|
1 /* |
|
2 * On-chip DMA controller framework. |
|
3 * |
|
4 * Copyright (C) 2008 Nokia Corporation |
|
5 * Written by Andrzej Zaborowski <andrew@openedhand.com> |
|
6 * |
|
7 * This program is free software; you can redistribute it and/or |
|
8 * modify it under the terms of the GNU General Public License as |
|
9 * published by the Free Software Foundation; either version 2 or |
|
10 * (at your option) version 3 of the License. |
|
11 * |
|
12 * This program is distributed in the hope that it will be useful, |
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
15 * GNU General Public License for more details. |
|
16 * |
|
17 * You should have received a copy of the GNU General Public License |
|
18 * along with this program; if not, write to the Free Software |
|
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
|
20 * MA 02111-1307 USA |
|
21 */ |
|
22 #include "qemu-common.h" |
|
23 #include "qemu-timer.h" |
|
24 #include "soc_dma.h" |
|
25 |
|
26 static void transfer_mem2mem(struct soc_dma_ch_s *ch) |
|
27 { |
|
28 memcpy(ch->paddr[0], ch->paddr[1], ch->bytes); |
|
29 ch->paddr[0] += ch->bytes; |
|
30 ch->paddr[1] += ch->bytes; |
|
31 } |
|
32 |
|
33 static void transfer_mem2fifo(struct soc_dma_ch_s *ch) |
|
34 { |
|
35 ch->io_fn[1](ch->io_opaque[1], ch->paddr[0], ch->bytes); |
|
36 ch->paddr[0] += ch->bytes; |
|
37 } |
|
38 |
|
39 static void transfer_fifo2mem(struct soc_dma_ch_s *ch) |
|
40 { |
|
41 ch->io_fn[0](ch->io_opaque[0], ch->paddr[1], ch->bytes); |
|
42 ch->paddr[1] += ch->bytes; |
|
43 } |
|
44 |
|
45 /* This is further optimisable but isn't very important because often |
|
46 * DMA peripherals forbid this kind of transfers and even when they don't, |
|
47 * oprating systems may not need to use them. */ |
|
48 static void *fifo_buf; |
|
49 static int fifo_size; |
|
50 static void transfer_fifo2fifo(struct soc_dma_ch_s *ch) |
|
51 { |
|
52 if (ch->bytes > fifo_size) |
|
53 fifo_buf = qemu_realloc(fifo_buf, fifo_size = ch->bytes); |
|
54 |
|
55 /* Implement as transfer_fifo2linear + transfer_linear2fifo. */ |
|
56 ch->io_fn[0](ch->io_opaque[0], fifo_buf, ch->bytes); |
|
57 ch->io_fn[1](ch->io_opaque[1], fifo_buf, ch->bytes); |
|
58 } |
|
59 |
|
60 struct dma_s { |
|
61 struct soc_dma_s soc; |
|
62 int chnum; |
|
63 uint64_t ch_enable_mask; |
|
64 int64_t channel_freq; |
|
65 int enabled_count; |
|
66 |
|
67 struct memmap_entry_s { |
|
68 enum soc_dma_port_type type; |
|
69 target_phys_addr_t addr; |
|
70 union { |
|
71 struct { |
|
72 void *opaque; |
|
73 soc_dma_io_t fn; |
|
74 int out; |
|
75 } fifo; |
|
76 struct { |
|
77 void *base; |
|
78 size_t size; |
|
79 } mem; |
|
80 } u; |
|
81 } *memmap; |
|
82 int memmap_size; |
|
83 |
|
84 struct soc_dma_ch_s ch[0]; |
|
85 }; |
|
86 |
|
87 static void soc_dma_ch_schedule(struct soc_dma_ch_s *ch, int delay_bytes) |
|
88 { |
|
89 int64_t now = qemu_get_clock(vm_clock); |
|
90 struct dma_s *dma = (struct dma_s *) ch->dma; |
|
91 |
|
92 qemu_mod_timer(ch->timer, now + delay_bytes / dma->channel_freq); |
|
93 } |
|
94 |
|
95 static void soc_dma_ch_run(void *opaque) |
|
96 { |
|
97 struct soc_dma_ch_s *ch = (struct soc_dma_ch_s *) opaque; |
|
98 |
|
99 ch->running = 1; |
|
100 ch->dma->setup_fn(ch); |
|
101 ch->transfer_fn(ch); |
|
102 ch->running = 0; |
|
103 |
|
104 if (ch->enable) |
|
105 soc_dma_ch_schedule(ch, ch->bytes); |
|
106 ch->bytes = 0; |
|
107 } |
|
108 |
|
109 static inline struct memmap_entry_s *soc_dma_lookup(struct dma_s *dma, |
|
110 target_phys_addr_t addr) |
|
111 { |
|
112 struct memmap_entry_s *lo; |
|
113 int hi; |
|
114 |
|
115 lo = dma->memmap; |
|
116 hi = dma->memmap_size; |
|
117 |
|
118 while (hi > 1) { |
|
119 hi /= 2; |
|
120 if (lo[hi].addr <= addr) |
|
121 lo += hi; |
|
122 } |
|
123 |
|
124 return lo; |
|
125 } |
|
126 |
|
127 static inline enum soc_dma_port_type soc_dma_ch_update_type( |
|
128 struct soc_dma_ch_s *ch, int port) |
|
129 { |
|
130 struct dma_s *dma = (struct dma_s *) ch->dma; |
|
131 struct memmap_entry_s *entry = soc_dma_lookup(dma, ch->vaddr[port]); |
|
132 |
|
133 if (entry->type == soc_dma_port_fifo) { |
|
134 while (entry < dma->memmap + dma->memmap_size && |
|
135 entry->u.fifo.out != port) |
|
136 entry ++; |
|
137 if (entry->addr != ch->vaddr[port] || entry->u.fifo.out != port) |
|
138 return soc_dma_port_other; |
|
139 |
|
140 if (ch->type[port] != soc_dma_access_const) |
|
141 return soc_dma_port_other; |
|
142 |
|
143 ch->io_fn[port] = entry->u.fifo.fn; |
|
144 ch->io_opaque[port] = entry->u.fifo.opaque; |
|
145 return soc_dma_port_fifo; |
|
146 } else if (entry->type == soc_dma_port_mem) { |
|
147 if (entry->addr > ch->vaddr[port] || |
|
148 entry->addr + entry->u.mem.size <= ch->vaddr[port]) |
|
149 return soc_dma_port_other; |
|
150 |
|
151 /* TODO: support constant memory address for source port as used for |
|
152 * drawing solid rectangles by PalmOS(R). */ |
|
153 if (ch->type[port] != soc_dma_access_const) |
|
154 return soc_dma_port_other; |
|
155 |
|
156 ch->paddr[port] = (uint8_t *) entry->u.mem.base + |
|
157 (ch->vaddr[port] - entry->addr); |
|
158 /* TODO: save bytes left to the end of the mapping somewhere so we |
|
159 * can check we're not reading beyond it. */ |
|
160 return soc_dma_port_mem; |
|
161 } else |
|
162 return soc_dma_port_other; |
|
163 } |
|
164 |
|
165 void soc_dma_ch_update(struct soc_dma_ch_s *ch) |
|
166 { |
|
167 enum soc_dma_port_type src, dst; |
|
168 |
|
169 src = soc_dma_ch_update_type(ch, 0); |
|
170 if (src == soc_dma_port_other) { |
|
171 ch->update = 0; |
|
172 ch->transfer_fn = ch->dma->transfer_fn; |
|
173 return; |
|
174 } |
|
175 dst = soc_dma_ch_update_type(ch, 1); |
|
176 |
|
177 /* TODO: use src and dst as array indices. */ |
|
178 if (src == soc_dma_port_mem && dst == soc_dma_port_mem) |
|
179 ch->transfer_fn = transfer_mem2mem; |
|
180 else if (src == soc_dma_port_mem && dst == soc_dma_port_fifo) |
|
181 ch->transfer_fn = transfer_mem2fifo; |
|
182 else if (src == soc_dma_port_fifo && dst == soc_dma_port_mem) |
|
183 ch->transfer_fn = transfer_fifo2mem; |
|
184 else if (src == soc_dma_port_fifo && dst == soc_dma_port_fifo) |
|
185 ch->transfer_fn = transfer_fifo2fifo; |
|
186 else |
|
187 ch->transfer_fn = ch->dma->transfer_fn; |
|
188 |
|
189 ch->update = (dst != soc_dma_port_other); |
|
190 } |
|
191 |
|
192 static void soc_dma_ch_freq_update(struct dma_s *s) |
|
193 { |
|
194 if (s->enabled_count) |
|
195 /* We completely ignore channel priorities and stuff */ |
|
196 s->channel_freq = s->soc.freq / s->enabled_count; |
|
197 else |
|
198 /* TODO: Signal that we want to disable the functional clock and let |
|
199 * the platform code decide what to do with it, i.e. check that |
|
200 * auto-idle is enabled in the clock controller and if we are stopping |
|
201 * the clock, do the same with any parent clocks that had only one |
|
202 * user keeping them on and auto-idle enabled. */; |
|
203 } |
|
204 |
|
205 void soc_dma_set_request(struct soc_dma_ch_s *ch, int level) |
|
206 { |
|
207 struct dma_s *dma = (struct dma_s *) ch->dma; |
|
208 |
|
209 dma->enabled_count += level - ch->enable; |
|
210 |
|
211 if (level) |
|
212 dma->ch_enable_mask |= 1 << ch->num; |
|
213 else |
|
214 dma->ch_enable_mask &= ~(1 << ch->num); |
|
215 |
|
216 if (level != ch->enable) { |
|
217 soc_dma_ch_freq_update(dma); |
|
218 ch->enable = level; |
|
219 |
|
220 if (!ch->enable) |
|
221 qemu_del_timer(ch->timer); |
|
222 else if (!ch->running) |
|
223 soc_dma_ch_run(ch); |
|
224 else |
|
225 soc_dma_ch_schedule(ch, 1); |
|
226 } |
|
227 } |
|
228 |
|
229 void soc_dma_reset(struct soc_dma_s *soc) |
|
230 { |
|
231 struct dma_s *s = (struct dma_s *) soc; |
|
232 |
|
233 s->soc.drqbmp = 0; |
|
234 s->ch_enable_mask = 0; |
|
235 s->enabled_count = 0; |
|
236 soc_dma_ch_freq_update(s); |
|
237 } |
|
238 |
|
239 /* TODO: take a functional-clock argument */ |
|
240 struct soc_dma_s *soc_dma_init(int n) |
|
241 { |
|
242 int i; |
|
243 struct dma_s *s = qemu_mallocz(sizeof(*s) + n * sizeof(*s->ch)); |
|
244 |
|
245 s->chnum = n; |
|
246 s->soc.ch = s->ch; |
|
247 for (i = 0; i < n; i ++) { |
|
248 s->ch[i].dma = &s->soc; |
|
249 s->ch[i].num = i; |
|
250 s->ch[i].timer = qemu_new_timer(vm_clock, soc_dma_ch_run, &s->ch[i]); |
|
251 } |
|
252 |
|
253 soc_dma_reset(&s->soc); |
|
254 fifo_size = 0; |
|
255 |
|
256 return &s->soc; |
|
257 } |
|
258 |
|
259 void soc_dma_port_add_fifo(struct soc_dma_s *soc, target_phys_addr_t virt_base, |
|
260 soc_dma_io_t fn, void *opaque, int out) |
|
261 { |
|
262 struct memmap_entry_s *entry; |
|
263 struct dma_s *dma = (struct dma_s *) soc; |
|
264 |
|
265 dma->memmap = qemu_realloc(dma->memmap, sizeof(*entry) * |
|
266 (dma->memmap_size + 1)); |
|
267 entry = soc_dma_lookup(dma, virt_base); |
|
268 |
|
269 if (dma->memmap_size) { |
|
270 if (entry->type == soc_dma_port_mem) { |
|
271 if (entry->addr <= virt_base && |
|
272 entry->addr + entry->u.mem.size > virt_base) { |
|
273 fprintf(stderr, "%s: FIFO at " TARGET_FMT_lx |
|
274 " collides with RAM region at " TARGET_FMT_lx |
|
275 "-" TARGET_FMT_lx "\n", __FUNCTION__, |
|
276 (target_ulong) virt_base, |
|
277 (target_ulong) entry->addr, (target_ulong) |
|
278 (entry->addr + entry->u.mem.size)); |
|
279 exit(-1); |
|
280 } |
|
281 |
|
282 if (entry->addr <= virt_base) |
|
283 entry ++; |
|
284 } else |
|
285 while (entry < dma->memmap + dma->memmap_size && |
|
286 entry->addr <= virt_base) { |
|
287 if (entry->addr == virt_base && entry->u.fifo.out == out) { |
|
288 fprintf(stderr, "%s: FIFO at " TARGET_FMT_lx |
|
289 " collides FIFO at " TARGET_FMT_lx "\n", |
|
290 __FUNCTION__, (target_ulong) virt_base, |
|
291 (target_ulong) entry->addr); |
|
292 exit(-1); |
|
293 } |
|
294 |
|
295 entry ++; |
|
296 } |
|
297 |
|
298 memmove(entry + 1, entry, |
|
299 (uint8_t *) (dma->memmap + dma->memmap_size ++) - |
|
300 (uint8_t *) entry); |
|
301 } else |
|
302 dma->memmap_size ++; |
|
303 |
|
304 entry->addr = virt_base; |
|
305 entry->type = soc_dma_port_fifo; |
|
306 entry->u.fifo.fn = fn; |
|
307 entry->u.fifo.opaque = opaque; |
|
308 entry->u.fifo.out = out; |
|
309 } |
|
310 |
|
311 void soc_dma_port_add_mem(struct soc_dma_s *soc, uint8_t *phys_base, |
|
312 target_phys_addr_t virt_base, size_t size) |
|
313 { |
|
314 struct memmap_entry_s *entry; |
|
315 struct dma_s *dma = (struct dma_s *) soc; |
|
316 |
|
317 dma->memmap = qemu_realloc(dma->memmap, sizeof(*entry) * |
|
318 (dma->memmap_size + 1)); |
|
319 entry = soc_dma_lookup(dma, virt_base); |
|
320 |
|
321 if (dma->memmap_size) { |
|
322 if (entry->type == soc_dma_port_mem) { |
|
323 if ((entry->addr >= virt_base && entry->addr < virt_base + size) || |
|
324 (entry->addr <= virt_base && |
|
325 entry->addr + entry->u.mem.size > virt_base)) { |
|
326 fprintf(stderr, "%s: RAM at " TARGET_FMT_lx "-" TARGET_FMT_lx |
|
327 " collides with RAM region at " TARGET_FMT_lx |
|
328 "-" TARGET_FMT_lx "\n", __FUNCTION__, |
|
329 (target_ulong) virt_base, |
|
330 (target_ulong) (virt_base + size), |
|
331 (target_ulong) entry->addr, (target_ulong) |
|
332 (entry->addr + entry->u.mem.size)); |
|
333 exit(-1); |
|
334 } |
|
335 |
|
336 if (entry->addr <= virt_base) |
|
337 entry ++; |
|
338 } else { |
|
339 if (entry->addr >= virt_base && |
|
340 entry->addr < virt_base + size) { |
|
341 fprintf(stderr, "%s: RAM at " TARGET_FMT_lx "-" TARGET_FMT_lx |
|
342 " collides with FIFO at " TARGET_FMT_lx |
|
343 "\n", __FUNCTION__, |
|
344 (target_ulong) virt_base, |
|
345 (target_ulong) (virt_base + size), |
|
346 (target_ulong) entry->addr); |
|
347 exit(-1); |
|
348 } |
|
349 |
|
350 while (entry < dma->memmap + dma->memmap_size && |
|
351 entry->addr <= virt_base) |
|
352 entry ++; |
|
353 } |
|
354 |
|
355 memmove(entry + 1, entry, |
|
356 (uint8_t *) (dma->memmap + dma->memmap_size ++) - |
|
357 (uint8_t *) entry); |
|
358 } else |
|
359 dma->memmap_size ++; |
|
360 |
|
361 entry->addr = virt_base; |
|
362 entry->type = soc_dma_port_mem; |
|
363 entry->u.mem.base = phys_base; |
|
364 entry->u.mem.size = size; |
|
365 } |
|
366 |
|
367 /* TODO: port removal for ports like PCMCIA memory */ |