symbian-qemu-0.9.1-12/qemu-symbian-svp/hw/eccmemctl.c
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 /*
       
     2  * QEMU Sparc Sun4m ECC memory controller emulation
       
     3  *
       
     4  * Copyright (c) 2007 Robert Reif
       
     5  *
       
     6  * Permission is hereby granted, free of charge, to any person obtaining a copy
       
     7  * of this software and associated documentation files (the "Software"), to deal
       
     8  * in the Software without restriction, including without limitation the rights
       
     9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
       
    10  * copies of the Software, and to permit persons to whom the Software is
       
    11  * furnished to do so, subject to the following conditions:
       
    12  *
       
    13  * The above copyright notice and this permission notice shall be included in
       
    14  * all copies or substantial portions of the Software.
       
    15  *
       
    16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
       
    17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
       
    18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
       
    19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
       
    20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
       
    21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
       
    22  * THE SOFTWARE.
       
    23  */
       
    24 #include "hw.h"
       
    25 #include "sun4m.h"
       
    26 #include "sysemu.h"
       
    27 
       
    28 //#define DEBUG_ECC
       
    29 
       
    30 #ifdef DEBUG_ECC
       
    31 #define DPRINTF(fmt, args...)                           \
       
    32     do { printf("ECC: " fmt , ##args); } while (0)
       
    33 #else
       
    34 #define DPRINTF(fmt, args...)
       
    35 #endif
       
    36 
       
    37 /* There are 3 versions of this chip used in SMP sun4m systems:
       
    38  * MCC (version 0, implementation 0) SS-600MP
       
    39  * EMC (version 0, implementation 1) SS-10
       
    40  * SMC (version 0, implementation 2) SS-10SX and SS-20
       
    41  */
       
    42 
       
    43 #define ECC_MCC        0x00000000
       
    44 #define ECC_EMC        0x10000000
       
    45 #define ECC_SMC        0x20000000
       
    46 
       
    47 /* Register indexes */
       
    48 #define ECC_MER        0               /* Memory Enable Register */
       
    49 #define ECC_MDR        1               /* Memory Delay Register */
       
    50 #define ECC_MFSR       2               /* Memory Fault Status Register */
       
    51 #define ECC_VCR        3               /* Video Configuration Register */
       
    52 #define ECC_MFAR0      4               /* Memory Fault Address Register 0 */
       
    53 #define ECC_MFAR1      5               /* Memory Fault Address Register 1 */
       
    54 #define ECC_DR         6               /* Diagnostic Register */
       
    55 #define ECC_ECR0       7               /* Event Count Register 0 */
       
    56 #define ECC_ECR1       8               /* Event Count Register 1 */
       
    57 
       
    58 /* ECC fault control register */
       
    59 #define ECC_MER_EE     0x00000001      /* Enable ECC checking */
       
    60 #define ECC_MER_EI     0x00000002      /* Enable Interrupts on
       
    61                                           correctable errors */
       
    62 #define ECC_MER_MRR0   0x00000004      /* SIMM 0 */
       
    63 #define ECC_MER_MRR1   0x00000008      /* SIMM 1 */
       
    64 #define ECC_MER_MRR2   0x00000010      /* SIMM 2 */
       
    65 #define ECC_MER_MRR3   0x00000020      /* SIMM 3 */
       
    66 #define ECC_MER_MRR4   0x00000040      /* SIMM 4 */
       
    67 #define ECC_MER_MRR5   0x00000080      /* SIMM 5 */
       
    68 #define ECC_MER_MRR6   0x00000100      /* SIMM 6 */
       
    69 #define ECC_MER_MRR7   0x00000200      /* SIMM 7 */
       
    70 #define ECC_MER_REU    0x00000100      /* Memory Refresh Enable (600MP) */
       
    71 #define ECC_MER_MRR    0x000003fc      /* MRR mask */
       
    72 #define ECC_MER_A      0x00000400      /* Memory controller addr map select */
       
    73 #define ECC_MER_DCI    0x00000800      /* Disables Coherent Invalidate ACK */
       
    74 #define ECC_MER_VER    0x0f000000      /* Version */
       
    75 #define ECC_MER_IMPL   0xf0000000      /* Implementation */
       
    76 #define ECC_MER_MASK_0 0x00000103      /* Version 0 (MCC) mask */
       
    77 #define ECC_MER_MASK_1 0x00000bff      /* Version 1 (EMC) mask */
       
    78 #define ECC_MER_MASK_2 0x00000bff      /* Version 2 (SMC) mask */
       
    79 
       
    80 /* ECC memory delay register */
       
    81 #define ECC_MDR_RRI    0x000003ff      /* Refresh Request Interval */
       
    82 #define ECC_MDR_MI     0x00001c00      /* MIH Delay */
       
    83 #define ECC_MDR_CI     0x0000e000      /* Coherent Invalidate Delay */
       
    84 #define ECC_MDR_MDL    0x001f0000      /* MBus Master arbitration delay */
       
    85 #define ECC_MDR_MDH    0x03e00000      /* MBus Master arbitration delay */
       
    86 #define ECC_MDR_GAD    0x7c000000      /* Graphics Arbitration Delay */
       
    87 #define ECC_MDR_RSC    0x80000000      /* Refresh load control */
       
    88 #define ECC_MDR_MASK   0x7fffffff
       
    89 
       
    90 /* ECC fault status register */
       
    91 #define ECC_MFSR_CE    0x00000001      /* Correctable error */
       
    92 #define ECC_MFSR_BS    0x00000002      /* C2 graphics bad slot access */
       
    93 #define ECC_MFSR_TO    0x00000004      /* Timeout on write */
       
    94 #define ECC_MFSR_UE    0x00000008      /* Uncorrectable error */
       
    95 #define ECC_MFSR_DW    0x000000f0      /* Index of double word in block */
       
    96 #define ECC_MFSR_SYND  0x0000ff00      /* Syndrome for correctable error */
       
    97 #define ECC_MFSR_ME    0x00010000      /* Multiple errors */
       
    98 #define ECC_MFSR_C2ERR 0x00020000      /* C2 graphics error */
       
    99 
       
   100 /* ECC fault address register 0 */
       
   101 #define ECC_MFAR0_PADDR 0x0000000f     /* PA[32-35] */
       
   102 #define ECC_MFAR0_TYPE  0x000000f0     /* Transaction type */
       
   103 #define ECC_MFAR0_SIZE  0x00000700     /* Transaction size */
       
   104 #define ECC_MFAR0_CACHE 0x00000800     /* Mapped cacheable */
       
   105 #define ECC_MFAR0_LOCK  0x00001000     /* Error occurred in atomic cycle */
       
   106 #define ECC_MFAR0_BMODE 0x00002000     /* Boot mode */
       
   107 #define ECC_MFAR0_VADDR 0x003fc000     /* VA[12-19] (superset bits) */
       
   108 #define ECC_MFAR0_S     0x08000000     /* Supervisor mode */
       
   109 #define ECC_MFARO_MID   0xf0000000     /* Module ID */
       
   110 
       
   111 /* ECC diagnostic register */
       
   112 #define ECC_DR_CBX     0x00000001
       
   113 #define ECC_DR_CB0     0x00000002
       
   114 #define ECC_DR_CB1     0x00000004
       
   115 #define ECC_DR_CB2     0x00000008
       
   116 #define ECC_DR_CB4     0x00000010
       
   117 #define ECC_DR_CB8     0x00000020
       
   118 #define ECC_DR_CB16    0x00000040
       
   119 #define ECC_DR_CB32    0x00000080
       
   120 #define ECC_DR_DMODE   0x00000c00
       
   121 
       
   122 #define ECC_NREGS      9
       
   123 #define ECC_SIZE       (ECC_NREGS * sizeof(uint32_t))
       
   124 
       
   125 #define ECC_DIAG_SIZE  4
       
   126 #define ECC_DIAG_MASK  (ECC_DIAG_SIZE - 1)
       
   127 
       
   128 typedef struct ECCState {
       
   129     qemu_irq irq;
       
   130     uint32_t regs[ECC_NREGS];
       
   131     uint8_t diag[ECC_DIAG_SIZE];
       
   132     uint32_t version;
       
   133 } ECCState;
       
   134 
       
   135 static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
       
   136 {
       
   137     ECCState *s = opaque;
       
   138 
       
   139     switch (addr >> 2) {
       
   140     case ECC_MER:
       
   141         if (s->version == ECC_MCC)
       
   142             s->regs[ECC_MER] = (val & ECC_MER_MASK_0);
       
   143         else if (s->version == ECC_EMC)
       
   144             s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_1);
       
   145         else if (s->version == ECC_SMC)
       
   146             s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_2);
       
   147         DPRINTF("Write memory enable %08x\n", val);
       
   148         break;
       
   149     case ECC_MDR:
       
   150         s->regs[ECC_MDR] =  val & ECC_MDR_MASK;
       
   151         DPRINTF("Write memory delay %08x\n", val);
       
   152         break;
       
   153     case ECC_MFSR:
       
   154         s->regs[ECC_MFSR] =  val;
       
   155         qemu_irq_lower(s->irq);
       
   156         DPRINTF("Write memory fault status %08x\n", val);
       
   157         break;
       
   158     case ECC_VCR:
       
   159         s->regs[ECC_VCR] =  val;
       
   160         DPRINTF("Write slot configuration %08x\n", val);
       
   161         break;
       
   162     case ECC_DR:
       
   163         s->regs[ECC_DR] =  val;
       
   164         DPRINTF("Write diagnostic %08x\n", val);
       
   165         break;
       
   166     case ECC_ECR0:
       
   167         s->regs[ECC_ECR0] =  val;
       
   168         DPRINTF("Write event count 1 %08x\n", val);
       
   169         break;
       
   170     case ECC_ECR1:
       
   171         s->regs[ECC_ECR0] =  val;
       
   172         DPRINTF("Write event count 2 %08x\n", val);
       
   173         break;
       
   174     }
       
   175 }
       
   176 
       
   177 static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr)
       
   178 {
       
   179     ECCState *s = opaque;
       
   180     uint32_t ret = 0;
       
   181 
       
   182     switch (addr >> 2) {
       
   183     case ECC_MER:
       
   184         ret = s->regs[ECC_MER];
       
   185         DPRINTF("Read memory enable %08x\n", ret);
       
   186         break;
       
   187     case ECC_MDR:
       
   188         ret = s->regs[ECC_MDR];
       
   189         DPRINTF("Read memory delay %08x\n", ret);
       
   190         break;
       
   191     case ECC_MFSR:
       
   192         ret = s->regs[ECC_MFSR];
       
   193         DPRINTF("Read memory fault status %08x\n", ret);
       
   194         break;
       
   195     case ECC_VCR:
       
   196         ret = s->regs[ECC_VCR];
       
   197         DPRINTF("Read slot configuration %08x\n", ret);
       
   198         break;
       
   199     case ECC_MFAR0:
       
   200         ret = s->regs[ECC_MFAR0];
       
   201         DPRINTF("Read memory fault address 0 %08x\n", ret);
       
   202         break;
       
   203     case ECC_MFAR1:
       
   204         ret = s->regs[ECC_MFAR1];
       
   205         DPRINTF("Read memory fault address 1 %08x\n", ret);
       
   206         break;
       
   207     case ECC_DR:
       
   208         ret = s->regs[ECC_DR];
       
   209         DPRINTF("Read diagnostic %08x\n", ret);
       
   210         break;
       
   211     case ECC_ECR0:
       
   212         ret = s->regs[ECC_ECR0];
       
   213         DPRINTF("Read event count 1 %08x\n", ret);
       
   214         break;
       
   215     case ECC_ECR1:
       
   216         ret = s->regs[ECC_ECR0];
       
   217         DPRINTF("Read event count 2 %08x\n", ret);
       
   218         break;
       
   219     }
       
   220     return ret;
       
   221 }
       
   222 
       
   223 static CPUReadMemoryFunc *ecc_mem_read[3] = {
       
   224     NULL,
       
   225     NULL,
       
   226     ecc_mem_readl,
       
   227 };
       
   228 
       
   229 static CPUWriteMemoryFunc *ecc_mem_write[3] = {
       
   230     NULL,
       
   231     NULL,
       
   232     ecc_mem_writel,
       
   233 };
       
   234 
       
   235 static void ecc_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
       
   236                                 uint32_t val)
       
   237 {
       
   238     ECCState *s = opaque;
       
   239 
       
   240     DPRINTF("Write diagnostic[%d] = %02x\n", (int)addr, val);
       
   241     s->diag[addr & ECC_DIAG_MASK] = val;
       
   242 }
       
   243 
       
   244 static uint32_t ecc_diag_mem_readb(void *opaque, target_phys_addr_t addr)
       
   245 {
       
   246     ECCState *s = opaque;
       
   247     uint32_t ret = s->diag[(int)addr];
       
   248 
       
   249     DPRINTF("Read diagnostic[%d] = %02x\n", (int)addr, ret);
       
   250     return ret;
       
   251 }
       
   252 
       
   253 static CPUReadMemoryFunc *ecc_diag_mem_read[3] = {
       
   254     ecc_diag_mem_readb,
       
   255     NULL,
       
   256     NULL,
       
   257 };
       
   258 
       
   259 static CPUWriteMemoryFunc *ecc_diag_mem_write[3] = {
       
   260     ecc_diag_mem_writeb,
       
   261     NULL,
       
   262     NULL,
       
   263 };
       
   264 
       
   265 static int ecc_load(QEMUFile *f, void *opaque, int version_id)
       
   266 {
       
   267     ECCState *s = opaque;
       
   268     int i;
       
   269 
       
   270     if (version_id != 3)
       
   271         return -EINVAL;
       
   272 
       
   273     for (i = 0; i < ECC_NREGS; i++)
       
   274         qemu_get_be32s(f, &s->regs[i]);
       
   275 
       
   276     for (i = 0; i < ECC_DIAG_SIZE; i++)
       
   277         qemu_get_8s(f, &s->diag[i]);
       
   278 
       
   279     qemu_get_be32s(f, &s->version);
       
   280 
       
   281     return 0;
       
   282 }
       
   283 
       
   284 static void ecc_save(QEMUFile *f, void *opaque)
       
   285 {
       
   286     ECCState *s = opaque;
       
   287     int i;
       
   288 
       
   289     for (i = 0; i < ECC_NREGS; i++)
       
   290         qemu_put_be32s(f, &s->regs[i]);
       
   291 
       
   292     for (i = 0; i < ECC_DIAG_SIZE; i++)
       
   293         qemu_put_8s(f, &s->diag[i]);
       
   294 
       
   295     qemu_put_be32s(f, &s->version);
       
   296 }
       
   297 
       
   298 static void ecc_reset(void *opaque)
       
   299 {
       
   300     ECCState *s = opaque;
       
   301 
       
   302     if (s->version == ECC_MCC)
       
   303         s->regs[ECC_MER] &= ECC_MER_REU;
       
   304     else
       
   305         s->regs[ECC_MER] &= (ECC_MER_VER | ECC_MER_IMPL | ECC_MER_MRR |
       
   306                              ECC_MER_DCI);
       
   307     s->regs[ECC_MDR] = 0x20;
       
   308     s->regs[ECC_MFSR] = 0;
       
   309     s->regs[ECC_VCR] = 0;
       
   310     s->regs[ECC_MFAR0] = 0x07c00000;
       
   311     s->regs[ECC_MFAR1] = 0;
       
   312     s->regs[ECC_DR] = 0;
       
   313     s->regs[ECC_ECR0] = 0;
       
   314     s->regs[ECC_ECR1] = 0;
       
   315 }
       
   316 
       
   317 void * ecc_init(target_phys_addr_t base, qemu_irq irq, uint32_t version)
       
   318 {
       
   319     int ecc_io_memory;
       
   320     ECCState *s;
       
   321 
       
   322     s = qemu_mallocz(sizeof(ECCState));
       
   323     if (!s)
       
   324         return NULL;
       
   325 
       
   326     s->version = version;
       
   327     s->regs[0] = version;
       
   328     s->irq = irq;
       
   329 
       
   330     ecc_io_memory = cpu_register_io_memory(0, ecc_mem_read, ecc_mem_write, s);
       
   331     cpu_register_physical_memory(base, ECC_SIZE, ecc_io_memory);
       
   332     if (version == ECC_MCC) { // SS-600MP only
       
   333         ecc_io_memory = cpu_register_io_memory(0, ecc_diag_mem_read,
       
   334                                                ecc_diag_mem_write, s);
       
   335         cpu_register_physical_memory(base + 0x1000, ECC_DIAG_SIZE,
       
   336                                      ecc_io_memory);
       
   337     }
       
   338     register_savevm("ECC", base, 3, ecc_save, ecc_load, s);
       
   339     qemu_register_reset(ecc_reset, s);
       
   340     ecc_reset(s);
       
   341     return s;
       
   342 }