symbian-qemu-0.9.1-12/qemu-symbian-svp/target-mips/op_helper.c
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 /*
       
     2  *  MIPS emulation helpers for qemu.
       
     3  *
       
     4  *  Copyright (c) 2004-2005 Jocelyn Mayer
       
     5  *
       
     6  * This library is free software; you can redistribute it and/or
       
     7  * modify it under the terms of the GNU Lesser General Public
       
     8  * License as published by the Free Software Foundation; either
       
     9  * version 2 of the License, or (at your option) any later version.
       
    10  *
       
    11  * This library is distributed in the hope that it will be useful,
       
    12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
       
    13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
       
    14  * Lesser General Public License for more details.
       
    15  *
       
    16  * You should have received a copy of the GNU Lesser General Public
       
    17  * License along with this library; if not, write to the Free Software
       
    18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
       
    19  */
       
    20 #include <stdlib.h>
       
    21 #include "exec.h"
       
    22 
       
    23 #include "host-utils.h"
       
    24 
       
    25 #include "helper.h"
       
    26 /*****************************************************************************/
       
    27 /* Exceptions processing helpers */
       
    28 
       
    29 void do_raise_exception_err (uint32_t exception, int error_code)
       
    30 {
       
    31 #if 1
       
    32     if (logfile && exception < 0x100)
       
    33         fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
       
    34 #endif
       
    35     env->exception_index = exception;
       
    36     env->error_code = error_code;
       
    37     cpu_loop_exit();
       
    38 }
       
    39 
       
    40 void do_raise_exception (uint32_t exception)
       
    41 {
       
    42     do_raise_exception_err(exception, 0);
       
    43 }
       
    44 
       
    45 void do_interrupt_restart (void)
       
    46 {
       
    47     if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
       
    48         !(env->CP0_Status & (1 << CP0St_ERL)) &&
       
    49         !(env->hflags & MIPS_HFLAG_DM) &&
       
    50         (env->CP0_Status & (1 << CP0St_IE)) &&
       
    51         (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
       
    52         env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
       
    53         do_raise_exception(EXCP_EXT_INTERRUPT);
       
    54     }
       
    55 }
       
    56 
       
    57 #if !defined(CONFIG_USER_ONLY)
       
    58 static void do_restore_state (void *pc_ptr)
       
    59 {
       
    60     TranslationBlock *tb;
       
    61     unsigned long pc = (unsigned long) pc_ptr;
       
    62     
       
    63     tb = tb_find_pc (pc);
       
    64     if (tb) {
       
    65         cpu_restore_state (tb, env, pc, NULL);
       
    66     }
       
    67 }
       
    68 #endif
       
    69 
       
    70 target_ulong do_clo (target_ulong t0)
       
    71 {
       
    72     return clo32(t0);
       
    73 }
       
    74 
       
    75 target_ulong do_clz (target_ulong t0)
       
    76 {
       
    77     return clz32(t0);
       
    78 }
       
    79 
       
    80 #if defined(TARGET_MIPS64)
       
    81 target_ulong do_dclo (target_ulong t0)
       
    82 {
       
    83     return clo64(t0);
       
    84 }
       
    85 
       
    86 target_ulong do_dclz (target_ulong t0)
       
    87 {
       
    88     return clz64(t0);
       
    89 }
       
    90 #endif /* TARGET_MIPS64 */
       
    91 
       
    92 /* 64 bits arithmetic for 32 bits hosts */
       
    93 static inline uint64_t get_HILO (void)
       
    94 {
       
    95     return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
       
    96 }
       
    97 
       
    98 static inline void set_HILO (uint64_t HILO)
       
    99 {
       
   100     env->active_tc.LO[0] = (int32_t)HILO;
       
   101     env->active_tc.HI[0] = (int32_t)(HILO >> 32);
       
   102 }
       
   103 
       
   104 static inline void set_HIT0_LO (target_ulong t0, uint64_t HILO)
       
   105 {
       
   106     env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
       
   107     t0 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
       
   108 }
       
   109 
       
   110 static inline void set_HI_LOT0 (target_ulong t0, uint64_t HILO)
       
   111 {
       
   112     t0 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
       
   113     env->active_tc.HI[0] = (int32_t)(HILO >> 32);
       
   114 }
       
   115 
       
   116 #if TARGET_LONG_BITS > HOST_LONG_BITS
       
   117 void do_madd (target_ulong t0, target_ulong t1)
       
   118 {
       
   119     int64_t tmp;
       
   120 
       
   121     tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
       
   122     set_HILO((int64_t)get_HILO() + tmp);
       
   123 }
       
   124 
       
   125 void do_maddu (target_ulong t0, target_ulong t1)
       
   126 {
       
   127     uint64_t tmp;
       
   128 
       
   129     tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
       
   130     set_HILO(get_HILO() + tmp);
       
   131 }
       
   132 
       
   133 void do_msub (target_ulong t0, target_ulong t1)
       
   134 {
       
   135     int64_t tmp;
       
   136 
       
   137     tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
       
   138     set_HILO((int64_t)get_HILO() - tmp);
       
   139 }
       
   140 
       
   141 void do_msubu (target_ulong t0, target_ulong t1)
       
   142 {
       
   143     uint64_t tmp;
       
   144 
       
   145     tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
       
   146     set_HILO(get_HILO() - tmp);
       
   147 }
       
   148 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
       
   149 
       
   150 /* Multiplication variants of the vr54xx. */
       
   151 target_ulong do_muls (target_ulong t0, target_ulong t1)
       
   152 {
       
   153     set_HI_LOT0(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
       
   154 
       
   155     return t0;
       
   156 }
       
   157 
       
   158 target_ulong do_mulsu (target_ulong t0, target_ulong t1)
       
   159 {
       
   160     set_HI_LOT0(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
       
   161 
       
   162     return t0;
       
   163 }
       
   164 
       
   165 target_ulong do_macc (target_ulong t0, target_ulong t1)
       
   166 {
       
   167     set_HI_LOT0(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
       
   168 
       
   169     return t0;
       
   170 }
       
   171 
       
   172 target_ulong do_macchi (target_ulong t0, target_ulong t1)
       
   173 {
       
   174     set_HIT0_LO(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
       
   175 
       
   176     return t0;
       
   177 }
       
   178 
       
   179 target_ulong do_maccu (target_ulong t0, target_ulong t1)
       
   180 {
       
   181     set_HI_LOT0(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
       
   182 
       
   183     return t0;
       
   184 }
       
   185 
       
   186 target_ulong do_macchiu (target_ulong t0, target_ulong t1)
       
   187 {
       
   188     set_HIT0_LO(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
       
   189 
       
   190     return t0;
       
   191 }
       
   192 
       
   193 target_ulong do_msac (target_ulong t0, target_ulong t1)
       
   194 {
       
   195     set_HI_LOT0(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
       
   196 
       
   197     return t0;
       
   198 }
       
   199 
       
   200 target_ulong do_msachi (target_ulong t0, target_ulong t1)
       
   201 {
       
   202     set_HIT0_LO(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
       
   203 
       
   204     return t0;
       
   205 }
       
   206 
       
   207 target_ulong do_msacu (target_ulong t0, target_ulong t1)
       
   208 {
       
   209     set_HI_LOT0(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
       
   210 
       
   211     return t0;
       
   212 }
       
   213 
       
   214 target_ulong do_msachiu (target_ulong t0, target_ulong t1)
       
   215 {
       
   216     set_HIT0_LO(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
       
   217 
       
   218     return t0;
       
   219 }
       
   220 
       
   221 target_ulong do_mulhi (target_ulong t0, target_ulong t1)
       
   222 {
       
   223     set_HIT0_LO(t0, (int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
       
   224 
       
   225     return t0;
       
   226 }
       
   227 
       
   228 target_ulong do_mulhiu (target_ulong t0, target_ulong t1)
       
   229 {
       
   230     set_HIT0_LO(t0, (uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
       
   231 
       
   232     return t0;
       
   233 }
       
   234 
       
   235 target_ulong do_mulshi (target_ulong t0, target_ulong t1)
       
   236 {
       
   237     set_HIT0_LO(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
       
   238 
       
   239     return t0;
       
   240 }
       
   241 
       
   242 target_ulong do_mulshiu (target_ulong t0, target_ulong t1)
       
   243 {
       
   244     set_HIT0_LO(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
       
   245 
       
   246     return t0;
       
   247 }
       
   248 
       
   249 #ifdef TARGET_MIPS64
       
   250 void do_dmult (target_ulong t0, target_ulong t1)
       
   251 {
       
   252     muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
       
   253 }
       
   254 
       
   255 void do_dmultu (target_ulong t0, target_ulong t1)
       
   256 {
       
   257     mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
       
   258 }
       
   259 #endif
       
   260 
       
   261 #ifdef TARGET_WORDS_BIGENDIAN
       
   262 #define GET_LMASK(v) ((v) & 3)
       
   263 #define GET_OFFSET(addr, offset) (addr + (offset))
       
   264 #else
       
   265 #define GET_LMASK(v) (((v) & 3) ^ 3)
       
   266 #define GET_OFFSET(addr, offset) (addr - (offset))
       
   267 #endif
       
   268 
       
   269 target_ulong do_lwl(target_ulong t0, target_ulong t1, int mem_idx)
       
   270 {
       
   271     target_ulong tmp;
       
   272 
       
   273 #ifdef CONFIG_USER_ONLY
       
   274 #define ldfun ldub_raw
       
   275 #else
       
   276     int (*ldfun)(target_ulong);
       
   277 
       
   278     switch (mem_idx)
       
   279     {
       
   280     case 0: ldfun = ldub_kernel; break;
       
   281     case 1: ldfun = ldub_super; break;
       
   282     default:
       
   283     case 2: ldfun = ldub_user; break;
       
   284     }
       
   285 #endif
       
   286     tmp = ldfun(t0);
       
   287     t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
       
   288 
       
   289     if (GET_LMASK(t0) <= 2) {
       
   290         tmp = ldfun(GET_OFFSET(t0, 1));
       
   291         t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
       
   292     }
       
   293 
       
   294     if (GET_LMASK(t0) <= 1) {
       
   295         tmp = ldfun(GET_OFFSET(t0, 2));
       
   296         t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
       
   297     }
       
   298 
       
   299     if (GET_LMASK(t0) == 0) {
       
   300         tmp = ldfun(GET_OFFSET(t0, 3));
       
   301         t1 = (t1 & 0xFFFFFF00) | tmp;
       
   302     }
       
   303     return (int32_t)t1;
       
   304 }
       
   305 
       
   306 target_ulong do_lwr(target_ulong t0, target_ulong t1, int mem_idx)
       
   307 {
       
   308     target_ulong tmp;
       
   309 
       
   310 #ifdef CONFIG_USER_ONLY
       
   311 #define ldfun ldub_raw
       
   312 #else
       
   313     int (*ldfun)(target_ulong);
       
   314 
       
   315     switch (mem_idx)
       
   316     {
       
   317     case 0: ldfun = ldub_kernel; break;
       
   318     case 1: ldfun = ldub_super; break;
       
   319     default:
       
   320     case 2: ldfun = ldub_user; break;
       
   321     }
       
   322 #endif
       
   323     tmp = ldfun(t0);
       
   324     t1 = (t1 & 0xFFFFFF00) | tmp;
       
   325 
       
   326     if (GET_LMASK(t0) >= 1) {
       
   327         tmp = ldfun(GET_OFFSET(t0, -1));
       
   328         t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
       
   329     }
       
   330 
       
   331     if (GET_LMASK(t0) >= 2) {
       
   332         tmp = ldfun(GET_OFFSET(t0, -2));
       
   333         t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
       
   334     }
       
   335 
       
   336     if (GET_LMASK(t0) == 3) {
       
   337         tmp = ldfun(GET_OFFSET(t0, -3));
       
   338         t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
       
   339     }
       
   340     return (int32_t)t1;
       
   341 }
       
   342 
       
   343 void do_swl(target_ulong t0, target_ulong t1, int mem_idx)
       
   344 {
       
   345 #ifdef CONFIG_USER_ONLY
       
   346 #define stfun stb_raw
       
   347 #else
       
   348     void (*stfun)(target_ulong, int);
       
   349 
       
   350     switch (mem_idx)
       
   351     {
       
   352     case 0: stfun = stb_kernel; break;
       
   353     case 1: stfun = stb_super; break;
       
   354     default:
       
   355     case 2: stfun = stb_user; break;
       
   356     }
       
   357 #endif
       
   358     stfun(t0, (uint8_t)(t1 >> 24));
       
   359 
       
   360     if (GET_LMASK(t0) <= 2)
       
   361         stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 16));
       
   362 
       
   363     if (GET_LMASK(t0) <= 1)
       
   364         stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 8));
       
   365 
       
   366     if (GET_LMASK(t0) == 0)
       
   367         stfun(GET_OFFSET(t0, 3), (uint8_t)t1);
       
   368 }
       
   369 
       
   370 void do_swr(target_ulong t0, target_ulong t1, int mem_idx)
       
   371 {
       
   372 #ifdef CONFIG_USER_ONLY
       
   373 #define stfun stb_raw
       
   374 #else
       
   375     void (*stfun)(target_ulong, int);
       
   376 
       
   377     switch (mem_idx)
       
   378     {
       
   379     case 0: stfun = stb_kernel; break;
       
   380     case 1: stfun = stb_super; break;
       
   381     default:
       
   382     case 2: stfun = stb_user; break;
       
   383     }
       
   384 #endif
       
   385     stfun(t0, (uint8_t)t1);
       
   386 
       
   387     if (GET_LMASK(t0) >= 1)
       
   388         stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
       
   389 
       
   390     if (GET_LMASK(t0) >= 2)
       
   391         stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
       
   392 
       
   393     if (GET_LMASK(t0) == 3)
       
   394         stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
       
   395 }
       
   396 
       
   397 #if defined(TARGET_MIPS64)
       
   398 /* "half" load and stores.  We must do the memory access inline,
       
   399    or fault handling won't work.  */
       
   400 
       
   401 #ifdef TARGET_WORDS_BIGENDIAN
       
   402 #define GET_LMASK64(v) ((v) & 7)
       
   403 #else
       
   404 #define GET_LMASK64(v) (((v) & 7) ^ 7)
       
   405 #endif
       
   406 
       
   407 target_ulong do_ldl(target_ulong t0, target_ulong t1, int mem_idx)
       
   408 {
       
   409     uint64_t tmp;
       
   410 
       
   411 #ifdef CONFIG_USER_ONLY
       
   412 #define ldfun ldub_raw
       
   413 #else
       
   414     int (*ldfun)(target_ulong);
       
   415 
       
   416     switch (mem_idx)
       
   417     {
       
   418     case 0: ldfun = ldub_kernel; break;
       
   419     case 1: ldfun = ldub_super; break;
       
   420     default:
       
   421     case 2: ldfun = ldub_user; break;
       
   422     }
       
   423 #endif
       
   424     tmp = ldfun(t0);
       
   425     t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
       
   426 
       
   427     if (GET_LMASK64(t0) <= 6) {
       
   428         tmp = ldfun(GET_OFFSET(t0, 1));
       
   429         t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
       
   430     }
       
   431 
       
   432     if (GET_LMASK64(t0) <= 5) {
       
   433         tmp = ldfun(GET_OFFSET(t0, 2));
       
   434         t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
       
   435     }
       
   436 
       
   437     if (GET_LMASK64(t0) <= 4) {
       
   438         tmp = ldfun(GET_OFFSET(t0, 3));
       
   439         t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
       
   440     }
       
   441 
       
   442     if (GET_LMASK64(t0) <= 3) {
       
   443         tmp = ldfun(GET_OFFSET(t0, 4));
       
   444         t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
       
   445     }
       
   446 
       
   447     if (GET_LMASK64(t0) <= 2) {
       
   448         tmp = ldfun(GET_OFFSET(t0, 5));
       
   449         t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
       
   450     }
       
   451 
       
   452     if (GET_LMASK64(t0) <= 1) {
       
   453         tmp = ldfun(GET_OFFSET(t0, 6));
       
   454         t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
       
   455     }
       
   456 
       
   457     if (GET_LMASK64(t0) == 0) {
       
   458         tmp = ldfun(GET_OFFSET(t0, 7));
       
   459         t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
       
   460     }
       
   461 
       
   462     return t1;
       
   463 }
       
   464 
       
   465 target_ulong do_ldr(target_ulong t0, target_ulong t1, int mem_idx)
       
   466 {
       
   467     uint64_t tmp;
       
   468 
       
   469 #ifdef CONFIG_USER_ONLY
       
   470 #define ldfun ldub_raw
       
   471 #else
       
   472     int (*ldfun)(target_ulong);
       
   473 
       
   474     switch (mem_idx)
       
   475     {
       
   476     case 0: ldfun = ldub_kernel; break;
       
   477     case 1: ldfun = ldub_super; break;
       
   478     default:
       
   479     case 2: ldfun = ldub_user; break;
       
   480     }
       
   481 #endif
       
   482     tmp = ldfun(t0);
       
   483     t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
       
   484 
       
   485     if (GET_LMASK64(t0) >= 1) {
       
   486         tmp = ldfun(GET_OFFSET(t0, -1));
       
   487         t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp  << 8);
       
   488     }
       
   489 
       
   490     if (GET_LMASK64(t0) >= 2) {
       
   491         tmp = ldfun(GET_OFFSET(t0, -2));
       
   492         t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
       
   493     }
       
   494 
       
   495     if (GET_LMASK64(t0) >= 3) {
       
   496         tmp = ldfun(GET_OFFSET(t0, -3));
       
   497         t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
       
   498     }
       
   499 
       
   500     if (GET_LMASK64(t0) >= 4) {
       
   501         tmp = ldfun(GET_OFFSET(t0, -4));
       
   502         t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
       
   503     }
       
   504 
       
   505     if (GET_LMASK64(t0) >= 5) {
       
   506         tmp = ldfun(GET_OFFSET(t0, -5));
       
   507         t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
       
   508     }
       
   509 
       
   510     if (GET_LMASK64(t0) >= 6) {
       
   511         tmp = ldfun(GET_OFFSET(t0, -6));
       
   512         t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
       
   513     }
       
   514 
       
   515     if (GET_LMASK64(t0) == 7) {
       
   516         tmp = ldfun(GET_OFFSET(t0, -7));
       
   517         t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
       
   518     }
       
   519 
       
   520     return t1;
       
   521 }
       
   522 
       
   523 void do_sdl(target_ulong t0, target_ulong t1, int mem_idx)
       
   524 {
       
   525 #ifdef CONFIG_USER_ONLY
       
   526 #define stfun stb_raw
       
   527 #else
       
   528     void (*stfun)(target_ulong, int);
       
   529 
       
   530     switch (mem_idx)
       
   531     {
       
   532     case 0: stfun = stb_kernel; break;
       
   533     case 1: stfun = stb_super; break;
       
   534     default:
       
   535     case 2: stfun = stb_user; break;
       
   536     }
       
   537 #endif
       
   538     stfun(t0, (uint8_t)(t1 >> 56));
       
   539 
       
   540     if (GET_LMASK64(t0) <= 6)
       
   541         stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 48));
       
   542 
       
   543     if (GET_LMASK64(t0) <= 5)
       
   544         stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 40));
       
   545 
       
   546     if (GET_LMASK64(t0) <= 4)
       
   547         stfun(GET_OFFSET(t0, 3), (uint8_t)(t1 >> 32));
       
   548 
       
   549     if (GET_LMASK64(t0) <= 3)
       
   550         stfun(GET_OFFSET(t0, 4), (uint8_t)(t1 >> 24));
       
   551 
       
   552     if (GET_LMASK64(t0) <= 2)
       
   553         stfun(GET_OFFSET(t0, 5), (uint8_t)(t1 >> 16));
       
   554 
       
   555     if (GET_LMASK64(t0) <= 1)
       
   556         stfun(GET_OFFSET(t0, 6), (uint8_t)(t1 >> 8));
       
   557 
       
   558     if (GET_LMASK64(t0) <= 0)
       
   559         stfun(GET_OFFSET(t0, 7), (uint8_t)t1);
       
   560 }
       
   561 
       
   562 void do_sdr(target_ulong t0, target_ulong t1, int mem_idx)
       
   563 {
       
   564 #ifdef CONFIG_USER_ONLY
       
   565 #define stfun stb_raw
       
   566 #else
       
   567     void (*stfun)(target_ulong, int);
       
   568 
       
   569     switch (mem_idx)
       
   570     {
       
   571     case 0: stfun = stb_kernel; break;
       
   572     case 1: stfun = stb_super; break;
       
   573      default:
       
   574     case 2: stfun = stb_user; break;
       
   575     }
       
   576 #endif
       
   577     stfun(t0, (uint8_t)t1);
       
   578 
       
   579     if (GET_LMASK64(t0) >= 1)
       
   580         stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
       
   581 
       
   582     if (GET_LMASK64(t0) >= 2)
       
   583         stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
       
   584 
       
   585     if (GET_LMASK64(t0) >= 3)
       
   586         stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
       
   587 
       
   588     if (GET_LMASK64(t0) >= 4)
       
   589         stfun(GET_OFFSET(t0, -4), (uint8_t)(t1 >> 32));
       
   590 
       
   591     if (GET_LMASK64(t0) >= 5)
       
   592         stfun(GET_OFFSET(t0, -5), (uint8_t)(t1 >> 40));
       
   593 
       
   594     if (GET_LMASK64(t0) >= 6)
       
   595         stfun(GET_OFFSET(t0, -6), (uint8_t)(t1 >> 48));
       
   596 
       
   597     if (GET_LMASK64(t0) == 7)
       
   598         stfun(GET_OFFSET(t0, -7), (uint8_t)(t1 >> 56));
       
   599 }
       
   600 #endif /* TARGET_MIPS64 */
       
   601 
       
   602 #ifndef CONFIG_USER_ONLY
       
   603 /* CP0 helpers */
       
   604 target_ulong do_mfc0_mvpcontrol (void)
       
   605 {
       
   606     return env->mvp->CP0_MVPControl;
       
   607 }
       
   608 
       
   609 target_ulong do_mfc0_mvpconf0 (void)
       
   610 {
       
   611     return env->mvp->CP0_MVPConf0;
       
   612 }
       
   613 
       
   614 target_ulong do_mfc0_mvpconf1 (void)
       
   615 {
       
   616     return env->mvp->CP0_MVPConf1;
       
   617 }
       
   618 
       
   619 target_ulong do_mfc0_random (void)
       
   620 {
       
   621     return (int32_t)cpu_mips_get_random(env);
       
   622 }
       
   623 
       
   624 target_ulong do_mfc0_tcstatus (void)
       
   625 {
       
   626     return env->active_tc.CP0_TCStatus;
       
   627 }
       
   628 
       
   629 target_ulong do_mftc0_tcstatus(void)
       
   630 {
       
   631     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   632 
       
   633     if (other_tc == env->current_tc)
       
   634         return env->active_tc.CP0_TCStatus;
       
   635     else
       
   636         return env->tcs[other_tc].CP0_TCStatus;
       
   637 }
       
   638 
       
   639 target_ulong do_mfc0_tcbind (void)
       
   640 {
       
   641     return env->active_tc.CP0_TCBind;
       
   642 }
       
   643 
       
   644 target_ulong do_mftc0_tcbind(void)
       
   645 {
       
   646     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   647 
       
   648     if (other_tc == env->current_tc)
       
   649         return env->active_tc.CP0_TCBind;
       
   650     else
       
   651         return env->tcs[other_tc].CP0_TCBind;
       
   652 }
       
   653 
       
   654 target_ulong do_mfc0_tcrestart (void)
       
   655 {
       
   656     return env->active_tc.PC;
       
   657 }
       
   658 
       
   659 target_ulong do_mftc0_tcrestart(void)
       
   660 {
       
   661     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   662 
       
   663     if (other_tc == env->current_tc)
       
   664         return env->active_tc.PC;
       
   665     else
       
   666         return env->tcs[other_tc].PC;
       
   667 }
       
   668 
       
   669 target_ulong do_mfc0_tchalt (void)
       
   670 {
       
   671     return env->active_tc.CP0_TCHalt;
       
   672 }
       
   673 
       
   674 target_ulong do_mftc0_tchalt(void)
       
   675 {
       
   676     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   677 
       
   678     if (other_tc == env->current_tc)
       
   679         return env->active_tc.CP0_TCHalt;
       
   680     else
       
   681         return env->tcs[other_tc].CP0_TCHalt;
       
   682 }
       
   683 
       
   684 target_ulong do_mfc0_tccontext (void)
       
   685 {
       
   686     return env->active_tc.CP0_TCContext;
       
   687 }
       
   688 
       
   689 target_ulong do_mftc0_tccontext(void)
       
   690 {
       
   691     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   692 
       
   693     if (other_tc == env->current_tc)
       
   694         return env->active_tc.CP0_TCContext;
       
   695     else
       
   696         return env->tcs[other_tc].CP0_TCContext;
       
   697 }
       
   698 
       
   699 target_ulong do_mfc0_tcschedule (void)
       
   700 {
       
   701     return env->active_tc.CP0_TCSchedule;
       
   702 }
       
   703 
       
   704 target_ulong do_mftc0_tcschedule(void)
       
   705 {
       
   706     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   707 
       
   708     if (other_tc == env->current_tc)
       
   709         return env->active_tc.CP0_TCSchedule;
       
   710     else
       
   711         return env->tcs[other_tc].CP0_TCSchedule;
       
   712 }
       
   713 
       
   714 target_ulong do_mfc0_tcschefback (void)
       
   715 {
       
   716     return env->active_tc.CP0_TCScheFBack;
       
   717 }
       
   718 
       
   719 target_ulong do_mftc0_tcschefback(void)
       
   720 {
       
   721     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   722 
       
   723     if (other_tc == env->current_tc)
       
   724         return env->active_tc.CP0_TCScheFBack;
       
   725     else
       
   726         return env->tcs[other_tc].CP0_TCScheFBack;
       
   727 }
       
   728 
       
   729 target_ulong do_mfc0_count (void)
       
   730 {
       
   731     return (int32_t)cpu_mips_get_count(env);
       
   732 }
       
   733 
       
   734 target_ulong do_mftc0_entryhi(void)
       
   735 {
       
   736     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   737     int32_t tcstatus;
       
   738 
       
   739     if (other_tc == env->current_tc)
       
   740         tcstatus = env->active_tc.CP0_TCStatus;
       
   741     else
       
   742         tcstatus = env->tcs[other_tc].CP0_TCStatus;
       
   743 
       
   744     return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
       
   745 }
       
   746 
       
   747 target_ulong do_mftc0_status(void)
       
   748 {
       
   749     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   750     target_ulong t0;
       
   751     int32_t tcstatus;
       
   752 
       
   753     if (other_tc == env->current_tc)
       
   754         tcstatus = env->active_tc.CP0_TCStatus;
       
   755     else
       
   756         tcstatus = env->tcs[other_tc].CP0_TCStatus;
       
   757 
       
   758     t0 = env->CP0_Status & ~0xf1000018;
       
   759     t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
       
   760     t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
       
   761     t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
       
   762 
       
   763     return t0;
       
   764 }
       
   765 
       
   766 target_ulong do_mfc0_lladdr (void)
       
   767 {
       
   768     return (int32_t)env->CP0_LLAddr >> 4;
       
   769 }
       
   770 
       
   771 target_ulong do_mfc0_watchlo (uint32_t sel)
       
   772 {
       
   773     return (int32_t)env->CP0_WatchLo[sel];
       
   774 }
       
   775 
       
   776 target_ulong do_mfc0_watchhi (uint32_t sel)
       
   777 {
       
   778     return env->CP0_WatchHi[sel];
       
   779 }
       
   780 
       
   781 target_ulong do_mfc0_debug (void)
       
   782 {
       
   783     target_ulong t0 = env->CP0_Debug;
       
   784     if (env->hflags & MIPS_HFLAG_DM)
       
   785         t0 |= 1 << CP0DB_DM;
       
   786 
       
   787     return t0;
       
   788 }
       
   789 
       
   790 target_ulong do_mftc0_debug(void)
       
   791 {
       
   792     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   793     int32_t tcstatus;
       
   794 
       
   795     if (other_tc == env->current_tc)
       
   796         tcstatus = env->active_tc.CP0_Debug_tcstatus;
       
   797     else
       
   798         tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
       
   799 
       
   800     /* XXX: Might be wrong, check with EJTAG spec. */
       
   801     return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
       
   802             (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
       
   803 }
       
   804 
       
   805 #if defined(TARGET_MIPS64)
       
   806 target_ulong do_dmfc0_tcrestart (void)
       
   807 {
       
   808     return env->active_tc.PC;
       
   809 }
       
   810 
       
   811 target_ulong do_dmfc0_tchalt (void)
       
   812 {
       
   813     return env->active_tc.CP0_TCHalt;
       
   814 }
       
   815 
       
   816 target_ulong do_dmfc0_tccontext (void)
       
   817 {
       
   818     return env->active_tc.CP0_TCContext;
       
   819 }
       
   820 
       
   821 target_ulong do_dmfc0_tcschedule (void)
       
   822 {
       
   823     return env->active_tc.CP0_TCSchedule;
       
   824 }
       
   825 
       
   826 target_ulong do_dmfc0_tcschefback (void)
       
   827 {
       
   828     return env->active_tc.CP0_TCScheFBack;
       
   829 }
       
   830 
       
   831 target_ulong do_dmfc0_lladdr (void)
       
   832 {
       
   833     return env->CP0_LLAddr >> 4;
       
   834 }
       
   835 
       
   836 target_ulong do_dmfc0_watchlo (uint32_t sel)
       
   837 {
       
   838     return env->CP0_WatchLo[sel];
       
   839 }
       
   840 #endif /* TARGET_MIPS64 */
       
   841 
       
   842 void do_mtc0_index (target_ulong t0)
       
   843 {
       
   844     int num = 1;
       
   845     unsigned int tmp = env->tlb->nb_tlb;
       
   846 
       
   847     do {
       
   848         tmp >>= 1;
       
   849         num <<= 1;
       
   850     } while (tmp);
       
   851     env->CP0_Index = (env->CP0_Index & 0x80000000) | (t0 & (num - 1));
       
   852 }
       
   853 
       
   854 void do_mtc0_mvpcontrol (target_ulong t0)
       
   855 {
       
   856     uint32_t mask = 0;
       
   857     uint32_t newval;
       
   858 
       
   859     if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
       
   860         mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
       
   861                 (1 << CP0MVPCo_EVP);
       
   862     if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
       
   863         mask |= (1 << CP0MVPCo_STLB);
       
   864     newval = (env->mvp->CP0_MVPControl & ~mask) | (t0 & mask);
       
   865 
       
   866     // TODO: Enable/disable shared TLB, enable/disable VPEs.
       
   867 
       
   868     env->mvp->CP0_MVPControl = newval;
       
   869 }
       
   870 
       
   871 void do_mtc0_vpecontrol (target_ulong t0)
       
   872 {
       
   873     uint32_t mask;
       
   874     uint32_t newval;
       
   875 
       
   876     mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
       
   877            (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
       
   878     newval = (env->CP0_VPEControl & ~mask) | (t0 & mask);
       
   879 
       
   880     /* Yield scheduler intercept not implemented. */
       
   881     /* Gating storage scheduler intercept not implemented. */
       
   882 
       
   883     // TODO: Enable/disable TCs.
       
   884 
       
   885     env->CP0_VPEControl = newval;
       
   886 }
       
   887 
       
   888 void do_mtc0_vpeconf0 (target_ulong t0)
       
   889 {
       
   890     uint32_t mask = 0;
       
   891     uint32_t newval;
       
   892 
       
   893     if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
       
   894         if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
       
   895             mask |= (0xff << CP0VPEC0_XTC);
       
   896         mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
       
   897     }
       
   898     newval = (env->CP0_VPEConf0 & ~mask) | (t0 & mask);
       
   899 
       
   900     // TODO: TC exclusive handling due to ERL/EXL.
       
   901 
       
   902     env->CP0_VPEConf0 = newval;
       
   903 }
       
   904 
       
   905 void do_mtc0_vpeconf1 (target_ulong t0)
       
   906 {
       
   907     uint32_t mask = 0;
       
   908     uint32_t newval;
       
   909 
       
   910     if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
       
   911         mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
       
   912                 (0xff << CP0VPEC1_NCP1);
       
   913     newval = (env->CP0_VPEConf1 & ~mask) | (t0 & mask);
       
   914 
       
   915     /* UDI not implemented. */
       
   916     /* CP2 not implemented. */
       
   917 
       
   918     // TODO: Handle FPU (CP1) binding.
       
   919 
       
   920     env->CP0_VPEConf1 = newval;
       
   921 }
       
   922 
       
   923 void do_mtc0_yqmask (target_ulong t0)
       
   924 {
       
   925     /* Yield qualifier inputs not implemented. */
       
   926     env->CP0_YQMask = 0x00000000;
       
   927 }
       
   928 
       
   929 void do_mtc0_vpeopt (target_ulong t0)
       
   930 {
       
   931     env->CP0_VPEOpt = t0 & 0x0000ffff;
       
   932 }
       
   933 
       
   934 void do_mtc0_entrylo0 (target_ulong t0)
       
   935 {
       
   936     /* Large physaddr (PABITS) not implemented */
       
   937     /* 1k pages not implemented */
       
   938     env->CP0_EntryLo0 = t0 & 0x3FFFFFFF;
       
   939 }
       
   940 
       
   941 void do_mtc0_tcstatus (target_ulong t0)
       
   942 {
       
   943     uint32_t mask = env->CP0_TCStatus_rw_bitmask;
       
   944     uint32_t newval;
       
   945 
       
   946     newval = (env->active_tc.CP0_TCStatus & ~mask) | (t0 & mask);
       
   947 
       
   948     // TODO: Sync with CP0_Status.
       
   949 
       
   950     env->active_tc.CP0_TCStatus = newval;
       
   951 }
       
   952 
       
   953 void do_mttc0_tcstatus (target_ulong t0)
       
   954 {
       
   955     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   956 
       
   957     // TODO: Sync with CP0_Status.
       
   958 
       
   959     if (other_tc == env->current_tc)
       
   960         env->active_tc.CP0_TCStatus = t0;
       
   961     else
       
   962         env->tcs[other_tc].CP0_TCStatus = t0;
       
   963 }
       
   964 
       
   965 void do_mtc0_tcbind (target_ulong t0)
       
   966 {
       
   967     uint32_t mask = (1 << CP0TCBd_TBE);
       
   968     uint32_t newval;
       
   969 
       
   970     if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
       
   971         mask |= (1 << CP0TCBd_CurVPE);
       
   972     newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
       
   973     env->active_tc.CP0_TCBind = newval;
       
   974 }
       
   975 
       
   976 void do_mttc0_tcbind (target_ulong t0)
       
   977 {
       
   978     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
   979     uint32_t mask = (1 << CP0TCBd_TBE);
       
   980     uint32_t newval;
       
   981 
       
   982     if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
       
   983         mask |= (1 << CP0TCBd_CurVPE);
       
   984     if (other_tc == env->current_tc) {
       
   985         newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
       
   986         env->active_tc.CP0_TCBind = newval;
       
   987     } else {
       
   988         newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (t0 & mask);
       
   989         env->tcs[other_tc].CP0_TCBind = newval;
       
   990     }
       
   991 }
       
   992 
       
   993 void do_mtc0_tcrestart (target_ulong t0)
       
   994 {
       
   995     env->active_tc.PC = t0;
       
   996     env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
       
   997     env->CP0_LLAddr = 0ULL;
       
   998     /* MIPS16 not implemented. */
       
   999 }
       
  1000 
       
  1001 void do_mttc0_tcrestart (target_ulong t0)
       
  1002 {
       
  1003     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1004 
       
  1005     if (other_tc == env->current_tc) {
       
  1006         env->active_tc.PC = t0;
       
  1007         env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
       
  1008         env->CP0_LLAddr = 0ULL;
       
  1009         /* MIPS16 not implemented. */
       
  1010     } else {
       
  1011         env->tcs[other_tc].PC = t0;
       
  1012         env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
       
  1013         env->CP0_LLAddr = 0ULL;
       
  1014         /* MIPS16 not implemented. */
       
  1015     }
       
  1016 }
       
  1017 
       
  1018 void do_mtc0_tchalt (target_ulong t0)
       
  1019 {
       
  1020     env->active_tc.CP0_TCHalt = t0 & 0x1;
       
  1021 
       
  1022     // TODO: Halt TC / Restart (if allocated+active) TC.
       
  1023 }
       
  1024 
       
  1025 void do_mttc0_tchalt (target_ulong t0)
       
  1026 {
       
  1027     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1028 
       
  1029     // TODO: Halt TC / Restart (if allocated+active) TC.
       
  1030 
       
  1031     if (other_tc == env->current_tc)
       
  1032         env->active_tc.CP0_TCHalt = t0;
       
  1033     else
       
  1034         env->tcs[other_tc].CP0_TCHalt = t0;
       
  1035 }
       
  1036 
       
  1037 void do_mtc0_tccontext (target_ulong t0)
       
  1038 {
       
  1039     env->active_tc.CP0_TCContext = t0;
       
  1040 }
       
  1041 
       
  1042 void do_mttc0_tccontext (target_ulong t0)
       
  1043 {
       
  1044     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1045 
       
  1046     if (other_tc == env->current_tc)
       
  1047         env->active_tc.CP0_TCContext = t0;
       
  1048     else
       
  1049         env->tcs[other_tc].CP0_TCContext = t0;
       
  1050 }
       
  1051 
       
  1052 void do_mtc0_tcschedule (target_ulong t0)
       
  1053 {
       
  1054     env->active_tc.CP0_TCSchedule = t0;
       
  1055 }
       
  1056 
       
  1057 void do_mttc0_tcschedule (target_ulong t0)
       
  1058 {
       
  1059     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1060 
       
  1061     if (other_tc == env->current_tc)
       
  1062         env->active_tc.CP0_TCSchedule = t0;
       
  1063     else
       
  1064         env->tcs[other_tc].CP0_TCSchedule = t0;
       
  1065 }
       
  1066 
       
  1067 void do_mtc0_tcschefback (target_ulong t0)
       
  1068 {
       
  1069     env->active_tc.CP0_TCScheFBack = t0;
       
  1070 }
       
  1071 
       
  1072 void do_mttc0_tcschefback (target_ulong t0)
       
  1073 {
       
  1074     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1075 
       
  1076     if (other_tc == env->current_tc)
       
  1077         env->active_tc.CP0_TCScheFBack = t0;
       
  1078     else
       
  1079         env->tcs[other_tc].CP0_TCScheFBack = t0;
       
  1080 }
       
  1081 
       
  1082 void do_mtc0_entrylo1 (target_ulong t0)
       
  1083 {
       
  1084     /* Large physaddr (PABITS) not implemented */
       
  1085     /* 1k pages not implemented */
       
  1086     env->CP0_EntryLo1 = t0 & 0x3FFFFFFF;
       
  1087 }
       
  1088 
       
  1089 void do_mtc0_context (target_ulong t0)
       
  1090 {
       
  1091     env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (t0 & ~0x007FFFFF);
       
  1092 }
       
  1093 
       
  1094 void do_mtc0_pagemask (target_ulong t0)
       
  1095 {
       
  1096     /* 1k pages not implemented */
       
  1097     env->CP0_PageMask = t0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
       
  1098 }
       
  1099 
       
  1100 void do_mtc0_pagegrain (target_ulong t0)
       
  1101 {
       
  1102     /* SmartMIPS not implemented */
       
  1103     /* Large physaddr (PABITS) not implemented */
       
  1104     /* 1k pages not implemented */
       
  1105     env->CP0_PageGrain = 0;
       
  1106 }
       
  1107 
       
  1108 void do_mtc0_wired (target_ulong t0)
       
  1109 {
       
  1110     env->CP0_Wired = t0 % env->tlb->nb_tlb;
       
  1111 }
       
  1112 
       
  1113 void do_mtc0_srsconf0 (target_ulong t0)
       
  1114 {
       
  1115     env->CP0_SRSConf0 |= t0 & env->CP0_SRSConf0_rw_bitmask;
       
  1116 }
       
  1117 
       
  1118 void do_mtc0_srsconf1 (target_ulong t0)
       
  1119 {
       
  1120     env->CP0_SRSConf1 |= t0 & env->CP0_SRSConf1_rw_bitmask;
       
  1121 }
       
  1122 
       
  1123 void do_mtc0_srsconf2 (target_ulong t0)
       
  1124 {
       
  1125     env->CP0_SRSConf2 |= t0 & env->CP0_SRSConf2_rw_bitmask;
       
  1126 }
       
  1127 
       
  1128 void do_mtc0_srsconf3 (target_ulong t0)
       
  1129 {
       
  1130     env->CP0_SRSConf3 |= t0 & env->CP0_SRSConf3_rw_bitmask;
       
  1131 }
       
  1132 
       
  1133 void do_mtc0_srsconf4 (target_ulong t0)
       
  1134 {
       
  1135     env->CP0_SRSConf4 |= t0 & env->CP0_SRSConf4_rw_bitmask;
       
  1136 }
       
  1137 
       
  1138 void do_mtc0_hwrena (target_ulong t0)
       
  1139 {
       
  1140     env->CP0_HWREna = t0 & 0x0000000F;
       
  1141 }
       
  1142 
       
  1143 void do_mtc0_count (target_ulong t0)
       
  1144 {
       
  1145     cpu_mips_store_count(env, t0);
       
  1146 }
       
  1147 
       
  1148 void do_mtc0_entryhi (target_ulong t0)
       
  1149 {
       
  1150     target_ulong old, val;
       
  1151 
       
  1152     /* 1k pages not implemented */
       
  1153     val = t0 & ((TARGET_PAGE_MASK << 1) | 0xFF);
       
  1154 #if defined(TARGET_MIPS64)
       
  1155     val &= env->SEGMask;
       
  1156 #endif
       
  1157     old = env->CP0_EntryHi;
       
  1158     env->CP0_EntryHi = val;
       
  1159     if (env->CP0_Config3 & (1 << CP0C3_MT)) {
       
  1160         uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
       
  1161         env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
       
  1162     }
       
  1163     /* If the ASID changes, flush qemu's TLB.  */
       
  1164     if ((old & 0xFF) != (val & 0xFF))
       
  1165         cpu_mips_tlb_flush(env, 1);
       
  1166 }
       
  1167 
       
  1168 void do_mttc0_entryhi(target_ulong t0)
       
  1169 {
       
  1170     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1171     int32_t tcstatus;
       
  1172 
       
  1173     env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (t0 & ~0xff);
       
  1174     if (other_tc == env->current_tc) {
       
  1175         tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (t0 & 0xff);
       
  1176         env->active_tc.CP0_TCStatus = tcstatus;
       
  1177     } else {
       
  1178         tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (t0 & 0xff);
       
  1179         env->tcs[other_tc].CP0_TCStatus = tcstatus;
       
  1180     }
       
  1181 }
       
  1182 
       
  1183 void do_mtc0_compare (target_ulong t0)
       
  1184 {
       
  1185     cpu_mips_store_compare(env, t0);
       
  1186 }
       
  1187 
       
  1188 void do_mtc0_status (target_ulong t0)
       
  1189 {
       
  1190     uint32_t val, old;
       
  1191     uint32_t mask = env->CP0_Status_rw_bitmask;
       
  1192 
       
  1193     val = t0 & mask;
       
  1194     old = env->CP0_Status;
       
  1195     env->CP0_Status = (env->CP0_Status & ~mask) | val;
       
  1196     compute_hflags(env);
       
  1197     if (loglevel & CPU_LOG_EXEC)
       
  1198         do_mtc0_status_debug(old, val);
       
  1199     cpu_mips_update_irq(env);
       
  1200 }
       
  1201 
       
  1202 void do_mttc0_status(target_ulong t0)
       
  1203 {
       
  1204     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1205     int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
       
  1206 
       
  1207     env->CP0_Status = t0 & ~0xf1000018;
       
  1208     tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (t0 & (0xf << CP0St_CU0));
       
  1209     tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((t0 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
       
  1210     tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((t0 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
       
  1211     if (other_tc == env->current_tc)
       
  1212         env->active_tc.CP0_TCStatus = tcstatus;
       
  1213     else
       
  1214         env->tcs[other_tc].CP0_TCStatus = tcstatus;
       
  1215 }
       
  1216 
       
  1217 void do_mtc0_intctl (target_ulong t0)
       
  1218 {
       
  1219     /* vectored interrupts not implemented, no performance counters. */
       
  1220     env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (t0 & 0x000002e0);
       
  1221 }
       
  1222 
       
  1223 void do_mtc0_srsctl (target_ulong t0)
       
  1224 {
       
  1225     uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
       
  1226     env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (t0 & mask);
       
  1227 }
       
  1228 
       
  1229 void do_mtc0_cause (target_ulong t0)
       
  1230 {
       
  1231     uint32_t mask = 0x00C00300;
       
  1232     uint32_t old = env->CP0_Cause;
       
  1233 
       
  1234     if (env->insn_flags & ISA_MIPS32R2)
       
  1235         mask |= 1 << CP0Ca_DC;
       
  1236 
       
  1237     env->CP0_Cause = (env->CP0_Cause & ~mask) | (t0 & mask);
       
  1238 
       
  1239     if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
       
  1240         if (env->CP0_Cause & (1 << CP0Ca_DC))
       
  1241             cpu_mips_stop_count(env);
       
  1242         else
       
  1243             cpu_mips_start_count(env);
       
  1244     }
       
  1245 
       
  1246     /* Handle the software interrupt as an hardware one, as they
       
  1247        are very similar */
       
  1248     if (t0 & CP0Ca_IP_mask) {
       
  1249         cpu_mips_update_irq(env);
       
  1250     }
       
  1251 }
       
  1252 
       
  1253 void do_mtc0_ebase (target_ulong t0)
       
  1254 {
       
  1255     /* vectored interrupts not implemented */
       
  1256     /* Multi-CPU not implemented */
       
  1257     env->CP0_EBase = 0x80000000 | (t0 & 0x3FFFF000);
       
  1258 }
       
  1259 
       
  1260 void do_mtc0_config0 (target_ulong t0)
       
  1261 {
       
  1262     env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (t0 & 0x00000007);
       
  1263 }
       
  1264 
       
  1265 void do_mtc0_config2 (target_ulong t0)
       
  1266 {
       
  1267     /* tertiary/secondary caches not implemented */
       
  1268     env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
       
  1269 }
       
  1270 
       
  1271 void do_mtc0_watchlo (target_ulong t0, uint32_t sel)
       
  1272 {
       
  1273     /* Watch exceptions for instructions, data loads, data stores
       
  1274        not implemented. */
       
  1275     env->CP0_WatchLo[sel] = (t0 & ~0x7);
       
  1276 }
       
  1277 
       
  1278 void do_mtc0_watchhi (target_ulong t0, uint32_t sel)
       
  1279 {
       
  1280     env->CP0_WatchHi[sel] = (t0 & 0x40FF0FF8);
       
  1281     env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & t0 & 0x7);
       
  1282 }
       
  1283 
       
  1284 void do_mtc0_xcontext (target_ulong t0)
       
  1285 {
       
  1286     target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
       
  1287     env->CP0_XContext = (env->CP0_XContext & mask) | (t0 & ~mask);
       
  1288 }
       
  1289 
       
  1290 void do_mtc0_framemask (target_ulong t0)
       
  1291 {
       
  1292     env->CP0_Framemask = t0; /* XXX */
       
  1293 }
       
  1294 
       
  1295 void do_mtc0_debug (target_ulong t0)
       
  1296 {
       
  1297     env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (t0 & 0x13300120);
       
  1298     if (t0 & (1 << CP0DB_DM))
       
  1299         env->hflags |= MIPS_HFLAG_DM;
       
  1300     else
       
  1301         env->hflags &= ~MIPS_HFLAG_DM;
       
  1302 }
       
  1303 
       
  1304 void do_mttc0_debug(target_ulong t0)
       
  1305 {
       
  1306     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1307     uint32_t val = t0 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
       
  1308 
       
  1309     /* XXX: Might be wrong, check with EJTAG spec. */
       
  1310     if (other_tc == env->current_tc)
       
  1311         env->active_tc.CP0_Debug_tcstatus = val;
       
  1312     else
       
  1313         env->tcs[other_tc].CP0_Debug_tcstatus = val;
       
  1314     env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
       
  1315                      (t0 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
       
  1316 }
       
  1317 
       
  1318 void do_mtc0_performance0 (target_ulong t0)
       
  1319 {
       
  1320     env->CP0_Performance0 = t0 & 0x000007ff;
       
  1321 }
       
  1322 
       
  1323 void do_mtc0_taglo (target_ulong t0)
       
  1324 {
       
  1325     env->CP0_TagLo = t0 & 0xFFFFFCF6;
       
  1326 }
       
  1327 
       
  1328 void do_mtc0_datalo (target_ulong t0)
       
  1329 {
       
  1330     env->CP0_DataLo = t0; /* XXX */
       
  1331 }
       
  1332 
       
  1333 void do_mtc0_taghi (target_ulong t0)
       
  1334 {
       
  1335     env->CP0_TagHi = t0; /* XXX */
       
  1336 }
       
  1337 
       
  1338 void do_mtc0_datahi (target_ulong t0)
       
  1339 {
       
  1340     env->CP0_DataHi = t0; /* XXX */
       
  1341 }
       
  1342 
       
  1343 void do_mtc0_status_debug(uint32_t old, uint32_t val)
       
  1344 {
       
  1345     fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
       
  1346             old, old & env->CP0_Cause & CP0Ca_IP_mask,
       
  1347             val, val & env->CP0_Cause & CP0Ca_IP_mask,
       
  1348             env->CP0_Cause);
       
  1349     switch (env->hflags & MIPS_HFLAG_KSU) {
       
  1350     case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
       
  1351     case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
       
  1352     case MIPS_HFLAG_KM: fputs("\n", logfile); break;
       
  1353     default: cpu_abort(env, "Invalid MMU mode!\n"); break;
       
  1354     }
       
  1355 }
       
  1356 
       
  1357 void do_mtc0_status_irqraise_debug(void)
       
  1358 {
       
  1359     fprintf(logfile, "Raise pending IRQs\n");
       
  1360 }
       
  1361 
       
  1362 /* MIPS MT functions */
       
  1363 target_ulong do_mftgpr(uint32_t sel)
       
  1364 {
       
  1365     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1366 
       
  1367     if (other_tc == env->current_tc)
       
  1368         return env->active_tc.gpr[sel];
       
  1369     else
       
  1370         return env->tcs[other_tc].gpr[sel];
       
  1371 }
       
  1372 
       
  1373 target_ulong do_mftlo(uint32_t sel)
       
  1374 {
       
  1375     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1376 
       
  1377     if (other_tc == env->current_tc)
       
  1378         return env->active_tc.LO[sel];
       
  1379     else
       
  1380         return env->tcs[other_tc].LO[sel];
       
  1381 }
       
  1382 
       
  1383 target_ulong do_mfthi(uint32_t sel)
       
  1384 {
       
  1385     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1386 
       
  1387     if (other_tc == env->current_tc)
       
  1388         return env->active_tc.HI[sel];
       
  1389     else
       
  1390         return env->tcs[other_tc].HI[sel];
       
  1391 }
       
  1392 
       
  1393 target_ulong do_mftacx(uint32_t sel)
       
  1394 {
       
  1395     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1396 
       
  1397     if (other_tc == env->current_tc)
       
  1398         return env->active_tc.ACX[sel];
       
  1399     else
       
  1400         return env->tcs[other_tc].ACX[sel];
       
  1401 }
       
  1402 
       
  1403 target_ulong do_mftdsp(void)
       
  1404 {
       
  1405     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1406 
       
  1407     if (other_tc == env->current_tc)
       
  1408         return env->active_tc.DSPControl;
       
  1409     else
       
  1410         return env->tcs[other_tc].DSPControl;
       
  1411 }
       
  1412 
       
  1413 void do_mttgpr(target_ulong t0, uint32_t sel)
       
  1414 {
       
  1415     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1416 
       
  1417     if (other_tc == env->current_tc)
       
  1418         env->active_tc.gpr[sel] = t0;
       
  1419     else
       
  1420         env->tcs[other_tc].gpr[sel] = t0;
       
  1421 }
       
  1422 
       
  1423 void do_mttlo(target_ulong t0, uint32_t sel)
       
  1424 {
       
  1425     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1426 
       
  1427     if (other_tc == env->current_tc)
       
  1428         env->active_tc.LO[sel] = t0;
       
  1429     else
       
  1430         env->tcs[other_tc].LO[sel] = t0;
       
  1431 }
       
  1432 
       
  1433 void do_mtthi(target_ulong t0, uint32_t sel)
       
  1434 {
       
  1435     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1436 
       
  1437     if (other_tc == env->current_tc)
       
  1438         env->active_tc.HI[sel] = t0;
       
  1439     else
       
  1440         env->tcs[other_tc].HI[sel] = t0;
       
  1441 }
       
  1442 
       
  1443 void do_mttacx(target_ulong t0, uint32_t sel)
       
  1444 {
       
  1445     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1446 
       
  1447     if (other_tc == env->current_tc)
       
  1448         env->active_tc.ACX[sel] = t0;
       
  1449     else
       
  1450         env->tcs[other_tc].ACX[sel] = t0;
       
  1451 }
       
  1452 
       
  1453 void do_mttdsp(target_ulong t0)
       
  1454 {
       
  1455     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
       
  1456 
       
  1457     if (other_tc == env->current_tc)
       
  1458         env->active_tc.DSPControl = t0;
       
  1459     else
       
  1460         env->tcs[other_tc].DSPControl = t0;
       
  1461 }
       
  1462 
       
  1463 /* MIPS MT functions */
       
  1464 target_ulong do_dmt(target_ulong t0)
       
  1465 {
       
  1466     // TODO
       
  1467     t0 = 0;
       
  1468     // rt = t0
       
  1469 
       
  1470     return t0;
       
  1471 }
       
  1472 
       
  1473 target_ulong do_emt(target_ulong t0)
       
  1474 {
       
  1475     // TODO
       
  1476     t0 = 0;
       
  1477     // rt = t0
       
  1478 
       
  1479     return t0;
       
  1480 }
       
  1481 
       
  1482 target_ulong do_dvpe(target_ulong t0)
       
  1483 {
       
  1484     // TODO
       
  1485     t0 = 0;
       
  1486     // rt = t0
       
  1487 
       
  1488     return t0;
       
  1489 }
       
  1490 
       
  1491 target_ulong do_evpe(target_ulong t0)
       
  1492 {
       
  1493     // TODO
       
  1494     t0 = 0;
       
  1495     // rt = t0
       
  1496 
       
  1497     return t0;
       
  1498 }
       
  1499 #endif /* !CONFIG_USER_ONLY */
       
  1500 
       
  1501 void do_fork(target_ulong t0, target_ulong t1)
       
  1502 {
       
  1503     // t0 = rt, t1 = rs
       
  1504     t0 = 0;
       
  1505     // TODO: store to TC register
       
  1506 }
       
  1507 
       
  1508 target_ulong do_yield(target_ulong t0)
       
  1509 {
       
  1510     if (t0 < 0) {
       
  1511         /* No scheduling policy implemented. */
       
  1512         if (t0 != -2) {
       
  1513             if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
       
  1514                 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
       
  1515                 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
       
  1516                 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
       
  1517                 do_raise_exception(EXCP_THREAD);
       
  1518             }
       
  1519         }
       
  1520     } else if (t0 == 0) {
       
  1521 	if (0 /* TODO: TC underflow */) {
       
  1522             env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
       
  1523             do_raise_exception(EXCP_THREAD);
       
  1524         } else {
       
  1525             // TODO: Deallocate TC
       
  1526         }
       
  1527     } else if (t0 > 0) {
       
  1528         /* Yield qualifier inputs not implemented. */
       
  1529         env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
       
  1530         env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
       
  1531         do_raise_exception(EXCP_THREAD);
       
  1532     }
       
  1533     return env->CP0_YQMask;
       
  1534 }
       
  1535 
       
  1536 #ifndef CONFIG_USER_ONLY
       
  1537 /* TLB management */
       
  1538 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
       
  1539 {
       
  1540     /* Flush qemu's TLB and discard all shadowed entries.  */
       
  1541     tlb_flush (env, flush_global);
       
  1542     env->tlb->tlb_in_use = env->tlb->nb_tlb;
       
  1543 }
       
  1544 
       
  1545 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
       
  1546 {
       
  1547     /* Discard entries from env->tlb[first] onwards.  */
       
  1548     while (env->tlb->tlb_in_use > first) {
       
  1549         r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
       
  1550     }
       
  1551 }
       
  1552 
       
  1553 static void r4k_fill_tlb (int idx)
       
  1554 {
       
  1555     r4k_tlb_t *tlb;
       
  1556 
       
  1557     /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
       
  1558     tlb = &env->tlb->mmu.r4k.tlb[idx];
       
  1559     tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
       
  1560 #if defined(TARGET_MIPS64)
       
  1561     tlb->VPN &= env->SEGMask;
       
  1562 #endif
       
  1563     tlb->ASID = env->CP0_EntryHi & 0xFF;
       
  1564     tlb->PageMask = env->CP0_PageMask;
       
  1565     tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
       
  1566     tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
       
  1567     tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
       
  1568     tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
       
  1569     tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
       
  1570     tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
       
  1571     tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
       
  1572     tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
       
  1573     tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
       
  1574 }
       
  1575 
       
  1576 void r4k_do_tlbwi (void)
       
  1577 {
       
  1578     int idx;
       
  1579 
       
  1580     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
       
  1581 
       
  1582     /* Discard cached TLB entries.  We could avoid doing this if the
       
  1583        tlbwi is just upgrading access permissions on the current entry;
       
  1584        that might be a further win.  */
       
  1585     r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
       
  1586 
       
  1587     r4k_invalidate_tlb(env, idx, 0);
       
  1588     r4k_fill_tlb(idx);
       
  1589 }
       
  1590 
       
  1591 void r4k_do_tlbwr (void)
       
  1592 {
       
  1593     int r = cpu_mips_get_random(env);
       
  1594 
       
  1595     r4k_invalidate_tlb(env, r, 1);
       
  1596     r4k_fill_tlb(r);
       
  1597 }
       
  1598 
       
  1599 void r4k_do_tlbp (void)
       
  1600 {
       
  1601     r4k_tlb_t *tlb;
       
  1602     target_ulong mask;
       
  1603     target_ulong tag;
       
  1604     target_ulong VPN;
       
  1605     uint8_t ASID;
       
  1606     int i;
       
  1607 
       
  1608     ASID = env->CP0_EntryHi & 0xFF;
       
  1609     for (i = 0; i < env->tlb->nb_tlb; i++) {
       
  1610         tlb = &env->tlb->mmu.r4k.tlb[i];
       
  1611         /* 1k pages are not supported. */
       
  1612         mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
       
  1613         tag = env->CP0_EntryHi & ~mask;
       
  1614         VPN = tlb->VPN & ~mask;
       
  1615         /* Check ASID, virtual page number & size */
       
  1616         if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
       
  1617             /* TLB match */
       
  1618             env->CP0_Index = i;
       
  1619             break;
       
  1620         }
       
  1621     }
       
  1622     if (i == env->tlb->nb_tlb) {
       
  1623         /* No match.  Discard any shadow entries, if any of them match.  */
       
  1624         for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
       
  1625 	    tlb = &env->tlb->mmu.r4k.tlb[i];
       
  1626 	    /* 1k pages are not supported. */
       
  1627 	    mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
       
  1628 	    tag = env->CP0_EntryHi & ~mask;
       
  1629 	    VPN = tlb->VPN & ~mask;
       
  1630 	    /* Check ASID, virtual page number & size */
       
  1631 	    if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
       
  1632                 r4k_mips_tlb_flush_extra (env, i);
       
  1633 	        break;
       
  1634 	    }
       
  1635 	}
       
  1636 
       
  1637         env->CP0_Index |= 0x80000000;
       
  1638     }
       
  1639 }
       
  1640 
       
  1641 void r4k_do_tlbr (void)
       
  1642 {
       
  1643     r4k_tlb_t *tlb;
       
  1644     uint8_t ASID;
       
  1645     int idx;
       
  1646 
       
  1647     ASID = env->CP0_EntryHi & 0xFF;
       
  1648     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
       
  1649     tlb = &env->tlb->mmu.r4k.tlb[idx];
       
  1650 
       
  1651     /* If this will change the current ASID, flush qemu's TLB.  */
       
  1652     if (ASID != tlb->ASID)
       
  1653         cpu_mips_tlb_flush (env, 1);
       
  1654 
       
  1655     r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
       
  1656 
       
  1657     env->CP0_EntryHi = tlb->VPN | tlb->ASID;
       
  1658     env->CP0_PageMask = tlb->PageMask;
       
  1659     env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
       
  1660                         (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
       
  1661     env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
       
  1662                         (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
       
  1663 }
       
  1664 
       
  1665 void do_tlbwi(void)
       
  1666 {
       
  1667     env->tlb->do_tlbwi();
       
  1668 }
       
  1669 
       
  1670 void do_tlbwr(void)
       
  1671 {
       
  1672     env->tlb->do_tlbwr();
       
  1673 }
       
  1674 
       
  1675 void do_tlbp(void)
       
  1676 {
       
  1677     env->tlb->do_tlbp();
       
  1678 }
       
  1679 
       
  1680 void do_tlbr(void)
       
  1681 {
       
  1682     env->tlb->do_tlbr();
       
  1683 }
       
  1684 
       
  1685 /* Specials */
       
  1686 target_ulong do_di (void)
       
  1687 {
       
  1688     target_ulong t0 = env->CP0_Status;
       
  1689 
       
  1690     env->CP0_Status = t0 & ~(1 << CP0St_IE);
       
  1691     cpu_mips_update_irq(env);
       
  1692 
       
  1693     return t0;
       
  1694 }
       
  1695 
       
  1696 target_ulong do_ei (void)
       
  1697 {
       
  1698     target_ulong t0 = env->CP0_Status;
       
  1699 
       
  1700     env->CP0_Status = t0 | (1 << CP0St_IE);
       
  1701     cpu_mips_update_irq(env);
       
  1702 
       
  1703     return t0;
       
  1704 }
       
  1705 
       
  1706 static void debug_pre_eret (void)
       
  1707 {
       
  1708     fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
       
  1709             env->active_tc.PC, env->CP0_EPC);
       
  1710     if (env->CP0_Status & (1 << CP0St_ERL))
       
  1711         fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
       
  1712     if (env->hflags & MIPS_HFLAG_DM)
       
  1713         fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
       
  1714     fputs("\n", logfile);
       
  1715 }
       
  1716 
       
  1717 static void debug_post_eret (void)
       
  1718 {
       
  1719     fprintf(logfile, "  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
       
  1720             env->active_tc.PC, env->CP0_EPC);
       
  1721     if (env->CP0_Status & (1 << CP0St_ERL))
       
  1722         fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
       
  1723     if (env->hflags & MIPS_HFLAG_DM)
       
  1724         fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
       
  1725     switch (env->hflags & MIPS_HFLAG_KSU) {
       
  1726     case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
       
  1727     case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
       
  1728     case MIPS_HFLAG_KM: fputs("\n", logfile); break;
       
  1729     default: cpu_abort(env, "Invalid MMU mode!\n"); break;
       
  1730     }
       
  1731 }
       
  1732 
       
  1733 void do_eret (void)
       
  1734 {
       
  1735     if (loglevel & CPU_LOG_EXEC)
       
  1736         debug_pre_eret();
       
  1737     if (env->CP0_Status & (1 << CP0St_ERL)) {
       
  1738         env->active_tc.PC = env->CP0_ErrorEPC;
       
  1739         env->CP0_Status &= ~(1 << CP0St_ERL);
       
  1740     } else {
       
  1741         env->active_tc.PC = env->CP0_EPC;
       
  1742         env->CP0_Status &= ~(1 << CP0St_EXL);
       
  1743     }
       
  1744     compute_hflags(env);
       
  1745     if (loglevel & CPU_LOG_EXEC)
       
  1746         debug_post_eret();
       
  1747     env->CP0_LLAddr = 1;
       
  1748 }
       
  1749 
       
  1750 void do_deret (void)
       
  1751 {
       
  1752     if (loglevel & CPU_LOG_EXEC)
       
  1753         debug_pre_eret();
       
  1754     env->active_tc.PC = env->CP0_DEPC;
       
  1755     env->hflags &= MIPS_HFLAG_DM;
       
  1756     compute_hflags(env);
       
  1757     if (loglevel & CPU_LOG_EXEC)
       
  1758         debug_post_eret();
       
  1759     env->CP0_LLAddr = 1;
       
  1760 }
       
  1761 #endif /* !CONFIG_USER_ONLY */
       
  1762 
       
  1763 target_ulong do_rdhwr_cpunum(void)
       
  1764 {
       
  1765     if ((env->hflags & MIPS_HFLAG_CP0) ||
       
  1766         (env->CP0_HWREna & (1 << 0)))
       
  1767         return env->CP0_EBase & 0x3ff;
       
  1768     else
       
  1769         do_raise_exception(EXCP_RI);
       
  1770 
       
  1771     return 0;
       
  1772 }
       
  1773 
       
  1774 target_ulong do_rdhwr_synci_step(void)
       
  1775 {
       
  1776     if ((env->hflags & MIPS_HFLAG_CP0) ||
       
  1777         (env->CP0_HWREna & (1 << 1)))
       
  1778         return env->SYNCI_Step;
       
  1779     else
       
  1780         do_raise_exception(EXCP_RI);
       
  1781 
       
  1782     return 0;
       
  1783 }
       
  1784 
       
  1785 target_ulong do_rdhwr_cc(void)
       
  1786 {
       
  1787     if ((env->hflags & MIPS_HFLAG_CP0) ||
       
  1788         (env->CP0_HWREna & (1 << 2)))
       
  1789         return env->CP0_Count;
       
  1790     else
       
  1791         do_raise_exception(EXCP_RI);
       
  1792 
       
  1793     return 0;
       
  1794 }
       
  1795 
       
  1796 target_ulong do_rdhwr_ccres(void)
       
  1797 {
       
  1798     if ((env->hflags & MIPS_HFLAG_CP0) ||
       
  1799         (env->CP0_HWREna & (1 << 3)))
       
  1800         return env->CCRes;
       
  1801     else
       
  1802         do_raise_exception(EXCP_RI);
       
  1803 
       
  1804     return 0;
       
  1805 }
       
  1806 
       
  1807 void do_pmon (int function)
       
  1808 {
       
  1809     function /= 2;
       
  1810     switch (function) {
       
  1811     case 2: /* TODO: char inbyte(int waitflag); */
       
  1812         if (env->active_tc.gpr[4] == 0)
       
  1813             env->active_tc.gpr[2] = -1;
       
  1814         /* Fall through */
       
  1815     case 11: /* TODO: char inbyte (void); */
       
  1816         env->active_tc.gpr[2] = -1;
       
  1817         break;
       
  1818     case 3:
       
  1819     case 12:
       
  1820         printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
       
  1821         break;
       
  1822     case 17:
       
  1823         break;
       
  1824     case 158:
       
  1825         {
       
  1826             unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
       
  1827             printf("%s", fmt);
       
  1828         }
       
  1829         break;
       
  1830     }
       
  1831 }
       
  1832 
       
  1833 void do_wait (void)
       
  1834 {
       
  1835     env->halted = 1;
       
  1836     do_raise_exception(EXCP_HLT);
       
  1837 }
       
  1838 
       
  1839 #if !defined(CONFIG_USER_ONLY)
       
  1840 
       
  1841 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
       
  1842 
       
  1843 #define MMUSUFFIX _mmu
       
  1844 #define ALIGNED_ONLY
       
  1845 
       
  1846 #define SHIFT 0
       
  1847 #include "softmmu_template.h"
       
  1848 
       
  1849 #define SHIFT 1
       
  1850 #include "softmmu_template.h"
       
  1851 
       
  1852 #define SHIFT 2
       
  1853 #include "softmmu_template.h"
       
  1854 
       
  1855 #define SHIFT 3
       
  1856 #include "softmmu_template.h"
       
  1857 
       
  1858 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
       
  1859 {
       
  1860     env->CP0_BadVAddr = addr;
       
  1861     do_restore_state (retaddr);
       
  1862     do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
       
  1863 }
       
  1864 
       
  1865 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
       
  1866 {
       
  1867     TranslationBlock *tb;
       
  1868     CPUState *saved_env;
       
  1869     unsigned long pc;
       
  1870     int ret;
       
  1871 
       
  1872     /* XXX: hack to restore env in all cases, even if not called from
       
  1873        generated code */
       
  1874     saved_env = env;
       
  1875     env = cpu_single_env;
       
  1876     ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
       
  1877     if (ret) {
       
  1878         if (retaddr) {
       
  1879             /* now we have a real cpu fault */
       
  1880             pc = (unsigned long)retaddr;
       
  1881             tb = tb_find_pc(pc);
       
  1882             if (tb) {
       
  1883                 /* the PC is inside the translated code. It means that we have
       
  1884                    a virtual CPU fault */
       
  1885                 cpu_restore_state(tb, env, pc, NULL);
       
  1886             }
       
  1887         }
       
  1888         do_raise_exception_err(env->exception_index, env->error_code);
       
  1889     }
       
  1890     env = saved_env;
       
  1891 }
       
  1892 
       
  1893 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
       
  1894                           int unused, int size)
       
  1895 {
       
  1896     if (is_exec)
       
  1897         do_raise_exception(EXCP_IBE);
       
  1898     else
       
  1899         do_raise_exception(EXCP_DBE);
       
  1900 }
       
  1901 #endif /* !CONFIG_USER_ONLY */
       
  1902 
       
  1903 /* Complex FPU operations which may need stack space. */
       
  1904 
       
  1905 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
       
  1906 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
       
  1907 #define FLOAT_TWO32 make_float32(1 << 30)
       
  1908 #define FLOAT_TWO64 make_float64(1ULL << 62)
       
  1909 #define FLOAT_QNAN32 0x7fbfffff
       
  1910 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
       
  1911 #define FLOAT_SNAN32 0x7fffffff
       
  1912 #define FLOAT_SNAN64 0x7fffffffffffffffULL
       
  1913 
       
  1914 /* convert MIPS rounding mode in FCR31 to IEEE library */
       
  1915 unsigned int ieee_rm[] = {
       
  1916     float_round_nearest_even,
       
  1917     float_round_to_zero,
       
  1918     float_round_up,
       
  1919     float_round_down
       
  1920 };
       
  1921 
       
  1922 #define RESTORE_ROUNDING_MODE \
       
  1923     set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
       
  1924 
       
  1925 target_ulong do_cfc1 (uint32_t reg)
       
  1926 {
       
  1927     target_ulong t0;
       
  1928 
       
  1929     switch (reg) {
       
  1930     case 0:
       
  1931         t0 = (int32_t)env->active_fpu.fcr0;
       
  1932         break;
       
  1933     case 25:
       
  1934         t0 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
       
  1935         break;
       
  1936     case 26:
       
  1937         t0 = env->active_fpu.fcr31 & 0x0003f07c;
       
  1938         break;
       
  1939     case 28:
       
  1940         t0 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
       
  1941         break;
       
  1942     default:
       
  1943         t0 = (int32_t)env->active_fpu.fcr31;
       
  1944         break;
       
  1945     }
       
  1946 
       
  1947     return t0;
       
  1948 }
       
  1949 
       
  1950 void do_ctc1 (target_ulong t0, uint32_t reg)
       
  1951 {
       
  1952     switch(reg) {
       
  1953     case 25:
       
  1954         if (t0 & 0xffffff00)
       
  1955             return;
       
  1956         env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((t0 & 0xfe) << 24) |
       
  1957                      ((t0 & 0x1) << 23);
       
  1958         break;
       
  1959     case 26:
       
  1960         if (t0 & 0x007c0000)
       
  1961             return;
       
  1962         env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (t0 & 0x0003f07c);
       
  1963         break;
       
  1964     case 28:
       
  1965         if (t0 & 0x007c0000)
       
  1966             return;
       
  1967         env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (t0 & 0x00000f83) |
       
  1968                      ((t0 & 0x4) << 22);
       
  1969         break;
       
  1970     case 31:
       
  1971         if (t0 & 0x007c0000)
       
  1972             return;
       
  1973         env->active_fpu.fcr31 = t0;
       
  1974         break;
       
  1975     default:
       
  1976         return;
       
  1977     }
       
  1978     /* set rounding mode */
       
  1979     RESTORE_ROUNDING_MODE;
       
  1980     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  1981     if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
       
  1982         do_raise_exception(EXCP_FPE);
       
  1983 }
       
  1984 
       
  1985 static inline char ieee_ex_to_mips(char xcpt)
       
  1986 {
       
  1987     return (xcpt & float_flag_inexact) >> 5 |
       
  1988            (xcpt & float_flag_underflow) >> 3 |
       
  1989            (xcpt & float_flag_overflow) >> 1 |
       
  1990            (xcpt & float_flag_divbyzero) << 1 |
       
  1991            (xcpt & float_flag_invalid) << 4;
       
  1992 }
       
  1993 
       
  1994 static inline char mips_ex_to_ieee(char xcpt)
       
  1995 {
       
  1996     return (xcpt & FP_INEXACT) << 5 |
       
  1997            (xcpt & FP_UNDERFLOW) << 3 |
       
  1998            (xcpt & FP_OVERFLOW) << 1 |
       
  1999            (xcpt & FP_DIV0) >> 1 |
       
  2000            (xcpt & FP_INVALID) >> 4;
       
  2001 }
       
  2002 
       
  2003 static inline void update_fcr31(void)
       
  2004 {
       
  2005     int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
       
  2006 
       
  2007     SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
       
  2008     if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
       
  2009         do_raise_exception(EXCP_FPE);
       
  2010     else
       
  2011         UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
       
  2012 }
       
  2013 
       
  2014 /* Float support.
       
  2015    Single precition routines have a "s" suffix, double precision a
       
  2016    "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
       
  2017    paired single lower "pl", paired single upper "pu".  */
       
  2018 
       
  2019 /* unary operations, modifying fp status  */
       
  2020 uint64_t do_float_sqrt_d(uint64_t fdt0)
       
  2021 {
       
  2022     return float64_sqrt(fdt0, &env->active_fpu.fp_status);
       
  2023 }
       
  2024 
       
  2025 uint32_t do_float_sqrt_s(uint32_t fst0)
       
  2026 {
       
  2027     return float32_sqrt(fst0, &env->active_fpu.fp_status);
       
  2028 }
       
  2029 
       
  2030 uint64_t do_float_cvtd_s(uint32_t fst0)
       
  2031 {
       
  2032     uint64_t fdt2;
       
  2033 
       
  2034     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2035     fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
       
  2036     update_fcr31();
       
  2037     return fdt2;
       
  2038 }
       
  2039 
       
  2040 uint64_t do_float_cvtd_w(uint32_t wt0)
       
  2041 {
       
  2042     uint64_t fdt2;
       
  2043 
       
  2044     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2045     fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
       
  2046     update_fcr31();
       
  2047     return fdt2;
       
  2048 }
       
  2049 
       
  2050 uint64_t do_float_cvtd_l(uint64_t dt0)
       
  2051 {
       
  2052     uint64_t fdt2;
       
  2053 
       
  2054     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2055     fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
       
  2056     update_fcr31();
       
  2057     return fdt2;
       
  2058 }
       
  2059 
       
  2060 uint64_t do_float_cvtl_d(uint64_t fdt0)
       
  2061 {
       
  2062     uint64_t dt2;
       
  2063 
       
  2064     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2065     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
       
  2066     update_fcr31();
       
  2067     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2068         dt2 = FLOAT_SNAN64;
       
  2069     return dt2;
       
  2070 }
       
  2071 
       
  2072 uint64_t do_float_cvtl_s(uint32_t fst0)
       
  2073 {
       
  2074     uint64_t dt2;
       
  2075 
       
  2076     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2077     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
       
  2078     update_fcr31();
       
  2079     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2080         dt2 = FLOAT_SNAN64;
       
  2081     return dt2;
       
  2082 }
       
  2083 
       
  2084 uint64_t do_float_cvtps_pw(uint64_t dt0)
       
  2085 {
       
  2086     uint32_t fst2;
       
  2087     uint32_t fsth2;
       
  2088 
       
  2089     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2090     fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
       
  2091     fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
       
  2092     update_fcr31();
       
  2093     return ((uint64_t)fsth2 << 32) | fst2;
       
  2094 }
       
  2095 
       
  2096 uint64_t do_float_cvtpw_ps(uint64_t fdt0)
       
  2097 {
       
  2098     uint32_t wt2;
       
  2099     uint32_t wth2;
       
  2100 
       
  2101     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2102     wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
       
  2103     wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
       
  2104     update_fcr31();
       
  2105     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
       
  2106         wt2 = FLOAT_SNAN32;
       
  2107         wth2 = FLOAT_SNAN32;
       
  2108     }
       
  2109     return ((uint64_t)wth2 << 32) | wt2;
       
  2110 }
       
  2111 
       
  2112 uint32_t do_float_cvts_d(uint64_t fdt0)
       
  2113 {
       
  2114     uint32_t fst2;
       
  2115 
       
  2116     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2117     fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
       
  2118     update_fcr31();
       
  2119     return fst2;
       
  2120 }
       
  2121 
       
  2122 uint32_t do_float_cvts_w(uint32_t wt0)
       
  2123 {
       
  2124     uint32_t fst2;
       
  2125 
       
  2126     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2127     fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
       
  2128     update_fcr31();
       
  2129     return fst2;
       
  2130 }
       
  2131 
       
  2132 uint32_t do_float_cvts_l(uint64_t dt0)
       
  2133 {
       
  2134     uint32_t fst2;
       
  2135 
       
  2136     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2137     fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
       
  2138     update_fcr31();
       
  2139     return fst2;
       
  2140 }
       
  2141 
       
  2142 uint32_t do_float_cvts_pl(uint32_t wt0)
       
  2143 {
       
  2144     uint32_t wt2;
       
  2145 
       
  2146     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2147     wt2 = wt0;
       
  2148     update_fcr31();
       
  2149     return wt2;
       
  2150 }
       
  2151 
       
  2152 uint32_t do_float_cvts_pu(uint32_t wth0)
       
  2153 {
       
  2154     uint32_t wt2;
       
  2155 
       
  2156     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2157     wt2 = wth0;
       
  2158     update_fcr31();
       
  2159     return wt2;
       
  2160 }
       
  2161 
       
  2162 uint32_t do_float_cvtw_s(uint32_t fst0)
       
  2163 {
       
  2164     uint32_t wt2;
       
  2165 
       
  2166     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2167     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
       
  2168     update_fcr31();
       
  2169     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2170         wt2 = FLOAT_SNAN32;
       
  2171     return wt2;
       
  2172 }
       
  2173 
       
  2174 uint32_t do_float_cvtw_d(uint64_t fdt0)
       
  2175 {
       
  2176     uint32_t wt2;
       
  2177 
       
  2178     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2179     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
       
  2180     update_fcr31();
       
  2181     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2182         wt2 = FLOAT_SNAN32;
       
  2183     return wt2;
       
  2184 }
       
  2185 
       
  2186 uint64_t do_float_roundl_d(uint64_t fdt0)
       
  2187 {
       
  2188     uint64_t dt2;
       
  2189 
       
  2190     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
       
  2191     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
       
  2192     RESTORE_ROUNDING_MODE;
       
  2193     update_fcr31();
       
  2194     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2195         dt2 = FLOAT_SNAN64;
       
  2196     return dt2;
       
  2197 }
       
  2198 
       
  2199 uint64_t do_float_roundl_s(uint32_t fst0)
       
  2200 {
       
  2201     uint64_t dt2;
       
  2202 
       
  2203     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
       
  2204     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
       
  2205     RESTORE_ROUNDING_MODE;
       
  2206     update_fcr31();
       
  2207     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2208         dt2 = FLOAT_SNAN64;
       
  2209     return dt2;
       
  2210 }
       
  2211 
       
  2212 uint32_t do_float_roundw_d(uint64_t fdt0)
       
  2213 {
       
  2214     uint32_t wt2;
       
  2215 
       
  2216     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
       
  2217     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
       
  2218     RESTORE_ROUNDING_MODE;
       
  2219     update_fcr31();
       
  2220     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2221         wt2 = FLOAT_SNAN32;
       
  2222     return wt2;
       
  2223 }
       
  2224 
       
  2225 uint32_t do_float_roundw_s(uint32_t fst0)
       
  2226 {
       
  2227     uint32_t wt2;
       
  2228 
       
  2229     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
       
  2230     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
       
  2231     RESTORE_ROUNDING_MODE;
       
  2232     update_fcr31();
       
  2233     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2234         wt2 = FLOAT_SNAN32;
       
  2235     return wt2;
       
  2236 }
       
  2237 
       
  2238 uint64_t do_float_truncl_d(uint64_t fdt0)
       
  2239 {
       
  2240     uint64_t dt2;
       
  2241 
       
  2242     dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
       
  2243     update_fcr31();
       
  2244     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2245         dt2 = FLOAT_SNAN64;
       
  2246     return dt2;
       
  2247 }
       
  2248 
       
  2249 uint64_t do_float_truncl_s(uint32_t fst0)
       
  2250 {
       
  2251     uint64_t dt2;
       
  2252 
       
  2253     dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
       
  2254     update_fcr31();
       
  2255     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2256         dt2 = FLOAT_SNAN64;
       
  2257     return dt2;
       
  2258 }
       
  2259 
       
  2260 uint32_t do_float_truncw_d(uint64_t fdt0)
       
  2261 {
       
  2262     uint32_t wt2;
       
  2263 
       
  2264     wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
       
  2265     update_fcr31();
       
  2266     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2267         wt2 = FLOAT_SNAN32;
       
  2268     return wt2;
       
  2269 }
       
  2270 
       
  2271 uint32_t do_float_truncw_s(uint32_t fst0)
       
  2272 {
       
  2273     uint32_t wt2;
       
  2274 
       
  2275     wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
       
  2276     update_fcr31();
       
  2277     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2278         wt2 = FLOAT_SNAN32;
       
  2279     return wt2;
       
  2280 }
       
  2281 
       
  2282 uint64_t do_float_ceill_d(uint64_t fdt0)
       
  2283 {
       
  2284     uint64_t dt2;
       
  2285 
       
  2286     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
       
  2287     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
       
  2288     RESTORE_ROUNDING_MODE;
       
  2289     update_fcr31();
       
  2290     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2291         dt2 = FLOAT_SNAN64;
       
  2292     return dt2;
       
  2293 }
       
  2294 
       
  2295 uint64_t do_float_ceill_s(uint32_t fst0)
       
  2296 {
       
  2297     uint64_t dt2;
       
  2298 
       
  2299     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
       
  2300     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
       
  2301     RESTORE_ROUNDING_MODE;
       
  2302     update_fcr31();
       
  2303     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2304         dt2 = FLOAT_SNAN64;
       
  2305     return dt2;
       
  2306 }
       
  2307 
       
  2308 uint32_t do_float_ceilw_d(uint64_t fdt0)
       
  2309 {
       
  2310     uint32_t wt2;
       
  2311 
       
  2312     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
       
  2313     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
       
  2314     RESTORE_ROUNDING_MODE;
       
  2315     update_fcr31();
       
  2316     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2317         wt2 = FLOAT_SNAN32;
       
  2318     return wt2;
       
  2319 }
       
  2320 
       
  2321 uint32_t do_float_ceilw_s(uint32_t fst0)
       
  2322 {
       
  2323     uint32_t wt2;
       
  2324 
       
  2325     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
       
  2326     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
       
  2327     RESTORE_ROUNDING_MODE;
       
  2328     update_fcr31();
       
  2329     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2330         wt2 = FLOAT_SNAN32;
       
  2331     return wt2;
       
  2332 }
       
  2333 
       
  2334 uint64_t do_float_floorl_d(uint64_t fdt0)
       
  2335 {
       
  2336     uint64_t dt2;
       
  2337 
       
  2338     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
       
  2339     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
       
  2340     RESTORE_ROUNDING_MODE;
       
  2341     update_fcr31();
       
  2342     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2343         dt2 = FLOAT_SNAN64;
       
  2344     return dt2;
       
  2345 }
       
  2346 
       
  2347 uint64_t do_float_floorl_s(uint32_t fst0)
       
  2348 {
       
  2349     uint64_t dt2;
       
  2350 
       
  2351     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
       
  2352     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
       
  2353     RESTORE_ROUNDING_MODE;
       
  2354     update_fcr31();
       
  2355     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2356         dt2 = FLOAT_SNAN64;
       
  2357     return dt2;
       
  2358 }
       
  2359 
       
  2360 uint32_t do_float_floorw_d(uint64_t fdt0)
       
  2361 {
       
  2362     uint32_t wt2;
       
  2363 
       
  2364     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
       
  2365     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
       
  2366     RESTORE_ROUNDING_MODE;
       
  2367     update_fcr31();
       
  2368     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2369         wt2 = FLOAT_SNAN32;
       
  2370     return wt2;
       
  2371 }
       
  2372 
       
  2373 uint32_t do_float_floorw_s(uint32_t fst0)
       
  2374 {
       
  2375     uint32_t wt2;
       
  2376 
       
  2377     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
       
  2378     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
       
  2379     RESTORE_ROUNDING_MODE;
       
  2380     update_fcr31();
       
  2381     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
       
  2382         wt2 = FLOAT_SNAN32;
       
  2383     return wt2;
       
  2384 }
       
  2385 
       
  2386 /* unary operations, not modifying fp status  */
       
  2387 #define FLOAT_UNOP(name)                                       \
       
  2388 uint64_t do_float_ ## name ## _d(uint64_t fdt0)                \
       
  2389 {                                                              \
       
  2390     return float64_ ## name(fdt0);                             \
       
  2391 }                                                              \
       
  2392 uint32_t do_float_ ## name ## _s(uint32_t fst0)                \
       
  2393 {                                                              \
       
  2394     return float32_ ## name(fst0);                             \
       
  2395 }                                                              \
       
  2396 uint64_t do_float_ ## name ## _ps(uint64_t fdt0)               \
       
  2397 {                                                              \
       
  2398     uint32_t wt0;                                              \
       
  2399     uint32_t wth0;                                             \
       
  2400                                                                \
       
  2401     wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF);                 \
       
  2402     wth0 = float32_ ## name(fdt0 >> 32);                       \
       
  2403     return ((uint64_t)wth0 << 32) | wt0;                       \
       
  2404 }
       
  2405 FLOAT_UNOP(abs)
       
  2406 FLOAT_UNOP(chs)
       
  2407 #undef FLOAT_UNOP
       
  2408 
       
  2409 /* MIPS specific unary operations */
       
  2410 uint64_t do_float_recip_d(uint64_t fdt0)
       
  2411 {
       
  2412     uint64_t fdt2;
       
  2413 
       
  2414     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2415     fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
       
  2416     update_fcr31();
       
  2417     return fdt2;
       
  2418 }
       
  2419 
       
  2420 uint32_t do_float_recip_s(uint32_t fst0)
       
  2421 {
       
  2422     uint32_t fst2;
       
  2423 
       
  2424     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2425     fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
       
  2426     update_fcr31();
       
  2427     return fst2;
       
  2428 }
       
  2429 
       
  2430 uint64_t do_float_rsqrt_d(uint64_t fdt0)
       
  2431 {
       
  2432     uint64_t fdt2;
       
  2433 
       
  2434     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2435     fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
       
  2436     fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
       
  2437     update_fcr31();
       
  2438     return fdt2;
       
  2439 }
       
  2440 
       
  2441 uint32_t do_float_rsqrt_s(uint32_t fst0)
       
  2442 {
       
  2443     uint32_t fst2;
       
  2444 
       
  2445     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2446     fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
       
  2447     fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
       
  2448     update_fcr31();
       
  2449     return fst2;
       
  2450 }
       
  2451 
       
  2452 uint64_t do_float_recip1_d(uint64_t fdt0)
       
  2453 {
       
  2454     uint64_t fdt2;
       
  2455 
       
  2456     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2457     fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
       
  2458     update_fcr31();
       
  2459     return fdt2;
       
  2460 }
       
  2461 
       
  2462 uint32_t do_float_recip1_s(uint32_t fst0)
       
  2463 {
       
  2464     uint32_t fst2;
       
  2465 
       
  2466     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2467     fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
       
  2468     update_fcr31();
       
  2469     return fst2;
       
  2470 }
       
  2471 
       
  2472 uint64_t do_float_recip1_ps(uint64_t fdt0)
       
  2473 {
       
  2474     uint32_t fst2;
       
  2475     uint32_t fsth2;
       
  2476 
       
  2477     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2478     fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
       
  2479     fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
       
  2480     update_fcr31();
       
  2481     return ((uint64_t)fsth2 << 32) | fst2;
       
  2482 }
       
  2483 
       
  2484 uint64_t do_float_rsqrt1_d(uint64_t fdt0)
       
  2485 {
       
  2486     uint64_t fdt2;
       
  2487 
       
  2488     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2489     fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
       
  2490     fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
       
  2491     update_fcr31();
       
  2492     return fdt2;
       
  2493 }
       
  2494 
       
  2495 uint32_t do_float_rsqrt1_s(uint32_t fst0)
       
  2496 {
       
  2497     uint32_t fst2;
       
  2498 
       
  2499     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2500     fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
       
  2501     fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
       
  2502     update_fcr31();
       
  2503     return fst2;
       
  2504 }
       
  2505 
       
  2506 uint64_t do_float_rsqrt1_ps(uint64_t fdt0)
       
  2507 {
       
  2508     uint32_t fst2;
       
  2509     uint32_t fsth2;
       
  2510 
       
  2511     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2512     fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
       
  2513     fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
       
  2514     fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
       
  2515     fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
       
  2516     update_fcr31();
       
  2517     return ((uint64_t)fsth2 << 32) | fst2;
       
  2518 }
       
  2519 
       
  2520 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
       
  2521 
       
  2522 /* binary operations */
       
  2523 #define FLOAT_BINOP(name)                                          \
       
  2524 uint64_t do_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1)     \
       
  2525 {                                                                  \
       
  2526     uint64_t dt2;                                                  \
       
  2527                                                                    \
       
  2528     set_float_exception_flags(0, &env->active_fpu.fp_status);            \
       
  2529     dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status);     \
       
  2530     update_fcr31();                                                \
       
  2531     if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID)                \
       
  2532         dt2 = FLOAT_QNAN64;                                        \
       
  2533     return dt2;                                                    \
       
  2534 }                                                                  \
       
  2535                                                                    \
       
  2536 uint32_t do_float_ ## name ## _s(uint32_t fst0, uint32_t fst1)     \
       
  2537 {                                                                  \
       
  2538     uint32_t wt2;                                                  \
       
  2539                                                                    \
       
  2540     set_float_exception_flags(0, &env->active_fpu.fp_status);            \
       
  2541     wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status);     \
       
  2542     update_fcr31();                                                \
       
  2543     if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID)                \
       
  2544         wt2 = FLOAT_QNAN32;                                        \
       
  2545     return wt2;                                                    \
       
  2546 }                                                                  \
       
  2547                                                                    \
       
  2548 uint64_t do_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1)    \
       
  2549 {                                                                  \
       
  2550     uint32_t fst0 = fdt0 & 0XFFFFFFFF;                             \
       
  2551     uint32_t fsth0 = fdt0 >> 32;                                   \
       
  2552     uint32_t fst1 = fdt1 & 0XFFFFFFFF;                             \
       
  2553     uint32_t fsth1 = fdt1 >> 32;                                   \
       
  2554     uint32_t wt2;                                                  \
       
  2555     uint32_t wth2;                                                 \
       
  2556                                                                    \
       
  2557     set_float_exception_flags(0, &env->active_fpu.fp_status);            \
       
  2558     wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status);     \
       
  2559     wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status);  \
       
  2560     update_fcr31();                                                \
       
  2561     if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) {              \
       
  2562         wt2 = FLOAT_QNAN32;                                        \
       
  2563         wth2 = FLOAT_QNAN32;                                       \
       
  2564     }                                                              \
       
  2565     return ((uint64_t)wth2 << 32) | wt2;                           \
       
  2566 }
       
  2567 
       
  2568 FLOAT_BINOP(add)
       
  2569 FLOAT_BINOP(sub)
       
  2570 FLOAT_BINOP(mul)
       
  2571 FLOAT_BINOP(div)
       
  2572 #undef FLOAT_BINOP
       
  2573 
       
  2574 /* ternary operations */
       
  2575 #define FLOAT_TERNOP(name1, name2)                                        \
       
  2576 uint64_t do_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1,  \
       
  2577                                            uint64_t fdt2)                 \
       
  2578 {                                                                         \
       
  2579     fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status);          \
       
  2580     return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status);          \
       
  2581 }                                                                         \
       
  2582                                                                           \
       
  2583 uint32_t do_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1,  \
       
  2584                                            uint32_t fst2)                 \
       
  2585 {                                                                         \
       
  2586     fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \
       
  2587     return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \
       
  2588 }                                                                         \
       
  2589                                                                           \
       
  2590 uint64_t do_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
       
  2591                                             uint64_t fdt2)                \
       
  2592 {                                                                         \
       
  2593     uint32_t fst0 = fdt0 & 0XFFFFFFFF;                                    \
       
  2594     uint32_t fsth0 = fdt0 >> 32;                                          \
       
  2595     uint32_t fst1 = fdt1 & 0XFFFFFFFF;                                    \
       
  2596     uint32_t fsth1 = fdt1 >> 32;                                          \
       
  2597     uint32_t fst2 = fdt2 & 0XFFFFFFFF;                                    \
       
  2598     uint32_t fsth2 = fdt2 >> 32;                                          \
       
  2599                                                                           \
       
  2600     fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \
       
  2601     fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status);       \
       
  2602     fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \
       
  2603     fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status);       \
       
  2604     return ((uint64_t)fsth2 << 32) | fst2;                                \
       
  2605 }
       
  2606 
       
  2607 FLOAT_TERNOP(mul, add)
       
  2608 FLOAT_TERNOP(mul, sub)
       
  2609 #undef FLOAT_TERNOP
       
  2610 
       
  2611 /* negated ternary operations */
       
  2612 #define FLOAT_NTERNOP(name1, name2)                                       \
       
  2613 uint64_t do_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
       
  2614                                            uint64_t fdt2)                 \
       
  2615 {                                                                         \
       
  2616     fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status);          \
       
  2617     fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status);          \
       
  2618     return float64_chs(fdt2);                                             \
       
  2619 }                                                                         \
       
  2620                                                                           \
       
  2621 uint32_t do_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
       
  2622                                            uint32_t fst2)                 \
       
  2623 {                                                                         \
       
  2624     fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \
       
  2625     fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \
       
  2626     return float32_chs(fst2);                                             \
       
  2627 }                                                                         \
       
  2628                                                                           \
       
  2629 uint64_t do_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
       
  2630                                            uint64_t fdt2)                 \
       
  2631 {                                                                         \
       
  2632     uint32_t fst0 = fdt0 & 0XFFFFFFFF;                                    \
       
  2633     uint32_t fsth0 = fdt0 >> 32;                                          \
       
  2634     uint32_t fst1 = fdt1 & 0XFFFFFFFF;                                    \
       
  2635     uint32_t fsth1 = fdt1 >> 32;                                          \
       
  2636     uint32_t fst2 = fdt2 & 0XFFFFFFFF;                                    \
       
  2637     uint32_t fsth2 = fdt2 >> 32;                                          \
       
  2638                                                                           \
       
  2639     fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \
       
  2640     fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status);       \
       
  2641     fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \
       
  2642     fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status);       \
       
  2643     fst2 = float32_chs(fst2);                                             \
       
  2644     fsth2 = float32_chs(fsth2);                                           \
       
  2645     return ((uint64_t)fsth2 << 32) | fst2;                                \
       
  2646 }
       
  2647 
       
  2648 FLOAT_NTERNOP(mul, add)
       
  2649 FLOAT_NTERNOP(mul, sub)
       
  2650 #undef FLOAT_NTERNOP
       
  2651 
       
  2652 /* MIPS specific binary operations */
       
  2653 uint64_t do_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
       
  2654 {
       
  2655     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2656     fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
       
  2657     fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
       
  2658     update_fcr31();
       
  2659     return fdt2;
       
  2660 }
       
  2661 
       
  2662 uint32_t do_float_recip2_s(uint32_t fst0, uint32_t fst2)
       
  2663 {
       
  2664     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2665     fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
       
  2666     fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
       
  2667     update_fcr31();
       
  2668     return fst2;
       
  2669 }
       
  2670 
       
  2671 uint64_t do_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
       
  2672 {
       
  2673     uint32_t fst0 = fdt0 & 0XFFFFFFFF;
       
  2674     uint32_t fsth0 = fdt0 >> 32;
       
  2675     uint32_t fst2 = fdt2 & 0XFFFFFFFF;
       
  2676     uint32_t fsth2 = fdt2 >> 32;
       
  2677 
       
  2678     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2679     fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
       
  2680     fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
       
  2681     fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
       
  2682     fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
       
  2683     update_fcr31();
       
  2684     return ((uint64_t)fsth2 << 32) | fst2;
       
  2685 }
       
  2686 
       
  2687 uint64_t do_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
       
  2688 {
       
  2689     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2690     fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
       
  2691     fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
       
  2692     fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
       
  2693     update_fcr31();
       
  2694     return fdt2;
       
  2695 }
       
  2696 
       
  2697 uint32_t do_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
       
  2698 {
       
  2699     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2700     fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
       
  2701     fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
       
  2702     fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
       
  2703     update_fcr31();
       
  2704     return fst2;
       
  2705 }
       
  2706 
       
  2707 uint64_t do_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
       
  2708 {
       
  2709     uint32_t fst0 = fdt0 & 0XFFFFFFFF;
       
  2710     uint32_t fsth0 = fdt0 >> 32;
       
  2711     uint32_t fst2 = fdt2 & 0XFFFFFFFF;
       
  2712     uint32_t fsth2 = fdt2 >> 32;
       
  2713 
       
  2714     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2715     fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
       
  2716     fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
       
  2717     fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
       
  2718     fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
       
  2719     fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
       
  2720     fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
       
  2721     update_fcr31();
       
  2722     return ((uint64_t)fsth2 << 32) | fst2;
       
  2723 }
       
  2724 
       
  2725 uint64_t do_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
       
  2726 {
       
  2727     uint32_t fst0 = fdt0 & 0XFFFFFFFF;
       
  2728     uint32_t fsth0 = fdt0 >> 32;
       
  2729     uint32_t fst1 = fdt1 & 0XFFFFFFFF;
       
  2730     uint32_t fsth1 = fdt1 >> 32;
       
  2731     uint32_t fst2;
       
  2732     uint32_t fsth2;
       
  2733 
       
  2734     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2735     fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
       
  2736     fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
       
  2737     update_fcr31();
       
  2738     return ((uint64_t)fsth2 << 32) | fst2;
       
  2739 }
       
  2740 
       
  2741 uint64_t do_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
       
  2742 {
       
  2743     uint32_t fst0 = fdt0 & 0XFFFFFFFF;
       
  2744     uint32_t fsth0 = fdt0 >> 32;
       
  2745     uint32_t fst1 = fdt1 & 0XFFFFFFFF;
       
  2746     uint32_t fsth1 = fdt1 >> 32;
       
  2747     uint32_t fst2;
       
  2748     uint32_t fsth2;
       
  2749 
       
  2750     set_float_exception_flags(0, &env->active_fpu.fp_status);
       
  2751     fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
       
  2752     fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
       
  2753     update_fcr31();
       
  2754     return ((uint64_t)fsth2 << 32) | fst2;
       
  2755 }
       
  2756 
       
  2757 /* compare operations */
       
  2758 #define FOP_COND_D(op, cond)                                   \
       
  2759 void do_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc)    \
       
  2760 {                                                              \
       
  2761     int c = cond;                                              \
       
  2762     update_fcr31();                                            \
       
  2763     if (c)                                                     \
       
  2764         SET_FP_COND(cc, env->active_fpu);                      \
       
  2765     else                                                       \
       
  2766         CLEAR_FP_COND(cc, env->active_fpu);                    \
       
  2767 }                                                              \
       
  2768 void do_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
       
  2769 {                                                              \
       
  2770     int c;                                                     \
       
  2771     fdt0 = float64_abs(fdt0);                                  \
       
  2772     fdt1 = float64_abs(fdt1);                                  \
       
  2773     c = cond;                                                  \
       
  2774     update_fcr31();                                            \
       
  2775     if (c)                                                     \
       
  2776         SET_FP_COND(cc, env->active_fpu);                      \
       
  2777     else                                                       \
       
  2778         CLEAR_FP_COND(cc, env->active_fpu);                    \
       
  2779 }
       
  2780 
       
  2781 static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
       
  2782 {
       
  2783     if (float64_is_signaling_nan(a) ||
       
  2784         float64_is_signaling_nan(b) ||
       
  2785         (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
       
  2786         float_raise(float_flag_invalid, status);
       
  2787         return 1;
       
  2788     } else if (float64_is_nan(a) || float64_is_nan(b)) {
       
  2789         return 1;
       
  2790     } else {
       
  2791         return 0;
       
  2792     }
       
  2793 }
       
  2794 
       
  2795 /* NOTE: the comma operator will make "cond" to eval to false,
       
  2796  * but float*_is_unordered() is still called. */
       
  2797 FOP_COND_D(f,   (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
       
  2798 FOP_COND_D(un,  float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
       
  2799 FOP_COND_D(eq,  !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2800 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2801 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2802 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2803 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2804 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2805 /* NOTE: the comma operator will make "cond" to eval to false,
       
  2806  * but float*_is_unordered() is still called. */
       
  2807 FOP_COND_D(sf,  (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
       
  2808 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
       
  2809 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2810 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2811 FOP_COND_D(lt,  !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2812 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2813 FOP_COND_D(le,  !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2814 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
       
  2815 
       
  2816 #define FOP_COND_S(op, cond)                                   \
       
  2817 void do_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc)    \
       
  2818 {                                                              \
       
  2819     int c = cond;                                              \
       
  2820     update_fcr31();                                            \
       
  2821     if (c)                                                     \
       
  2822         SET_FP_COND(cc, env->active_fpu);                      \
       
  2823     else                                                       \
       
  2824         CLEAR_FP_COND(cc, env->active_fpu);                    \
       
  2825 }                                                              \
       
  2826 void do_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
       
  2827 {                                                              \
       
  2828     int c;                                                     \
       
  2829     fst0 = float32_abs(fst0);                                  \
       
  2830     fst1 = float32_abs(fst1);                                  \
       
  2831     c = cond;                                                  \
       
  2832     update_fcr31();                                            \
       
  2833     if (c)                                                     \
       
  2834         SET_FP_COND(cc, env->active_fpu);                      \
       
  2835     else                                                       \
       
  2836         CLEAR_FP_COND(cc, env->active_fpu);                    \
       
  2837 }
       
  2838 
       
  2839 static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
       
  2840 {
       
  2841     if (float32_is_signaling_nan(a) ||
       
  2842         float32_is_signaling_nan(b) ||
       
  2843         (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
       
  2844         float_raise(float_flag_invalid, status);
       
  2845         return 1;
       
  2846     } else if (float32_is_nan(a) || float32_is_nan(b)) {
       
  2847         return 1;
       
  2848     } else {
       
  2849         return 0;
       
  2850     }
       
  2851 }
       
  2852 
       
  2853 /* NOTE: the comma operator will make "cond" to eval to false,
       
  2854  * but float*_is_unordered() is still called. */
       
  2855 FOP_COND_S(f,   (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
       
  2856 FOP_COND_S(un,  float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
       
  2857 FOP_COND_S(eq,  !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
       
  2858 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)  || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
       
  2859 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
       
  2860 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)  || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
       
  2861 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
       
  2862 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)  || float32_le(fst0, fst1, &env->active_fpu.fp_status))
       
  2863 /* NOTE: the comma operator will make "cond" to eval to false,
       
  2864  * but float*_is_unordered() is still called. */
       
  2865 FOP_COND_S(sf,  (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
       
  2866 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
       
  2867 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
       
  2868 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)  || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
       
  2869 FOP_COND_S(lt,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
       
  2870 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)  || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
       
  2871 FOP_COND_S(le,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
       
  2872 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)  || float32_le(fst0, fst1, &env->active_fpu.fp_status))
       
  2873 
       
  2874 #define FOP_COND_PS(op, condl, condh)                           \
       
  2875 void do_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc)    \
       
  2876 {                                                               \
       
  2877     uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF);             \
       
  2878     uint32_t fsth0 = float32_abs(fdt0 >> 32);                   \
       
  2879     uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF);             \
       
  2880     uint32_t fsth1 = float32_abs(fdt1 >> 32);                   \
       
  2881     int cl = condl;                                             \
       
  2882     int ch = condh;                                             \
       
  2883                                                                 \
       
  2884     update_fcr31();                                             \
       
  2885     if (cl)                                                     \
       
  2886         SET_FP_COND(cc, env->active_fpu);                       \
       
  2887     else                                                        \
       
  2888         CLEAR_FP_COND(cc, env->active_fpu);                     \
       
  2889     if (ch)                                                     \
       
  2890         SET_FP_COND(cc + 1, env->active_fpu);                   \
       
  2891     else                                                        \
       
  2892         CLEAR_FP_COND(cc + 1, env->active_fpu);                 \
       
  2893 }                                                               \
       
  2894 void do_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
       
  2895 {                                                               \
       
  2896     uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF);             \
       
  2897     uint32_t fsth0 = float32_abs(fdt0 >> 32);                   \
       
  2898     uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF);             \
       
  2899     uint32_t fsth1 = float32_abs(fdt1 >> 32);                   \
       
  2900     int cl = condl;                                             \
       
  2901     int ch = condh;                                             \
       
  2902                                                                 \
       
  2903     update_fcr31();                                             \
       
  2904     if (cl)                                                     \
       
  2905         SET_FP_COND(cc, env->active_fpu);                       \
       
  2906     else                                                        \
       
  2907         CLEAR_FP_COND(cc, env->active_fpu);                     \
       
  2908     if (ch)                                                     \
       
  2909         SET_FP_COND(cc + 1, env->active_fpu);                   \
       
  2910     else                                                        \
       
  2911         CLEAR_FP_COND(cc + 1, env->active_fpu);                 \
       
  2912 }
       
  2913 
       
  2914 /* NOTE: the comma operator will make "cond" to eval to false,
       
  2915  * but float*_is_unordered() is still called. */
       
  2916 FOP_COND_PS(f,   (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
       
  2917                  (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
       
  2918 FOP_COND_PS(un,  float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
       
  2919                  float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
       
  2920 FOP_COND_PS(eq,  !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)   && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
       
  2921                  !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2922 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)    || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
       
  2923                  float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2924 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)   && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
       
  2925                  !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2926 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)    || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
       
  2927                  float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2928 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)   && float32_le(fst0, fst1, &env->active_fpu.fp_status),
       
  2929                  !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2930 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)    || float32_le(fst0, fst1, &env->active_fpu.fp_status),
       
  2931                  float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2932 /* NOTE: the comma operator will make "cond" to eval to false,
       
  2933  * but float*_is_unordered() is still called. */
       
  2934 FOP_COND_PS(sf,  (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
       
  2935                  (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
       
  2936 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
       
  2937                  float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
       
  2938 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)   && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
       
  2939                  !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2940 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)    || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
       
  2941                  float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2942 FOP_COND_PS(lt,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)   && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
       
  2943                  !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2944 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)    || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
       
  2945                  float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2946 FOP_COND_PS(le,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)   && float32_le(fst0, fst1, &env->active_fpu.fp_status),
       
  2947                  !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
       
  2948 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)    || float32_le(fst0, fst1, &env->active_fpu.fp_status),
       
  2949                  float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))