|
1 /* blast.c |
|
2 * Copyright (C) 2003 Mark Adler |
|
3 * For conditions of distribution and use, see copyright notice in blast.h |
|
4 * version 1.1, 16 Feb 2003 |
|
5 * |
|
6 * blast.c decompresses data compressed by the PKWare Compression Library. |
|
7 * This function provides functionality similar to the explode() function of |
|
8 * the PKWare library, hence the name "blast". |
|
9 * |
|
10 * This decompressor is based on the excellent format description provided by |
|
11 * Ben Rudiak-Gould in comp.compression on August 13, 2001. Interestingly, the |
|
12 * example Ben provided in the post is incorrect. The distance 110001 should |
|
13 * instead be 111000. When corrected, the example byte stream becomes: |
|
14 * |
|
15 * 00 04 82 24 25 8f 80 7f |
|
16 * |
|
17 * which decompresses to "AIAIAIAIAIAIA" (without the quotes). |
|
18 */ |
|
19 |
|
20 /* |
|
21 * Change history: |
|
22 * |
|
23 * 1.0 12 Feb 2003 - First version |
|
24 * 1.1 16 Feb 2003 - Fixed distance check for > 4 GB uncompressed data |
|
25 */ |
|
26 |
|
27 #include <setjmp.h> /* for setjmp(), longjmp(), and jmp_buf */ |
|
28 #include "blast.h" /* prototype for blast() */ |
|
29 |
|
30 #define local static /* for local function definitions */ |
|
31 #define MAXBITS 13 /* maximum code length */ |
|
32 #define MAXWIN 4096 /* maximum window size */ |
|
33 |
|
34 /* input and output state */ |
|
35 struct state { |
|
36 /* input state */ |
|
37 blast_in infun; /* input function provided by user */ |
|
38 void *inhow; /* opaque information passed to infun() */ |
|
39 unsigned char *in; /* next input location */ |
|
40 unsigned left; /* available input at in */ |
|
41 int bitbuf; /* bit buffer */ |
|
42 int bitcnt; /* number of bits in bit buffer */ |
|
43 |
|
44 /* input limit error return state for bits() and decode() */ |
|
45 jmp_buf env; |
|
46 |
|
47 /* output state */ |
|
48 blast_out outfun; /* output function provided by user */ |
|
49 void *outhow; /* opaque information passed to outfun() */ |
|
50 unsigned next; /* index of next write location in out[] */ |
|
51 int first; /* true to check distances (for first 4K) */ |
|
52 unsigned char out[MAXWIN]; /* output buffer and sliding window */ |
|
53 }; |
|
54 |
|
55 /* |
|
56 * Return need bits from the input stream. This always leaves less than |
|
57 * eight bits in the buffer. bits() works properly for need == 0. |
|
58 * |
|
59 * Format notes: |
|
60 * |
|
61 * - Bits are stored in bytes from the least significant bit to the most |
|
62 * significant bit. Therefore bits are dropped from the bottom of the bit |
|
63 * buffer, using shift right, and new bytes are appended to the top of the |
|
64 * bit buffer, using shift left. |
|
65 */ |
|
66 local int bits(struct state *s, int need) |
|
67 { |
|
68 int val; /* bit accumulator */ |
|
69 |
|
70 /* load at least need bits into val */ |
|
71 val = s->bitbuf; |
|
72 while (s->bitcnt < need) { |
|
73 if (s->left == 0) { |
|
74 s->left = s->infun(s->inhow, &(s->in)); |
|
75 if (s->left == 0) longjmp(s->env, 1); /* out of input */ |
|
76 } |
|
77 val |= (int)(*(s->in)++) << s->bitcnt; /* load eight bits */ |
|
78 s->left--; |
|
79 s->bitcnt += 8; |
|
80 } |
|
81 |
|
82 /* drop need bits and update buffer, always zero to seven bits left */ |
|
83 s->bitbuf = val >> need; |
|
84 s->bitcnt -= need; |
|
85 |
|
86 /* return need bits, zeroing the bits above that */ |
|
87 return val & ((1 << need) - 1); |
|
88 } |
|
89 |
|
90 /* |
|
91 * Huffman code decoding tables. count[1..MAXBITS] is the number of symbols of |
|
92 * each length, which for a canonical code are stepped through in order. |
|
93 * symbol[] are the symbol values in canonical order, where the number of |
|
94 * entries is the sum of the counts in count[]. The decoding process can be |
|
95 * seen in the function decode() below. |
|
96 */ |
|
97 struct huffman { |
|
98 short *count; /* number of symbols of each length */ |
|
99 short *symbol; /* canonically ordered symbols */ |
|
100 }; |
|
101 |
|
102 /* |
|
103 * Decode a code from the stream s using huffman table h. Return the symbol or |
|
104 * a negative value if there is an error. If all of the lengths are zero, i.e. |
|
105 * an empty code, or if the code is incomplete and an invalid code is received, |
|
106 * then -9 is returned after reading MAXBITS bits. |
|
107 * |
|
108 * Format notes: |
|
109 * |
|
110 * - The codes as stored in the compressed data are bit-reversed relative to |
|
111 * a simple integer ordering of codes of the same lengths. Hence below the |
|
112 * bits are pulled from the compressed data one at a time and used to |
|
113 * build the code value reversed from what is in the stream in order to |
|
114 * permit simple integer comparisons for decoding. |
|
115 * |
|
116 * - The first code for the shortest length is all ones. Subsequent codes of |
|
117 * the same length are simply integer decrements of the previous code. When |
|
118 * moving up a length, a one bit is appended to the code. For a complete |
|
119 * code, the last code of the longest length will be all zeros. To support |
|
120 * this ordering, the bits pulled during decoding are inverted to apply the |
|
121 * more "natural" ordering starting with all zeros and incrementing. |
|
122 */ |
|
123 local int decode(struct state *s, struct huffman *h) |
|
124 { |
|
125 int len; /* current number of bits in code */ |
|
126 int code; /* len bits being decoded */ |
|
127 int first; /* first code of length len */ |
|
128 int count; /* number of codes of length len */ |
|
129 int index; /* index of first code of length len in symbol table */ |
|
130 int bitbuf; /* bits from stream */ |
|
131 int left; /* bits left in next or left to process */ |
|
132 short *next; /* next number of codes */ |
|
133 |
|
134 bitbuf = s->bitbuf; |
|
135 left = s->bitcnt; |
|
136 code = first = index = 0; |
|
137 len = 1; |
|
138 next = h->count + 1; |
|
139 while (1) { |
|
140 while (left--) { |
|
141 code |= (bitbuf & 1) ^ 1; /* invert code */ |
|
142 bitbuf >>= 1; |
|
143 count = *next++; |
|
144 if (code < first + count) { /* if length len, return symbol */ |
|
145 s->bitbuf = bitbuf; |
|
146 s->bitcnt = (s->bitcnt - len) & 7; |
|
147 return h->symbol[index + (code - first)]; |
|
148 } |
|
149 index += count; /* else update for next length */ |
|
150 first += count; |
|
151 first <<= 1; |
|
152 code <<= 1; |
|
153 len++; |
|
154 } |
|
155 left = (MAXBITS+1) - len; |
|
156 if (left == 0) break; |
|
157 if (s->left == 0) { |
|
158 s->left = s->infun(s->inhow, &(s->in)); |
|
159 if (s->left == 0) longjmp(s->env, 1); /* out of input */ |
|
160 } |
|
161 bitbuf = *(s->in)++; |
|
162 s->left--; |
|
163 if (left > 8) left = 8; |
|
164 } |
|
165 return -9; /* ran out of codes */ |
|
166 } |
|
167 |
|
168 /* |
|
169 * Given a list of repeated code lengths rep[0..n-1], where each byte is a |
|
170 * count (high four bits + 1) and a code length (low four bits), generate the |
|
171 * list of code lengths. This compaction reduces the size of the object code. |
|
172 * Then given the list of code lengths length[0..n-1] representing a canonical |
|
173 * Huffman code for n symbols, construct the tables required to decode those |
|
174 * codes. Those tables are the number of codes of each length, and the symbols |
|
175 * sorted by length, retaining their original order within each length. The |
|
176 * return value is zero for a complete code set, negative for an over- |
|
177 * subscribed code set, and positive for an incomplete code set. The tables |
|
178 * can be used if the return value is zero or positive, but they cannot be used |
|
179 * if the return value is negative. If the return value is zero, it is not |
|
180 * possible for decode() using that table to return an error--any stream of |
|
181 * enough bits will resolve to a symbol. If the return value is positive, then |
|
182 * it is possible for decode() using that table to return an error for received |
|
183 * codes past the end of the incomplete lengths. |
|
184 */ |
|
185 local int construct(struct huffman *h, const unsigned char *rep, int n) |
|
186 { |
|
187 int symbol; /* current symbol when stepping through length[] */ |
|
188 int len; /* current length when stepping through h->count[] */ |
|
189 int left; /* number of possible codes left of current length */ |
|
190 short offs[MAXBITS+1]; /* offsets in symbol table for each length */ |
|
191 short length[256]; /* code lengths */ |
|
192 |
|
193 /* convert compact repeat counts into symbol bit length list */ |
|
194 symbol = 0; |
|
195 do { |
|
196 len = *rep++; |
|
197 left = (len >> 4) + 1; |
|
198 len &= 15; |
|
199 do { |
|
200 length[symbol++] = len; |
|
201 } while (--left); |
|
202 } while (--n); |
|
203 n = symbol; |
|
204 |
|
205 /* count number of codes of each length */ |
|
206 for (len = 0; len <= MAXBITS; len++) |
|
207 h->count[len] = 0; |
|
208 for (symbol = 0; symbol < n; symbol++) |
|
209 (h->count[length[symbol]])++; /* assumes lengths are within bounds */ |
|
210 if (h->count[0] == n) /* no codes! */ |
|
211 return 0; /* complete, but decode() will fail */ |
|
212 |
|
213 /* check for an over-subscribed or incomplete set of lengths */ |
|
214 left = 1; /* one possible code of zero length */ |
|
215 for (len = 1; len <= MAXBITS; len++) { |
|
216 left <<= 1; /* one more bit, double codes left */ |
|
217 left -= h->count[len]; /* deduct count from possible codes */ |
|
218 if (left < 0) return left; /* over-subscribed--return negative */ |
|
219 } /* left > 0 means incomplete */ |
|
220 |
|
221 /* generate offsets into symbol table for each length for sorting */ |
|
222 offs[1] = 0; |
|
223 for (len = 1; len < MAXBITS; len++) |
|
224 offs[len + 1] = offs[len] + h->count[len]; |
|
225 |
|
226 /* |
|
227 * put symbols in table sorted by length, by symbol order within each |
|
228 * length |
|
229 */ |
|
230 for (symbol = 0; symbol < n; symbol++) |
|
231 if (length[symbol] != 0) |
|
232 h->symbol[offs[length[symbol]]++] = symbol; |
|
233 |
|
234 /* return zero for complete set, positive for incomplete set */ |
|
235 return left; |
|
236 } |
|
237 |
|
238 /* |
|
239 * Decode PKWare Compression Library stream. |
|
240 * |
|
241 * Format notes: |
|
242 * |
|
243 * - First byte is 0 if literals are uncoded or 1 if they are coded. Second |
|
244 * byte is 4, 5, or 6 for the number of extra bits in the distance code. |
|
245 * This is the base-2 logarithm of the dictionary size minus six. |
|
246 * |
|
247 * - Compressed data is a combination of literals and length/distance pairs |
|
248 * terminated by an end code. Literals are either Huffman coded or |
|
249 * uncoded bytes. A length/distance pair is a coded length followed by a |
|
250 * coded distance to represent a string that occurs earlier in the |
|
251 * uncompressed data that occurs again at the current location. |
|
252 * |
|
253 * - A bit preceding a literal or length/distance pair indicates which comes |
|
254 * next, 0 for literals, 1 for length/distance. |
|
255 * |
|
256 * - If literals are uncoded, then the next eight bits are the literal, in the |
|
257 * normal bit order in th stream, i.e. no bit-reversal is needed. Similarly, |
|
258 * no bit reversal is needed for either the length extra bits or the distance |
|
259 * extra bits. |
|
260 * |
|
261 * - Literal bytes are simply written to the output. A length/distance pair is |
|
262 * an instruction to copy previously uncompressed bytes to the output. The |
|
263 * copy is from distance bytes back in the output stream, copying for length |
|
264 * bytes. |
|
265 * |
|
266 * - Distances pointing before the beginning of the output data are not |
|
267 * permitted. |
|
268 * |
|
269 * - Overlapped copies, where the length is greater than the distance, are |
|
270 * allowed and common. For example, a distance of one and a length of 518 |
|
271 * simply copies the last byte 518 times. A distance of four and a length of |
|
272 * twelve copies the last four bytes three times. A simple forward copy |
|
273 * ignoring whether the length is greater than the distance or not implements |
|
274 * this correctly. |
|
275 */ |
|
276 local int decomp(struct state *s) |
|
277 { |
|
278 int lit; /* true if literals are coded */ |
|
279 int dict; /* log2(dictionary size) - 6 */ |
|
280 int symbol; /* decoded symbol, extra bits for distance */ |
|
281 int len; /* length for copy */ |
|
282 int dist; /* distance for copy */ |
|
283 int copy; /* copy counter */ |
|
284 unsigned char *from, *to; /* copy pointers */ |
|
285 static int virgin = 1; /* build tables once */ |
|
286 static short litcnt[MAXBITS+1], litsym[256]; /* litcode memory */ |
|
287 static short lencnt[MAXBITS+1], lensym[16]; /* lencode memory */ |
|
288 static short distcnt[MAXBITS+1], distsym[64]; /* distcode memory */ |
|
289 static struct huffman litcode = {litcnt, litsym}; /* length code */ |
|
290 static struct huffman lencode = {lencnt, lensym}; /* length code */ |
|
291 static struct huffman distcode = {distcnt, distsym};/* distance code */ |
|
292 /* bit lengths of literal codes */ |
|
293 static const unsigned char litlen[] = { |
|
294 11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8, |
|
295 9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5, |
|
296 7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12, |
|
297 8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27, |
|
298 44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45, |
|
299 44, 173}; |
|
300 /* bit lengths of length codes 0..15 */ |
|
301 static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23}; |
|
302 /* bit lengths of distance codes 0..63 */ |
|
303 static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248}; |
|
304 static const short base[16] = { /* base for length codes */ |
|
305 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264}; |
|
306 static const char extra[16] = { /* extra bits for length codes */ |
|
307 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8}; |
|
308 |
|
309 /* set up decoding tables (once--might not be thread-safe) */ |
|
310 if (virgin) { |
|
311 construct(&litcode, litlen, sizeof(litlen)); |
|
312 construct(&lencode, lenlen, sizeof(lenlen)); |
|
313 construct(&distcode, distlen, sizeof(distlen)); |
|
314 virgin = 0; |
|
315 } |
|
316 |
|
317 /* read header */ |
|
318 lit = bits(s, 8); |
|
319 if (lit > 1) return -1; |
|
320 dict = bits(s, 8); |
|
321 if (dict < 4 || dict > 6) return -2; |
|
322 |
|
323 /* decode literals and length/distance pairs */ |
|
324 do { |
|
325 if (bits(s, 1)) { |
|
326 /* get length */ |
|
327 symbol = decode(s, &lencode); |
|
328 len = base[symbol] + bits(s, extra[symbol]); |
|
329 if (len == 519) break; /* end code */ |
|
330 |
|
331 /* get distance */ |
|
332 symbol = len == 2 ? 2 : dict; |
|
333 dist = decode(s, &distcode) << symbol; |
|
334 dist += bits(s, symbol); |
|
335 dist++; |
|
336 if (s->first && dist > s->next) |
|
337 return -3; /* distance too far back */ |
|
338 |
|
339 /* copy length bytes from distance bytes back */ |
|
340 do { |
|
341 to = s->out + s->next; |
|
342 from = to - dist; |
|
343 copy = MAXWIN; |
|
344 if (s->next < dist) { |
|
345 from += copy; |
|
346 copy = dist; |
|
347 } |
|
348 copy -= s->next; |
|
349 if (copy > len) copy = len; |
|
350 len -= copy; |
|
351 s->next += copy; |
|
352 do { |
|
353 *to++ = *from++; |
|
354 } while (--copy); |
|
355 if (s->next == MAXWIN) { |
|
356 if (s->outfun(s->outhow, s->out, s->next)) return 1; |
|
357 s->next = 0; |
|
358 s->first = 0; |
|
359 } |
|
360 } while (len != 0); |
|
361 } |
|
362 else { |
|
363 /* get literal and write it */ |
|
364 symbol = lit ? decode(s, &litcode) : bits(s, 8); |
|
365 s->out[s->next++] = symbol; |
|
366 if (s->next == MAXWIN) { |
|
367 if (s->outfun(s->outhow, s->out, s->next)) return 1; |
|
368 s->next = 0; |
|
369 s->first = 0; |
|
370 } |
|
371 } |
|
372 } while (1); |
|
373 return 0; |
|
374 } |
|
375 |
|
376 /* See comments in blast.h */ |
|
377 int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow) |
|
378 { |
|
379 struct state s; /* input/output state */ |
|
380 int err; /* return value */ |
|
381 |
|
382 /* initialize input state */ |
|
383 s.infun = infun; |
|
384 s.inhow = inhow; |
|
385 s.left = 0; |
|
386 s.bitbuf = 0; |
|
387 s.bitcnt = 0; |
|
388 |
|
389 /* initialize output state */ |
|
390 s.outfun = outfun; |
|
391 s.outhow = outhow; |
|
392 s.next = 0; |
|
393 s.first = 1; |
|
394 |
|
395 /* return if bits() or decode() tries to read past available input */ |
|
396 if (setjmp(s.env) != 0) /* if came back here via longjmp(), */ |
|
397 err = 2; /* then skip decomp(), return error */ |
|
398 else |
|
399 err = decomp(&s); /* decompress */ |
|
400 |
|
401 /* write any leftover output and update the error code if needed */ |
|
402 if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0) |
|
403 err = 1; |
|
404 return err; |
|
405 } |
|
406 |
|
407 #ifdef TEST |
|
408 /* Example of how to use blast() */ |
|
409 #include <stdio.h> |
|
410 #include <stdlib.h> |
|
411 |
|
412 #define CHUNK 16384 |
|
413 |
|
414 local unsigned inf(void *how, unsigned char **buf) |
|
415 { |
|
416 static unsigned char hold[CHUNK]; |
|
417 |
|
418 *buf = hold; |
|
419 return fread(hold, 1, CHUNK, (FILE *)how); |
|
420 } |
|
421 |
|
422 local int outf(void *how, unsigned char *buf, unsigned len) |
|
423 { |
|
424 return fwrite(buf, 1, len, (FILE *)how) != len; |
|
425 } |
|
426 |
|
427 /* Decompress a PKWare Compression Library stream from stdin to stdout */ |
|
428 int main(void) |
|
429 { |
|
430 int ret, n; |
|
431 |
|
432 /* decompress to stdout */ |
|
433 ret = blast(inf, stdin, outf, stdout); |
|
434 if (ret != 0) fprintf(stderr, "blast error: %d\n", ret); |
|
435 |
|
436 /* see if there are any leftover bytes */ |
|
437 n = 0; |
|
438 while (getchar() != EOF) n++; |
|
439 if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n); |
|
440 |
|
441 /* return blast() error code */ |
|
442 return ret; |
|
443 } |
|
444 #endif |