|
1 #ifndef QEMU_H |
|
2 #define QEMU_H |
|
3 |
|
4 #include <signal.h> |
|
5 #include <string.h> |
|
6 |
|
7 #include "cpu.h" |
|
8 |
|
9 #undef DEBUG_REMAP |
|
10 #ifdef DEBUG_REMAP |
|
11 #include <stdlib.h> |
|
12 #endif /* DEBUG_REMAP */ |
|
13 |
|
14 #include "qemu-types.h" |
|
15 |
|
16 enum BSDType { |
|
17 target_freebsd, |
|
18 target_netbsd, |
|
19 target_openbsd, |
|
20 }; |
|
21 |
|
22 #include "syscall_defs.h" |
|
23 #include "syscall.h" |
|
24 #include "target_signal.h" |
|
25 #include "gdbstub.h" |
|
26 |
|
27 #if defined(USE_NPTL) |
|
28 #define THREAD __thread |
|
29 #else |
|
30 #define THREAD |
|
31 #endif |
|
32 |
|
33 /* This struct is used to hold certain information about the image. |
|
34 * Basically, it replicates in user space what would be certain |
|
35 * task_struct fields in the kernel |
|
36 */ |
|
37 struct image_info { |
|
38 abi_ulong load_addr; |
|
39 abi_ulong start_code; |
|
40 abi_ulong end_code; |
|
41 abi_ulong start_data; |
|
42 abi_ulong end_data; |
|
43 abi_ulong start_brk; |
|
44 abi_ulong brk; |
|
45 abi_ulong start_mmap; |
|
46 abi_ulong mmap; |
|
47 abi_ulong rss; |
|
48 abi_ulong start_stack; |
|
49 abi_ulong entry; |
|
50 abi_ulong code_offset; |
|
51 abi_ulong data_offset; |
|
52 char **host_argv; |
|
53 int personality; |
|
54 }; |
|
55 |
|
56 #define MAX_SIGQUEUE_SIZE 1024 |
|
57 |
|
58 struct sigqueue { |
|
59 struct sigqueue *next; |
|
60 //target_siginfo_t info; |
|
61 }; |
|
62 |
|
63 struct emulated_sigtable { |
|
64 int pending; /* true if signal is pending */ |
|
65 struct sigqueue *first; |
|
66 struct sigqueue info; /* in order to always have memory for the |
|
67 first signal, we put it here */ |
|
68 }; |
|
69 |
|
70 /* NOTE: we force a big alignment so that the stack stored after is |
|
71 aligned too */ |
|
72 typedef struct TaskState { |
|
73 struct TaskState *next; |
|
74 int used; /* non zero if used */ |
|
75 struct image_info *info; |
|
76 |
|
77 struct emulated_sigtable sigtab[TARGET_NSIG]; |
|
78 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ |
|
79 struct sigqueue *first_free; /* first free siginfo queue entry */ |
|
80 int signal_pending; /* non zero if a signal may be pending */ |
|
81 |
|
82 uint8_t stack[0]; |
|
83 } __attribute__((aligned(16))) TaskState; |
|
84 |
|
85 void init_task_state(TaskState *ts); |
|
86 extern const char *qemu_uname_release; |
|
87 |
|
88 /* ??? See if we can avoid exposing so much of the loader internals. */ |
|
89 /* |
|
90 * MAX_ARG_PAGES defines the number of pages allocated for arguments |
|
91 * and envelope for the new program. 32 should suffice, this gives |
|
92 * a maximum env+arg of 128kB w/4KB pages! |
|
93 */ |
|
94 #define MAX_ARG_PAGES 32 |
|
95 |
|
96 /* |
|
97 * This structure is used to hold the arguments that are |
|
98 * used when loading binaries. |
|
99 */ |
|
100 struct linux_binprm { |
|
101 char buf[128]; |
|
102 void *page[MAX_ARG_PAGES]; |
|
103 abi_ulong p; |
|
104 int fd; |
|
105 int e_uid, e_gid; |
|
106 int argc, envc; |
|
107 char **argv; |
|
108 char **envp; |
|
109 char * filename; /* Name of binary */ |
|
110 }; |
|
111 |
|
112 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); |
|
113 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, |
|
114 abi_ulong stringp, int push_ptr); |
|
115 int loader_exec(const char * filename, char ** argv, char ** envp, |
|
116 struct target_pt_regs * regs, struct image_info *infop); |
|
117 |
|
118 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, |
|
119 struct image_info * info); |
|
120 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, |
|
121 struct image_info * info); |
|
122 |
|
123 abi_long memcpy_to_target(abi_ulong dest, const void *src, |
|
124 unsigned long len); |
|
125 void target_set_brk(abi_ulong new_brk); |
|
126 abi_long do_brk(abi_ulong new_brk); |
|
127 void syscall_init(void); |
|
128 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, |
|
129 abi_long arg2, abi_long arg3, abi_long arg4, |
|
130 abi_long arg5, abi_long arg6); |
|
131 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, |
|
132 abi_long arg2, abi_long arg3, abi_long arg4, |
|
133 abi_long arg5, abi_long arg6); |
|
134 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, |
|
135 abi_long arg2, abi_long arg3, abi_long arg4, |
|
136 abi_long arg5, abi_long arg6); |
|
137 void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2))); |
|
138 extern THREAD CPUState *thread_env; |
|
139 void cpu_loop(CPUState *env, enum BSDType bsd_type); |
|
140 void init_paths(const char *prefix); |
|
141 const char *path(const char *pathname); |
|
142 char *target_strerror(int err); |
|
143 int get_osversion(void); |
|
144 void fork_start(void); |
|
145 void fork_end(int child); |
|
146 |
|
147 #include "qemu-log.h" |
|
148 |
|
149 /* strace.c */ |
|
150 void |
|
151 print_freebsd_syscall(int num, |
|
152 abi_long arg1, abi_long arg2, abi_long arg3, |
|
153 abi_long arg4, abi_long arg5, abi_long arg6); |
|
154 void print_freebsd_syscall_ret(int num, abi_long ret); |
|
155 void |
|
156 print_netbsd_syscall(int num, |
|
157 abi_long arg1, abi_long arg2, abi_long arg3, |
|
158 abi_long arg4, abi_long arg5, abi_long arg6); |
|
159 void print_netbsd_syscall_ret(int num, abi_long ret); |
|
160 void |
|
161 print_openbsd_syscall(int num, |
|
162 abi_long arg1, abi_long arg2, abi_long arg3, |
|
163 abi_long arg4, abi_long arg5, abi_long arg6); |
|
164 void print_openbsd_syscall_ret(int num, abi_long ret); |
|
165 extern int do_strace; |
|
166 |
|
167 /* signal.c */ |
|
168 void process_pending_signals(CPUState *cpu_env); |
|
169 void signal_init(void); |
|
170 //int queue_signal(CPUState *env, int sig, target_siginfo_t *info); |
|
171 //void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); |
|
172 //void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); |
|
173 long do_sigreturn(CPUState *env); |
|
174 long do_rt_sigreturn(CPUState *env); |
|
175 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); |
|
176 |
|
177 /* mmap.c */ |
|
178 int target_mprotect(abi_ulong start, abi_ulong len, int prot); |
|
179 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, |
|
180 int flags, int fd, abi_ulong offset); |
|
181 int target_munmap(abi_ulong start, abi_ulong len); |
|
182 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, |
|
183 abi_ulong new_size, unsigned long flags, |
|
184 abi_ulong new_addr); |
|
185 int target_msync(abi_ulong start, abi_ulong len, int flags); |
|
186 extern unsigned long last_brk; |
|
187 void mmap_lock(void); |
|
188 void mmap_unlock(void); |
|
189 #if defined(USE_NPTL) |
|
190 void mmap_fork_start(void); |
|
191 void mmap_fork_end(int child); |
|
192 #endif |
|
193 |
|
194 /* user access */ |
|
195 |
|
196 #define VERIFY_READ 0 |
|
197 #define VERIFY_WRITE 1 /* implies read access */ |
|
198 |
|
199 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) |
|
200 { |
|
201 return page_check_range((target_ulong)addr, size, |
|
202 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; |
|
203 } |
|
204 |
|
205 /* NOTE __get_user and __put_user use host pointers and don't check access. */ |
|
206 /* These are usually used to access struct data members once the |
|
207 * struct has been locked - usually with lock_user_struct(). |
|
208 */ |
|
209 #define __put_user(x, hptr)\ |
|
210 ({\ |
|
211 int size = sizeof(*hptr);\ |
|
212 switch(size) {\ |
|
213 case 1:\ |
|
214 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ |
|
215 break;\ |
|
216 case 2:\ |
|
217 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ |
|
218 break;\ |
|
219 case 4:\ |
|
220 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ |
|
221 break;\ |
|
222 case 8:\ |
|
223 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ |
|
224 break;\ |
|
225 default:\ |
|
226 abort();\ |
|
227 }\ |
|
228 0;\ |
|
229 }) |
|
230 |
|
231 #define __get_user(x, hptr) \ |
|
232 ({\ |
|
233 int size = sizeof(*hptr);\ |
|
234 switch(size) {\ |
|
235 case 1:\ |
|
236 x = (typeof(*hptr))*(uint8_t *)(hptr);\ |
|
237 break;\ |
|
238 case 2:\ |
|
239 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ |
|
240 break;\ |
|
241 case 4:\ |
|
242 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ |
|
243 break;\ |
|
244 case 8:\ |
|
245 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ |
|
246 break;\ |
|
247 default:\ |
|
248 /* avoid warning */\ |
|
249 x = 0;\ |
|
250 abort();\ |
|
251 }\ |
|
252 0;\ |
|
253 }) |
|
254 |
|
255 /* put_user()/get_user() take a guest address and check access */ |
|
256 /* These are usually used to access an atomic data type, such as an int, |
|
257 * that has been passed by address. These internally perform locking |
|
258 * and unlocking on the data type. |
|
259 */ |
|
260 #define put_user(x, gaddr, target_type) \ |
|
261 ({ \ |
|
262 abi_ulong __gaddr = (gaddr); \ |
|
263 target_type *__hptr; \ |
|
264 abi_long __ret; \ |
|
265 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ |
|
266 __ret = __put_user((x), __hptr); \ |
|
267 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ |
|
268 } else \ |
|
269 __ret = -TARGET_EFAULT; \ |
|
270 __ret; \ |
|
271 }) |
|
272 |
|
273 #define get_user(x, gaddr, target_type) \ |
|
274 ({ \ |
|
275 abi_ulong __gaddr = (gaddr); \ |
|
276 target_type *__hptr; \ |
|
277 abi_long __ret; \ |
|
278 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ |
|
279 __ret = __get_user((x), __hptr); \ |
|
280 unlock_user(__hptr, __gaddr, 0); \ |
|
281 } else { \ |
|
282 /* avoid warning */ \ |
|
283 (x) = 0; \ |
|
284 __ret = -TARGET_EFAULT; \ |
|
285 } \ |
|
286 __ret; \ |
|
287 }) |
|
288 |
|
289 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) |
|
290 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) |
|
291 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) |
|
292 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) |
|
293 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) |
|
294 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) |
|
295 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) |
|
296 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) |
|
297 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) |
|
298 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) |
|
299 |
|
300 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) |
|
301 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) |
|
302 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) |
|
303 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) |
|
304 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) |
|
305 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) |
|
306 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) |
|
307 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) |
|
308 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) |
|
309 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) |
|
310 |
|
311 /* copy_from_user() and copy_to_user() are usually used to copy data |
|
312 * buffers between the target and host. These internally perform |
|
313 * locking/unlocking of the memory. |
|
314 */ |
|
315 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); |
|
316 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); |
|
317 |
|
318 /* Functions for accessing guest memory. The tget and tput functions |
|
319 read/write single values, byteswapping as neccessary. The lock_user |
|
320 gets a pointer to a contiguous area of guest memory, but does not perform |
|
321 and byteswapping. lock_user may return either a pointer to the guest |
|
322 memory, or a temporary buffer. */ |
|
323 |
|
324 /* Lock an area of guest memory into the host. If copy is true then the |
|
325 host area will have the same contents as the guest. */ |
|
326 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) |
|
327 { |
|
328 if (!access_ok(type, guest_addr, len)) |
|
329 return NULL; |
|
330 #ifdef DEBUG_REMAP |
|
331 { |
|
332 void *addr; |
|
333 addr = malloc(len); |
|
334 if (copy) |
|
335 memcpy(addr, g2h(guest_addr), len); |
|
336 else |
|
337 memset(addr, 0, len); |
|
338 return addr; |
|
339 } |
|
340 #else |
|
341 return g2h(guest_addr); |
|
342 #endif |
|
343 } |
|
344 |
|
345 /* Unlock an area of guest memory. The first LEN bytes must be |
|
346 flushed back to guest memory. host_ptr = NULL is explicitly |
|
347 allowed and does nothing. */ |
|
348 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, |
|
349 long len) |
|
350 { |
|
351 |
|
352 #ifdef DEBUG_REMAP |
|
353 if (!host_ptr) |
|
354 return; |
|
355 if (host_ptr == g2h(guest_addr)) |
|
356 return; |
|
357 if (len > 0) |
|
358 memcpy(g2h(guest_addr), host_ptr, len); |
|
359 free(host_ptr); |
|
360 #endif |
|
361 } |
|
362 |
|
363 /* Return the length of a string in target memory or -TARGET_EFAULT if |
|
364 access error. */ |
|
365 abi_long target_strlen(abi_ulong gaddr); |
|
366 |
|
367 /* Like lock_user but for null terminated strings. */ |
|
368 static inline void *lock_user_string(abi_ulong guest_addr) |
|
369 { |
|
370 abi_long len; |
|
371 len = target_strlen(guest_addr); |
|
372 if (len < 0) |
|
373 return NULL; |
|
374 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); |
|
375 } |
|
376 |
|
377 /* Helper macros for locking/ulocking a target struct. */ |
|
378 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ |
|
379 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) |
|
380 #define unlock_user_struct(host_ptr, guest_addr, copy) \ |
|
381 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) |
|
382 |
|
383 #if defined(USE_NPTL) |
|
384 #include <pthread.h> |
|
385 #endif |
|
386 |
|
387 #endif /* QEMU_H */ |