--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Doc/distutils/builtdist.rst Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,446 @@
+.. _built-dist:
+
+****************************
+Creating Built Distributions
+****************************
+
+A "built distribution" is what you're probably used to thinking of either as a
+"binary package" or an "installer" (depending on your background). It's not
+necessarily binary, though, because it might contain only Python source code
+and/or byte-code; and we don't call it a package, because that word is already
+spoken for in Python. (And "installer" is a term specific to the world of
+mainstream desktop systems.)
+
+A built distribution is how you make life as easy as possible for installers of
+your module distribution: for users of RPM-based Linux systems, it's a binary
+RPM; for Windows users, it's an executable installer; for Debian-based Linux
+users, it's a Debian package; and so forth. Obviously, no one person will be
+able to create built distributions for every platform under the sun, so the
+Distutils are designed to enable module developers to concentrate on their
+specialty---writing code and creating source distributions---while an
+intermediary species called *packagers* springs up to turn source distributions
+into built distributions for as many platforms as there are packagers.
+
+Of course, the module developer could be his own packager; or the packager could
+be a volunteer "out there" somewhere who has access to a platform which the
+original developer does not; or it could be software periodically grabbing new
+source distributions and turning them into built distributions for as many
+platforms as the software has access to. Regardless of who they are, a packager
+uses the setup script and the :command:`bdist` command family to generate built
+distributions.
+
+As a simple example, if I run the following command in the Distutils source
+tree::
+
+ python setup.py bdist
+
+then the Distutils builds my module distribution (the Distutils itself in this
+case), does a "fake" installation (also in the :file:`build` directory), and
+creates the default type of built distribution for my platform. The default
+format for built distributions is a "dumb" tar file on Unix, and a simple
+executable installer on Windows. (That tar file is considered "dumb" because it
+has to be unpacked in a specific location to work.)
+
+Thus, the above command on a Unix system creates
+:file:`Distutils-1.0.{plat}.tar.gz`; unpacking this tarball from the right place
+installs the Distutils just as though you had downloaded the source distribution
+and run ``python setup.py install``. (The "right place" is either the root of
+the filesystem or Python's :file:`{prefix}` directory, depending on the options
+given to the :command:`bdist_dumb` command; the default is to make dumb
+distributions relative to :file:`{prefix}`.)
+
+Obviously, for pure Python distributions, this isn't any simpler than just
+running ``python setup.py install``\ ---but for non-pure distributions, which
+include extensions that would need to be compiled, it can mean the difference
+between someone being able to use your extensions or not. And creating "smart"
+built distributions, such as an RPM package or an executable installer for
+Windows, is far more convenient for users even if your distribution doesn't
+include any extensions.
+
+The :command:`bdist` command has a :option:`--formats` option, similar to the
+:command:`sdist` command, which you can use to select the types of built
+distribution to generate: for example, ::
+
+ python setup.py bdist --format=zip
+
+would, when run on a Unix system, create :file:`Distutils-1.0.{plat}.zip`\
+---again, this archive would be unpacked from the root directory to install the
+Distutils.
+
+The available formats for built distributions are:
+
++-------------+------------------------------+---------+
+| Format | Description | Notes |
++=============+==============================+=========+
+| ``gztar`` | gzipped tar file | (1),(3) |
+| | (:file:`.tar.gz`) | |
++-------------+------------------------------+---------+
+| ``ztar`` | compressed tar file | \(3) |
+| | (:file:`.tar.Z`) | |
++-------------+------------------------------+---------+
+| ``tar`` | tar file (:file:`.tar`) | \(3) |
++-------------+------------------------------+---------+
+| ``zip`` | zip file (:file:`.zip`) | \(4) |
++-------------+------------------------------+---------+
+| ``rpm`` | RPM | \(5) |
++-------------+------------------------------+---------+
+| ``pkgtool`` | Solaris :program:`pkgtool` | |
++-------------+------------------------------+---------+
+| ``sdux`` | HP-UX :program:`swinstall` | |
++-------------+------------------------------+---------+
+| ``rpm`` | RPM | \(5) |
++-------------+------------------------------+---------+
+| ``wininst`` | self-extracting ZIP file for | (2),(4) |
+| | Windows | |
++-------------+------------------------------+---------+
+
+Notes:
+
+(1)
+ default on Unix
+
+(2)
+ default on Windows
+
+ **\*\*** to-do! **\*\***
+
+(3)
+ requires external utilities: :program:`tar` and possibly one of :program:`gzip`,
+ :program:`bzip2`, or :program:`compress`
+
+(4)
+ requires either external :program:`zip` utility or :mod:`zipfile` module (part
+ of the standard Python library since Python 1.6)
+
+(5)
+ requires external :program:`rpm` utility, version 3.0.4 or better (use ``rpm
+ --version`` to find out which version you have)
+
+You don't have to use the :command:`bdist` command with the :option:`--formats`
+option; you can also use the command that directly implements the format you're
+interested in. Some of these :command:`bdist` "sub-commands" actually generate
+several similar formats; for instance, the :command:`bdist_dumb` command
+generates all the "dumb" archive formats (``tar``, ``ztar``, ``gztar``, and
+``zip``), and :command:`bdist_rpm` generates both binary and source RPMs. The
+:command:`bdist` sub-commands, and the formats generated by each, are:
+
++--------------------------+-----------------------+
+| Command | Formats |
++==========================+=======================+
+| :command:`bdist_dumb` | tar, ztar, gztar, zip |
++--------------------------+-----------------------+
+| :command:`bdist_rpm` | rpm, srpm |
++--------------------------+-----------------------+
+| :command:`bdist_wininst` | wininst |
++--------------------------+-----------------------+
+
+The following sections give details on the individual :command:`bdist_\*`
+commands.
+
+
+.. _creating-dumb:
+
+Creating dumb built distributions
+=================================
+
+**\*\*** Need to document absolute vs. prefix-relative packages here, but first
+I have to implement it! **\*\***
+
+
+.. _creating-rpms:
+
+Creating RPM packages
+=====================
+
+The RPM format is used by many popular Linux distributions, including Red Hat,
+SuSE, and Mandrake. If one of these (or any of the other RPM-based Linux
+distributions) is your usual environment, creating RPM packages for other users
+of that same distribution is trivial. Depending on the complexity of your module
+distribution and differences between Linux distributions, you may also be able
+to create RPMs that work on different RPM-based distributions.
+
+The usual way to create an RPM of your module distribution is to run the
+:command:`bdist_rpm` command::
+
+ python setup.py bdist_rpm
+
+or the :command:`bdist` command with the :option:`--format` option::
+
+ python setup.py bdist --formats=rpm
+
+The former allows you to specify RPM-specific options; the latter allows you to
+easily specify multiple formats in one run. If you need to do both, you can
+explicitly specify multiple :command:`bdist_\*` commands and their options::
+
+ python setup.py bdist_rpm --packager="John Doe <jdoe@example.org>" \
+ bdist_wininst --target_version="2.0"
+
+Creating RPM packages is driven by a :file:`.spec` file, much as using the
+Distutils is driven by the setup script. To make your life easier, the
+:command:`bdist_rpm` command normally creates a :file:`.spec` file based on the
+information you supply in the setup script, on the command line, and in any
+Distutils configuration files. Various options and sections in the
+:file:`.spec` file are derived from options in the setup script as follows:
+
++------------------------------------------+----------------------------------------------+
+| RPM :file:`.spec` file option or section | Distutils setup script option |
++==========================================+==============================================+
+| Name | :option:`name` |
++------------------------------------------+----------------------------------------------+
+| Summary (in preamble) | :option:`description` |
++------------------------------------------+----------------------------------------------+
+| Version | :option:`version` |
++------------------------------------------+----------------------------------------------+
+| Vendor | :option:`author` and :option:`author_email`, |
+| | or --- & :option:`maintainer` and |
+| | :option:`maintainer_email` |
++------------------------------------------+----------------------------------------------+
+| Copyright | :option:`license` |
++------------------------------------------+----------------------------------------------+
+| Url | :option:`url` |
++------------------------------------------+----------------------------------------------+
+| %description (section) | :option:`long_description` |
++------------------------------------------+----------------------------------------------+
+
+Additionally, there are many options in :file:`.spec` files that don't have
+corresponding options in the setup script. Most of these are handled through
+options to the :command:`bdist_rpm` command as follows:
+
++-------------------------------+-----------------------------+-------------------------+
+| RPM :file:`.spec` file option | :command:`bdist_rpm` option | default value |
+| or section | | |
++===============================+=============================+=========================+
+| Release | :option:`release` | "1" |
++-------------------------------+-----------------------------+-------------------------+
+| Group | :option:`group` | "Development/Libraries" |
++-------------------------------+-----------------------------+-------------------------+
+| Vendor | :option:`vendor` | (see above) |
++-------------------------------+-----------------------------+-------------------------+
+| Packager | :option:`packager` | (none) |
++-------------------------------+-----------------------------+-------------------------+
+| Provides | :option:`provides` | (none) |
++-------------------------------+-----------------------------+-------------------------+
+| Requires | :option:`requires` | (none) |
++-------------------------------+-----------------------------+-------------------------+
+| Conflicts | :option:`conflicts` | (none) |
++-------------------------------+-----------------------------+-------------------------+
+| Obsoletes | :option:`obsoletes` | (none) |
++-------------------------------+-----------------------------+-------------------------+
+| Distribution | :option:`distribution_name` | (none) |
++-------------------------------+-----------------------------+-------------------------+
+| BuildRequires | :option:`build_requires` | (none) |
++-------------------------------+-----------------------------+-------------------------+
+| Icon | :option:`icon` | (none) |
++-------------------------------+-----------------------------+-------------------------+
+
+Obviously, supplying even a few of these options on the command-line would be
+tedious and error-prone, so it's usually best to put them in the setup
+configuration file, :file:`setup.cfg`\ ---see section :ref:`setup-config`. If
+you distribute or package many Python module distributions, you might want to
+put options that apply to all of them in your personal Distutils configuration
+file (:file:`~/.pydistutils.cfg`).
+
+There are three steps to building a binary RPM package, all of which are
+handled automatically by the Distutils:
+
+#. create a :file:`.spec` file, which describes the package (analogous to the
+ Distutils setup script; in fact, much of the information in the setup script
+ winds up in the :file:`.spec` file)
+
+#. create the source RPM
+
+#. create the "binary" RPM (which may or may not contain binary code, depending
+ on whether your module distribution contains Python extensions)
+
+Normally, RPM bundles the last two steps together; when you use the Distutils,
+all three steps are typically bundled together.
+
+If you wish, you can separate these three steps. You can use the
+:option:`--spec-only` option to make :command:`bdist_rpm` just create the
+:file:`.spec` file and exit; in this case, the :file:`.spec` file will be
+written to the "distribution directory"---normally :file:`dist/`, but
+customizable with the :option:`--dist-dir` option. (Normally, the :file:`.spec`
+file winds up deep in the "build tree," in a temporary directory created by
+:command:`bdist_rpm`.)
+
+.. % \XXX{this isn't implemented yet---is it needed?!}
+.. % You can also specify a custom \file{.spec} file with the
+.. % \longprogramopt{spec-file} option; used in conjunction with
+.. % \longprogramopt{spec-only}, this gives you an opportunity to customize
+.. % the \file{.spec} file manually:
+.. %
+.. % \ begin{verbatim}
+.. % > python setup.py bdist_rpm --spec-only
+.. % # ...edit dist/FooBar-1.0.spec
+.. % > python setup.py bdist_rpm --spec-file=dist/FooBar-1.0.spec
+.. % \ end{verbatim}
+.. %
+.. % (Although a better way to do this is probably to override the standard
+.. % \command{bdist\_rpm} command with one that writes whatever else you want
+.. % to the \file{.spec} file.)
+
+
+.. _creating-wininst:
+
+Creating Windows Installers
+===========================
+
+Executable installers are the natural format for binary distributions on
+Windows. They display a nice graphical user interface, display some information
+about the module distribution to be installed taken from the metadata in the
+setup script, let the user select a few options, and start or cancel the
+installation.
+
+Since the metadata is taken from the setup script, creating Windows installers
+is usually as easy as running::
+
+ python setup.py bdist_wininst
+
+or the :command:`bdist` command with the :option:`--formats` option::
+
+ python setup.py bdist --formats=wininst
+
+If you have a pure module distribution (only containing pure Python modules and
+packages), the resulting installer will be version independent and have a name
+like :file:`foo-1.0.win32.exe`. These installers can even be created on Unix
+platforms or Mac OS X.
+
+If you have a non-pure distribution, the extensions can only be created on a
+Windows platform, and will be Python version dependent. The installer filename
+will reflect this and now has the form :file:`foo-1.0.win32-py2.0.exe`. You
+have to create a separate installer for every Python version you want to
+support.
+
+The installer will try to compile pure modules into :term:`bytecode` after installation
+on the target system in normal and optimizing mode. If you don't want this to
+happen for some reason, you can run the :command:`bdist_wininst` command with
+the :option:`--no-target-compile` and/or the :option:`--no-target-optimize`
+option.
+
+By default the installer will display the cool "Python Powered" logo when it is
+run, but you can also supply your own bitmap which must be a Windows
+:file:`.bmp` file with the :option:`--bitmap` option.
+
+The installer will also display a large title on the desktop background window
+when it is run, which is constructed from the name of your distribution and the
+version number. This can be changed to another text by using the
+:option:`--title` option.
+
+The installer file will be written to the "distribution directory" --- normally
+:file:`dist/`, but customizable with the :option:`--dist-dir` option.
+
+.. _cross-compile-windows:
+
+Cross-compiling on Windows
+==========================
+
+Starting with Python 2.6, distutils is capable of cross-compiling between
+Windows platforms. In practice, this means that with the correct tools
+installed, you can use a 32bit version of Windows to create 64bit extensions
+and vice-versa.
+
+To build for an alternate platform, specify the :option:`--plat-name` option
+to the build command. Valid values are currently 'win32', 'win-amd64' and
+'win-ia64'. For example, on a 32bit version of Windows, you could execute::
+
+ python setup.py build --plat-name=win-amd64
+
+to build a 64bit version of your extension. The Windows Installers also
+support this option, so the command::
+
+ python setup.py build --plat-name=win-amd64 bdist_wininst
+
+would create a 64bit installation executable on your 32bit version of Windows.
+
+To cross-compile, you must download the Python source code and cross-compile
+Python itself for the platform you are targetting - it is not possible from a
+binary installtion of Python (as the .lib etc file for other platforms are
+not included.) In practice, this means the user of a 32 bit operating
+system will need to use Visual Studio 2008 to open the
+:file:`PCBuild/PCbuild.sln` solution in the Python source tree and build the
+"x64" configuration of the 'pythoncore' project before cross-compiling
+extensions is possible.
+
+Note that by default, Visual Studio 2008 does not install 64bit compilers or
+tools. You may need to reexecute the Visual Studio setup process and select
+these tools (using Control Panel->[Add/Remove] Programs is a convenient way to
+check or modify your existing install.)
+
+.. _postinstallation-script:
+
+The Postinstallation script
+---------------------------
+
+Starting with Python 2.3, a postinstallation script can be specified which the
+:option:`--install-script` option. The basename of the script must be
+specified, and the script filename must also be listed in the scripts argument
+to the setup function.
+
+This script will be run at installation time on the target system after all the
+files have been copied, with ``argv[1]`` set to :option:`-install`, and again at
+uninstallation time before the files are removed with ``argv[1]`` set to
+:option:`-remove`.
+
+The installation script runs embedded in the windows installer, every output
+(``sys.stdout``, ``sys.stderr``) is redirected into a buffer and will be
+displayed in the GUI after the script has finished.
+
+Some functions especially useful in this context are available as additional
+built-in functions in the installation script.
+
+
+.. function:: directory_created(path)
+ file_created(path)
+
+ These functions should be called when a directory or file is created by the
+ postinstall script at installation time. It will register *path* with the
+ uninstaller, so that it will be removed when the distribution is uninstalled.
+ To be safe, directories are only removed if they are empty.
+
+
+.. function:: get_special_folder_path(csidl_string)
+
+ This function can be used to retrieve special folder locations on Windows like
+ the Start Menu or the Desktop. It returns the full path to the folder.
+ *csidl_string* must be one of the following strings::
+
+ "CSIDL_APPDATA"
+
+ "CSIDL_COMMON_STARTMENU"
+ "CSIDL_STARTMENU"
+
+ "CSIDL_COMMON_DESKTOPDIRECTORY"
+ "CSIDL_DESKTOPDIRECTORY"
+
+ "CSIDL_COMMON_STARTUP"
+ "CSIDL_STARTUP"
+
+ "CSIDL_COMMON_PROGRAMS"
+ "CSIDL_PROGRAMS"
+
+ "CSIDL_FONTS"
+
+ If the folder cannot be retrieved, :exc:`OSError` is raised.
+
+ Which folders are available depends on the exact Windows version, and probably
+ also the configuration. For details refer to Microsoft's documentation of the
+ :cfunc:`SHGetSpecialFolderPath` function.
+
+Vista User Access Control (UAC)
+===============================
+
+Starting with Python 2.6, bdist_wininst supports a :option:`--user-access-control`
+option. The default is 'none' (meaning no UAC handling is done), and other
+valid values are 'auto' (meaning prompt for UAC elevation if Python was
+installed for all users) and 'force' (meaning always prompt for elevation)
+
+.. function:: create_shortcut(target, description, filename[, arguments[, workdir[, iconpath[, iconindex]]]])
+
+ This function creates a shortcut. *target* is the path to the program to be
+ started by the shortcut. *description* is the description of the shortcut.
+ *filename* is the title of the shortcut that the user will see. *arguments*
+ specifies the command line arguments, if any. *workdir* is the working directory
+ for the program. *iconpath* is the file containing the icon for the shortcut,
+ and *iconindex* is the index of the icon in the file *iconpath*. Again, for
+ details consult the Microsoft documentation for the :class:`IShellLink`
+ interface.