123456789012345 |
|
1530 dqadd371516 fma 1 1.123456789987654321123456789012345 0E-16 -> 1.123456789987654321123456789012345 |
|
1531 dqadd371517 fma 1 1.123456789987654321123456789012345 0E-17 -> 1.123456789987654321123456789012345 |
|
1532 dqadd371518 fma 1 1.123456789987654321123456789012345 0E-18 -> 1.123456789987654321123456789012345 |
|
1533 dqadd371519 fma 1 1.123456789987654321123456789012345 0E-19 -> 1.123456789987654321123456789012345 |
|
1534 dqadd371520 fma 1 1.123456789987654321123456789012345 0E-20 -> 1.123456789987654321123456789012345 |
|
1535 dqadd371521 fma 1 1.123456789987654321123456789012345 0E-21 -> 1.123456789987654321123456789012345 |
|
1536 dqadd371522 fma 1 1.123456789987654321123456789012345 0E-22 -> 1.123456789987654321123456789012345 |
|
1537 dqadd371523 fma 1 1.123456789987654321123456789012345 0E-23 -> 1.123456789987654321123456789012345 |
|
1538 dqadd371524 fma 1 1.123456789987654321123456789012345 0E-24 -> 1.123456789987654321123456789012345 |
|
1539 dqadd371525 fma 1 1.123456789987654321123456789012345 0E-25 -> 1.123456789987654321123456789012345 |
|
1540 dqadd371526 fma 1 1.123456789987654321123456789012345 0E-26 -> 1.123456789987654321123456789012345 |
|
1541 dqadd371527 fma 1 1.123456789987654321123456789012345 0E-27 -> 1.123456789987654321123456789012345 |
|
1542 dqadd371528 fma 1 1.123456789987654321123456789012345 0E-28 -> 1.123456789987654321123456789012345 |
|
1543 dqadd371529 fma 1 1.123456789987654321123456789012345 0E-29 -> 1.123456789987654321123456789012345 |
|
1544 dqadd371530 fma 1 1.123456789987654321123456789012345 0E-30 -> 1.123456789987654321123456789012345 |
|
1545 dqadd371531 fma 1 1.123456789987654321123456789012345 0E-31 -> 1.123456789987654321123456789012345 |
|
1546 dqadd371532 fma 1 1.123456789987654321123456789012345 0E-32 -> 1.123456789987654321123456789012345 |
|
1547 dqadd371533 fma 1 1.123456789987654321123456789012345 0E-33 -> 1.123456789987654321123456789012345 |
|
1548 -- next four flag Rounded because the 0 extends the result |
|
1549 dqadd371534 fma 1 1.123456789987654321123456789012345 0E-34 -> 1.123456789987654321123456789012345 Rounded |
|
1550 dqadd371535 fma 1 1.123456789987654321123456789012345 0E-35 -> 1.123456789987654321123456789012345 Rounded |
|
1551 dqadd371536 fma 1 1.123456789987654321123456789012345 0E-36 -> 1.123456789987654321123456789012345 Rounded |
|
1552 dqadd371537 fma 1 1.123456789987654321123456789012345 0E-37 -> 1.123456789987654321123456789012345 Rounded |
|
1553 |
|
1554 -- sum of two opposite-sign operands is exactly 0 and floor => -0 |
|
1555 rounding: half_up |
|
1556 -- exact zeros from zeros |
|
1557 dqadd371600 fma 1 0 0E-19 -> 0E-19 |
|
1558 dqadd371601 fma 1 -0 0E-19 -> 0E-19 |
|
1559 dqadd371602 fma 1 0 -0E-19 -> 0E-19 |
|
1560 dqadd371603 fma 1 -0 -0E-19 -> -0E-19 |
|
1561 -- exact zeros from non-zeros |
|
1562 dqadd371611 fma 1 -11 11 -> 0 |
|
1563 dqadd371612 fma 1 11 -11 -> 0 |
|
1564 -- overflow |
|
1565 dqadd371613 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded |
|
1566 dqadd371614 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded |
|
1567 |
|
1568 rounding: half_down |
|
1569 -- exact zeros from zeros |
|
1570 dqadd371620 fma 1 0 0E-19 -> 0E-19 |
|
1571 dqadd371621 fma 1 -0 0E-19 -> 0E-19 |
|
1572 dqadd371622 fma 1 0 -0E-19 -> 0E-19 |
|
1573 dqadd371623 fma 1 -0 -0E-19 -> -0E-19 |
|
1574 -- exact zeros from non-zeros |
|
1575 dqadd371631 fma 1 -11 11 -> 0 |
|
1576 dqadd371632 fma 1 11 -11 -> 0 |
|
1577 -- overflow |
|
1578 dqadd371633 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded |
|
1579 dqadd371634 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded |
|
1580 |
|
1581 rounding: half_even |
|
1582 -- exact zeros from zeros |
|
1583 dqadd371640 fma 1 0 0E-19 -> 0E-19 |
|
1584 dqadd371641 fma 1 -0 0E-19 -> 0E-19 |
|
1585 dqadd371642 fma 1 0 -0E-19 -> 0E-19 |
|
1586 dqadd371643 fma 1 -0 -0E-19 -> -0E-19 |
|
1587 -- exact zeros from non-zeros |
|
1588 dqadd371651 fma 1 -11 11 -> 0 |
|
1589 dqadd371652 fma 1 11 -11 -> 0 |
|
1590 -- overflow |
|
1591 dqadd371653 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded |
|
1592 dqadd371654 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded |
|
1593 |
|
1594 rounding: up |
|
1595 -- exact zeros from zeros |
|
1596 dqadd371660 fma 1 0 0E-19 -> 0E-19 |
|
1597 dqadd371661 fma 1 -0 0E-19 -> 0E-19 |
|
1598 dqadd371662 fma 1 0 -0E-19 -> 0E-19 |
|
1599 dqadd371663 fma 1 -0 -0E-19 -> -0E-19 |
|
1600 -- exact zeros from non-zeros |
|
1601 dqadd371671 fma 1 -11 11 -> 0 |
|
1602 dqadd371672 fma 1 11 -11 -> 0 |
|
1603 -- overflow |
|
1604 dqadd371673 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded |
|
1605 dqadd371674 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded |
|
1606 |
|
1607 rounding: down |
|
1608 -- exact zeros from zeros |
|
1609 dqadd371680 fma 1 0 0E-19 -> 0E-19 |
|
1610 dqadd371681 fma 1 -0 0E-19 -> 0E-19 |
|
1611 dqadd371682 fma 1 0 -0E-19 -> 0E-19 |
|
1612 dqadd371683 fma 1 -0 -0E-19 -> -0E-19 |
|
1613 -- exact zeros from non-zeros |
|
1614 dqadd371691 fma 1 -11 11 -> 0 |
|
1615 dqadd371692 fma 1 11 -11 -> 0 |
|
1616 -- overflow |
|
1617 dqadd371693 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded |
|
1618 dqadd371694 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded |
|
1619 |
|
1620 rounding: ceiling |
|
1621 -- exact zeros from zeros |
|
1622 dqadd371700 fma 1 0 0E-19 -> 0E-19 |
|
1623 dqadd371701 fma 1 -0 0E-19 -> 0E-19 |
|
1624 dqadd371702 fma 1 0 -0E-19 -> 0E-19 |
|
1625 dqadd371703 fma 1 -0 -0E-19 -> -0E-19 |
|
1626 -- exact zeros from non-zeros |
|
1627 dqadd371711 fma 1 -11 11 -> 0 |
|
1628 dqadd371712 fma 1 11 -11 -> 0 |
|
1629 -- overflow |
|
1630 dqadd371713 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded |
|
1631 dqadd371714 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded |
|
1632 |
|
1633 -- and the extra-special ugly case; unusual minuses marked by -- * |
|
1634 rounding: floor |
|
1635 -- exact zeros from zeros |
|
1636 dqadd371720 fma 1 0 0E-19 -> 0E-19 |
|
1637 dqadd371721 fma 1 -0 0E-19 -> -0E-19 -- * |
|
1638 dqadd371722 fma 1 0 -0E-19 -> -0E-19 -- * |
|
1639 dqadd371723 fma 1 -0 -0E-19 -> -0E-19 |
|
1640 -- exact zeros from non-zeros |
|
1641 dqadd371731 fma 1 -11 11 -> -0 -- * |
|
1642 dqadd371732 fma 1 11 -11 -> -0 -- * |
|
1643 -- overflow |
|
1644 dqadd371733 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded |
|
1645 dqadd371734 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded |
|
1646 |
|
1647 rounding: 05up |
|
1648 -- exact zeros from zeros |
|
1649 dqadd371740 fma 1 0 0E-19 -> 0E-19 |
|
1650 dqadd371741 fma 1 -0 0E-19 -> 0E-19 |
|
1651 dqadd371742 fma 1 0 -0E-19 -> 0E-19 |
|
1652 dqadd371743 fma 1 -0 -0E-19 -> -0E-19 |
|
1653 -- exact zeros from non-zeros |
|
1654 dqadd371751 fma 1 -11 11 -> 0 |
|
1655 dqadd371752 fma 1 11 -11 -> 0 |
|
1656 -- overflow |
|
1657 dqadd371753 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded |
|
1658 dqadd371754 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded |
|
1659 |
|
1660 -- Examples from SQL proposal (Krishna Kulkarni) |
|
1661 dqadd371761 fma 1 130E-2 120E-2 -> 2.50 |
|
1662 dqadd371762 fma 1 130E-2 12E-1 -> 2.50 |
|
1663 dqadd371763 fma 1 130E-2 1E0 -> 2.30 |
|
1664 dqadd371764 fma 1 1E2 1E4 -> 1.01E+4 |
|
1665 dqadd371765 fma 1 130E-2 -120E-2 -> 0.10 |
|
1666 dqadd371766 fma 1 130E-2 -12E-1 -> 0.10 |
|
1667 dqadd371767 fma 1 130E-2 -1E0 -> 0.30 |
|
1668 dqadd371768 fma 1 1E2 -1E4 -> -9.9E+3 |
|
1669 |
|
1670 -- Gappy coefficients; check residue handling even with full coefficient gap |
|
1671 rounding: half_even |
|
1672 |
|
1673 dqadd375001 fma 1 1239876543211234567894567890123456 1 -> 1239876543211234567894567890123457 |
|
1674 dqadd375002 fma 1 1239876543211234567894567890123456 0.6 -> 1239876543211234567894567890123457 Inexact Rounded |
|
1675 dqadd375003 fma 1 1239876543211234567894567890123456 0.06 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1676 dqadd375004 fma 1 1239876543211234567894567890123456 6E-3 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1677 dqadd375005 fma 1 1239876543211234567894567890123456 6E-4 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1678 dqadd375006 fma 1 1239876543211234567894567890123456 6E-5 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1679 dqadd375007 fma 1 1239876543211234567894567890123456 6E-6 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1680 dqadd375008 fma 1 1239876543211234567894567890123456 6E-7 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1681 dqadd375009 fma 1 1239876543211234567894567890123456 6E-8 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1682 dqadd375010 fma 1 1239876543211234567894567890123456 6E-9 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1683 dqadd375011 fma 1 1239876543211234567894567890123456 6E-10 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1684 dqadd375012 fma 1 1239876543211234567894567890123456 6E-11 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1685 dqadd375013 fma 1 1239876543211234567894567890123456 6E-12 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1686 dqadd375014 fma 1 1239876543211234567894567890123456 6E-13 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1687 dqadd375015 fma 1 1239876543211234567894567890123456 6E-14 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1688 dqadd375016 fma 1 1239876543211234567894567890123456 6E-15 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1689 dqadd375017 fma 1 1239876543211234567894567890123456 6E-16 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1690 dqadd375018 fma 1 1239876543211234567894567890123456 6E-17 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1691 dqadd375019 fma 1 1239876543211234567894567890123456 6E-18 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1692 dqadd375020 fma 1 1239876543211234567894567890123456 6E-19 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1693 dqadd375021 fma 1 1239876543211234567894567890123456 6E-20 -> 1239876543211234567894567890123456 Inexact Rounded |
|
1694 |
|
1695 -- widening second argument at gap |
|
1696 dqadd375030 fma 1 12398765432112345678945678 1 -> 12398765432112345678945679 |
|
1697 dqadd375031 fma 1 12398765432112345678945678 0.1 -> 12398765432112345678945678.1 |
|
1698 dqadd375032 fma 1 12398765432112345678945678 0.12 -> 12398765432112345678945678.12 |
|
1699 dqadd375033 fma 1 12398765432112345678945678 0.123 -> 12398765432112345678945678.123 |
|
1700 dqadd375034 fma 1 12398765432112345678945678 0.1234 -> 12398765432112345678945678.1234 |
|
1701 dqadd375035 fma 1 12398765432112345678945678 0.12345 -> 12398765432112345678945678.12345 |
|
1702 dqadd375036 fma 1 12398765432112345678945678 0.123456 -> 12398765432112345678945678.123456 |
|
1703 dqadd375037 fma 1 12398765432112345678945678 0.1234567 -> 12398765432112345678945678.1234567 |
|
1704 dqadd375038 fma 1 12398765432112345678945678 0.12345678 -> 12398765432112345678945678.12345678 |
|
1705 dqadd375039 fma 1 12398765432112345678945678 0.123456789 -> 12398765432112345678945678.12345679 Inexact Rounded |
|
1706 dqadd375040 fma 1 12398765432112345678945678 0.123456785 -> 12398765432112345678945678.12345678 Inexact Rounded |
|
1707 dqadd375041 fma 1 12398765432112345678945678 0.1234567850 -> 12398765432112345678945678.12345678 Inexact Rounded |
|
1708 dqadd375042 fma 1 12398765432112345678945678 0.1234567851 -> 12398765432112345678945678.12345679 Inexact Rounded |
|
1709 dqadd375043 fma 1 12398765432112345678945678 0.12345678501 -> 12398765432112345678945678.12345679 Inexact Rounded |
|
1710 dqadd375044 fma 1 12398765432112345678945678 0.123456785001 -> 12398765432112345678945678.12345679 Inexact Rounded |
|
1711 dqadd375045 fma 1 12398765432112345678945678 0.1234567850001 -> 12398765432112345678945678.12345679 Inexact Rounded |
|
1712 dqadd375046 fma 1 12398765432112345678945678 0.12345678500001 -> 12398765432112345678945678.12345679 Inexact Rounded |
|
1713 dqadd375047 fma 1 12398765432112345678945678 0.123456785000001 -> 12398765432112345678945678.12345679 Inexact Rounded |
|
1714 dqadd375048 fma 1 12398765432112345678945678 0.1234567850000001 -> 12398765432112345678945678.12345679 Inexact Rounded |
|
1715 dqadd375049 fma 1 12398765432112345678945678 0.1234567850000000 -> 12398765432112345678945678.12345678 Inexact Rounded |
|
1716 -- 90123456 |
|
1717 rounding: half_even |
|
1718 dqadd375050 fma 1 12398765432112345678945678 0.0234567750000000 -> 12398765432112345678945678.02345678 Inexact Rounded |
|
1719 dqadd375051 fma 1 12398765432112345678945678 0.0034567750000000 -> 12398765432112345678945678.00345678 Inexact Rounded |
|
1720 dqadd375052 fma 1 12398765432112345678945678 0.0004567750000000 -> 12398765432112345678945678.00045678 Inexact Rounded |
|
1721 dqadd375053 fma 1 12398765432112345678945678 0.0000567750000000 -> 12398765432112345678945678.00005678 Inexact Rounded |
|
1722 dqadd375054 fma 1 12398765432112345678945678 0.0000067750000000 -> 12398765432112345678945678.00000678 Inexact Rounded |
|
1723 dqadd375055 fma 1 12398765432112345678945678 0.0000007750000000 -> 12398765432112345678945678.00000078 Inexact Rounded |
|
1724 dqadd375056 fma 1 12398765432112345678945678 0.0000000750000000 -> 12398765432112345678945678.00000008 Inexact Rounded |
|
1725 dqadd375057 fma 1 12398765432112345678945678 0.0000000050000000 -> 12398765432112345678945678.00000000 Inexact Rounded |
|
1726 dqadd375060 fma 1 12398765432112345678945678 0.0234567750000001 -> 12398765432112345678945678.02345678 Inexact Rounded |
|
1727 dqadd375061 fma 1 12398765432112345678945678 0.0034567750000001 -> 12398765432112345678945678.00345678 Inexact Rounded |
|
1728 dqadd375062 fma 1 12398765432112345678945678 0.0004567750000001 -> 12398765432112345678945678.00045678 Inexact Rounded |
|
1729 dqadd375063 fma 1 12398765432112345678945678 0.0000567750000001 -> 12398765432112345678945678.00005678 Inexact Rounded |
|
1730 dqadd375064 fma 1 12398765432112345678945678 0.0000067750000001 -> 12398765432112345678945678.00000678 Inexact Rounded |
|
1731 dqadd375065 fma 1 12398765432112345678945678 0.0000007750000001 -> 12398765432112345678945678.00000078 Inexact Rounded |
|
1732 dqadd375066 fma 1 12398765432112345678945678 0.0000000750000001 -> 12398765432112345678945678.00000008 Inexact Rounded |
|
1733 dqadd375067 fma 1 12398765432112345678945678 0.0000000050000001 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1734 -- far-out residues (full coefficient gap is 16+15 digits) |
|
1735 rounding: up |
|
1736 dqadd375070 fma 1 12398765432112345678945678 1E-8 -> 12398765432112345678945678.00000001 |
|
1737 dqadd375071 fma 1 12398765432112345678945678 1E-9 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1738 dqadd375072 fma 1 12398765432112345678945678 1E-10 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1739 dqadd375073 fma 1 12398765432112345678945678 1E-11 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1740 dqadd375074 fma 1 12398765432112345678945678 1E-12 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1741 dqadd375075 fma 1 12398765432112345678945678 1E-13 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1742 dqadd375076 fma 1 12398765432112345678945678 1E-14 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1743 dqadd375077 fma 1 12398765432112345678945678 1E-15 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1744 dqadd375078 fma 1 12398765432112345678945678 1E-16 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1745 dqadd375079 fma 1 12398765432112345678945678 1E-17 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1746 dqadd375080 fma 1 12398765432112345678945678 1E-18 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1747 dqadd375081 fma 1 12398765432112345678945678 1E-19 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1748 dqadd375082 fma 1 12398765432112345678945678 1E-20 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1749 dqadd375083 fma 1 12398765432112345678945678 1E-25 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1750 dqadd375084 fma 1 12398765432112345678945678 1E-30 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1751 dqadd375085 fma 1 12398765432112345678945678 1E-31 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1752 dqadd375086 fma 1 12398765432112345678945678 1E-32 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1753 dqadd375087 fma 1 12398765432112345678945678 1E-33 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1754 dqadd375088 fma 1 12398765432112345678945678 1E-34 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1755 dqadd375089 fma 1 12398765432112345678945678 1E-35 -> 12398765432112345678945678.00000001 Inexact Rounded |
|
1756 |
|
1757 -- Destructive subtract (from remainder tests) |
|
1758 |
|
1759 -- +++ some of these will be off-by-one remainder vs remainderNear |
|
1760 |
|
1761 dqfma4000 fma -1234567890123456789012345678901233 1.000000000000000000000000000000001 1234567890123456789012345678901234 -> -0.234567890123456789012345678901233 |
|
1762 dqfma4001 fma -1234567890123456789012345678901222 1.00000000000000000000000000000001 1234567890123456789012345678901234 -> -0.34567890123456789012345678901222 |
|
1763 dqfma4002 fma -1234567890123456789012345678901111 1.0000000000000000000000000000001 1234567890123456789012345678901234 -> -0.4567890123456789012345678901111 |
|
1764 dqfma4003 fma -308641972530864197253086419725314 4.000000000000000000000000000000001 1234567890123456789012345678901255 -> -1.308641972530864197253086419725314 |
|
1765 dqfma4004 fma -308641972530864197253086419725308 4.000000000000000000000000000000001 1234567890123456789012345678901234 -> 1.691358027469135802746913580274692 |
|
1766 dqfma4005 fma -246913578024691357802469135780252 4.9999999999999999999999999999999 1234567890123456789012345678901234 -> -1.3086421975308642197530864219748 |
|
1767 dqfma4006 fma -246913578024691357802469135780247 4.99999999999999999999999999999999 1234567890123456789012345678901234 -> 1.46913578024691357802469135780247 |
|
1768 dqfma4007 fma -246913578024691357802469135780247 4.999999999999999999999999999999999 1234567890123456789012345678901234 -> -0.753086421975308642197530864219753 |
|
1769 dqfma4008 fma -246913578024691357802469135780247 5.000000000000000000000000000000001 1234567890123456789012345678901234 -> -1.246913578024691357802469135780247 |
|
1770 dqfma4009 fma -246913578024691357802469135780246 5.00000000000000000000000000000001 1234567890123456789012345678901234 -> 1.53086421975308642197530864219754 |
|
1771 dqfma4010 fma -246913578024691357802469135780242 5.0000000000000000000000000000001 1234567890123456789012345678901234 -> -0.6913578024691357802469135780242 |
|
1772 dqfma4011 fma -1234567890123456789012345678901232 1.000000000000000000000000000000001 1234567890123456789012345678901234 -> 0.765432109876543210987654321098768 |
|
1773 dqfma4012 fma -1234567890123456789012345678901221 1.00000000000000000000000000000001 1234567890123456789012345678901234 -> 0.65432109876543210987654321098779 |
|
1774 dqfma4013 fma -1234567890123456789012345678901110 1.0000000000000000000000000000001 1234567890123456789012345678901234 -> 0.5432109876543210987654321098890 |
|
1775 dqfma4014 fma -308641972530864197253086419725313 4.000000000000000000000000000000001 1234567890123456789012345678901255 -> 2.691358027469135802746913580274687 |
|
1776 dqfma4015 fma -308641972530864197253086419725308 4.000000000000000000000000000000001 1234567890123456789012345678901234 -> 1.691358027469135802746913580274692 |
|
1777 dqfma4016 fma -246913578024691357802469135780251 4.9999999999999999999999999999999 1234567890123456789012345678901234 -> 3.6913578024691357802469135780251 |
|
1778 dqfma4017 fma -246913578024691357802469135780247 4.99999999999999999999999999999999 1234567890123456789012345678901234 -> 1.46913578024691357802469135780247 |
|
1779 dqfma4018 fma -246913578024691357802469135780246 4.999999999999999999999999999999999 1234567890123456789012345678901234 -> 4.246913578024691357802469135780246 |
|
1780 dqfma4019 fma -246913578024691357802469135780241 5.0000000000000000000000000000001 1234567890123456789012345678901234 -> 4.3086421975308642197530864219759 |
|
1781 |
|
1782 -- Null tests |
|
1783 dqadd39990 fma 1 10 # -> NaN Invalid_operation |
|
1784 dqadd39991 fma 1 # 10 -> NaN Invalid_operation |
|
1785 |
|
1786 |