symbian-qemu-0.9.1-12/python-2.6.1/Include/objimpl.h
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Include/objimpl.h	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,336 @@
+/* The PyObject_ memory family:  high-level object memory interfaces.
+   See pymem.h for the low-level PyMem_ family.
+*/
+
+#ifndef Py_OBJIMPL_H
+#define Py_OBJIMPL_H
+
+#include "pymem.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* BEWARE:
+
+   Each interface exports both functions and macros.  Extension modules should
+   use the functions, to ensure binary compatibility across Python versions.
+   Because the Python implementation is free to change internal details, and
+   the macros may (or may not) expose details for speed, if you do use the
+   macros you must recompile your extensions with each Python release.
+
+   Never mix calls to PyObject_ memory functions with calls to the platform
+   malloc/realloc/ calloc/free, or with calls to PyMem_.
+*/
+
+/*
+Functions and macros for modules that implement new object types.
+
+ - PyObject_New(type, typeobj) allocates memory for a new object of the given
+   type, and initializes part of it.  'type' must be the C structure type used
+   to represent the object, and 'typeobj' the address of the corresponding
+   type object.  Reference count and type pointer are filled in; the rest of
+   the bytes of the object are *undefined*!  The resulting expression type is
+   'type *'.  The size of the object is determined by the tp_basicsize field
+   of the type object.
+
+ - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
+   object with room for n items.  In addition to the refcount and type pointer
+   fields, this also fills in the ob_size field.
+
+ - PyObject_Del(op) releases the memory allocated for an object.  It does not
+   run a destructor -- it only frees the memory.  PyObject_Free is identical.
+
+ - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
+   allocate memory.  Instead of a 'type' parameter, they take a pointer to a
+   new object (allocated by an arbitrary allocator), and initialize its object
+   header fields.
+
+Note that objects created with PyObject_{New, NewVar} are allocated using the
+specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
+enabled.  In addition, a special debugging allocator is used if PYMALLOC_DEBUG
+is also #defined.
+
+In case a specific form of memory management is needed (for example, if you
+must use the platform malloc heap(s), or shared memory, or C++ local storage or
+operator new), you must first allocate the object with your custom allocator,
+then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
+specific fields:  reference count, type pointer, possibly others.  You should
+be aware that Python no control over these objects because they don't
+cooperate with the Python memory manager.  Such objects may not be eligible
+for automatic garbage collection and you have to make sure that they are
+released accordingly whenever their destructor gets called (cf. the specific
+form of memory management you're using).
+
+Unless you have specific memory management requirements, use
+PyObject_{New, NewVar, Del}.
+*/
+
+/*
+ * Raw object memory interface
+ * ===========================
+ */
+
+/* Functions to call the same malloc/realloc/free as used by Python's
+   object allocator.  If WITH_PYMALLOC is enabled, these may differ from
+   the platform malloc/realloc/free.  The Python object allocator is
+   designed for fast, cache-conscious allocation of many "small" objects,
+   and with low hidden memory overhead.
+
+   PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
+
+   PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
+   PyObject_Realloc(p != NULL, 0) does not return  NULL, or free the memory
+   at p.
+
+   Returned pointers must be checked for NULL explicitly; no action is
+   performed on failure other than to return NULL (no warning it printed, no
+   exception is set, etc).
+
+   For allocating objects, use PyObject_{New, NewVar} instead whenever
+   possible.  The PyObject_{Malloc, Realloc, Free} family is exposed
+   so that you can exploit Python's small-block allocator for non-object
+   uses.  If you must use these routines to allocate object memory, make sure
+   the object gets initialized via PyObject_{Init, InitVar} after obtaining
+   the raw memory.
+*/
+PyAPI_FUNC(void *) PyObject_Malloc(size_t);
+PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t);
+PyAPI_FUNC(void) PyObject_Free(void *);
+
+
+/* Macros */
+#ifdef WITH_PYMALLOC
+#ifdef PYMALLOC_DEBUG	/* WITH_PYMALLOC && PYMALLOC_DEBUG */
+PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes);
+PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes);
+PyAPI_FUNC(void) _PyObject_DebugFree(void *p);
+PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p);
+PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p);
+PyAPI_FUNC(void) _PyObject_DebugMallocStats(void);
+#define PyObject_MALLOC		_PyObject_DebugMalloc
+#define PyObject_Malloc		_PyObject_DebugMalloc
+#define PyObject_REALLOC	_PyObject_DebugRealloc
+#define PyObject_Realloc	_PyObject_DebugRealloc
+#define PyObject_FREE		_PyObject_DebugFree
+#define PyObject_Free		_PyObject_DebugFree
+
+#else	/* WITH_PYMALLOC && ! PYMALLOC_DEBUG */
+#define PyObject_MALLOC		PyObject_Malloc
+#define PyObject_REALLOC	PyObject_Realloc
+#define PyObject_FREE		PyObject_Free
+#endif
+
+#else	/* ! WITH_PYMALLOC */
+#define PyObject_MALLOC		PyMem_MALLOC
+#define PyObject_REALLOC	PyMem_REALLOC
+#define PyObject_FREE		PyMem_FREE
+
+#endif	/* WITH_PYMALLOC */
+
+#define PyObject_Del		PyObject_Free
+#define PyObject_DEL		PyObject_FREE
+
+/* for source compatibility with 2.2 */
+#define _PyObject_Del		PyObject_Free
+
+/*
+ * Generic object allocator interface
+ * ==================================
+ */
+
+/* Functions */
+PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
+PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
+                                                 PyTypeObject *, Py_ssize_t);
+PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
+PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
+
+#define PyObject_New(type, typeobj) \
+		( (type *) _PyObject_New(typeobj) )
+#define PyObject_NewVar(type, typeobj, n) \
+		( (type *) _PyObject_NewVar((typeobj), (n)) )
+
+/* Macros trading binary compatibility for speed. See also pymem.h.
+   Note that these macros expect non-NULL object pointers.*/
+#define PyObject_INIT(op, typeobj) \
+	( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
+#define PyObject_INIT_VAR(op, typeobj, size) \
+	( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
+
+#define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
+
+/* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
+   vrbl-size object with nitems items, exclusive of gc overhead (if any).  The
+   value is rounded up to the closest multiple of sizeof(void *), in order to
+   ensure that pointer fields at the end of the object are correctly aligned
+   for the platform (this is of special importance for subclasses of, e.g.,
+   str or long, so that pointers can be stored after the embedded data).
+
+   Note that there's no memory wastage in doing this, as malloc has to
+   return (at worst) pointer-aligned memory anyway.
+*/
+#if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
+#   error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
+#endif
+
+#define _PyObject_VAR_SIZE(typeobj, nitems)	\
+	(size_t)				\
+	( ( (typeobj)->tp_basicsize +		\
+	    (nitems)*(typeobj)->tp_itemsize +	\
+	    (SIZEOF_VOID_P - 1)			\
+	  ) & ~(SIZEOF_VOID_P - 1)		\
+	)
+
+#define PyObject_NEW(type, typeobj) \
+( (type *) PyObject_Init( \
+	(PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
+
+#define PyObject_NEW_VAR(type, typeobj, n) \
+( (type *) PyObject_InitVar( \
+      (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
+      (typeobj), (n)) )
+
+/* This example code implements an object constructor with a custom
+   allocator, where PyObject_New is inlined, and shows the important
+   distinction between two steps (at least):
+       1) the actual allocation of the object storage;
+       2) the initialization of the Python specific fields
+          in this storage with PyObject_{Init, InitVar}.
+
+   PyObject *
+   YourObject_New(...)
+   {
+       PyObject *op;
+
+       op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
+       if (op == NULL)
+           return PyErr_NoMemory();
+
+       PyObject_Init(op, &YourTypeStruct);
+
+       op->ob_field = value;
+       ...
+       return op;
+   }
+
+   Note that in C++, the use of the new operator usually implies that
+   the 1st step is performed automatically for you, so in a C++ class
+   constructor you would start directly with PyObject_Init/InitVar
+*/
+
+/*
+ * Garbage Collection Support
+ * ==========================
+ */
+
+/* C equivalent of gc.collect(). */
+PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
+
+/* Test if a type has a GC head */
+#define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
+
+/* Test if an object has a GC head */
+#define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
+	(Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
+
+PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
+#define PyObject_GC_Resize(type, op, n) \
+		( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
+
+/* for source compatibility with 2.2 */
+#define _PyObject_GC_Del PyObject_GC_Del
+
+/* GC information is stored BEFORE the object structure. */
+typedef union _gc_head {
+	struct {
+		union _gc_head *gc_next;
+		union _gc_head *gc_prev;
+		Py_ssize_t gc_refs;
+	} gc;
+	long double dummy;  /* force worst-case alignment */
+} PyGC_Head;
+
+extern PyGC_Head *_PyGC_generation0;
+
+#define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)
+
+#define _PyGC_REFS_UNTRACKED			(-2)
+#define _PyGC_REFS_REACHABLE			(-3)
+#define _PyGC_REFS_TENTATIVELY_UNREACHABLE	(-4)
+
+/* Tell the GC to track this object.  NB: While the object is tracked the
+ * collector it must be safe to call the ob_traverse method. */
+#define _PyObject_GC_TRACK(o) do { \
+	PyGC_Head *g = _Py_AS_GC(o); \
+	if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \
+		Py_FatalError("GC object already tracked"); \
+	g->gc.gc_refs = _PyGC_REFS_REACHABLE; \
+	g->gc.gc_next = _PyGC_generation0; \
+	g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
+	g->gc.gc_prev->gc.gc_next = g; \
+	_PyGC_generation0->gc.gc_prev = g; \
+    } while (0);
+
+/* Tell the GC to stop tracking this object.
+ * gc_next doesn't need to be set to NULL, but doing so is a good
+ * way to provoke memory errors if calling code is confused.
+ */
+#define _PyObject_GC_UNTRACK(o) do { \
+	PyGC_Head *g = _Py_AS_GC(o); \
+	assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \
+	g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \
+	g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
+	g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
+	g->gc.gc_next = NULL; \
+    } while (0);
+
+PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t);
+PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
+PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
+PyAPI_FUNC(void) PyObject_GC_Track(void *);
+PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
+PyAPI_FUNC(void) PyObject_GC_Del(void *);
+
+#define PyObject_GC_New(type, typeobj) \
+		( (type *) _PyObject_GC_New(typeobj) )
+#define PyObject_GC_NewVar(type, typeobj, n) \
+		( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
+
+
+/* Utility macro to help write tp_traverse functions.
+ * To use this macro, the tp_traverse function must name its arguments
+ * "visit" and "arg".  This is intended to keep tp_traverse functions
+ * looking as much alike as possible.
+ */
+#define Py_VISIT(op)							\
+        do { 								\
+                if (op) {						\
+                        int vret = visit((PyObject *)(op), arg);	\
+                        if (vret)					\
+                                return vret;				\
+                }							\
+        } while (0)
+
+/* This is here for the sake of backwards compatibility.  Extensions that
+ * use the old GC API will still compile but the objects will not be
+ * tracked by the GC. */
+#define PyGC_HEAD_SIZE 0
+#define PyObject_GC_Init(op)
+#define PyObject_GC_Fini(op)
+#define PyObject_AS_GC(op) (op)
+#define PyObject_FROM_GC(op) (op)
+
+
+/* Test if a type supports weak references */
+#define PyType_SUPPORTS_WEAKREFS(t) \
+        (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \
+         && ((t)->tp_weaklistoffset > 0))
+
+#define PyObject_GET_WEAKREFS_LISTPTR(o) \
+	((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
+
+#ifdef __cplusplus
+}
+#endif
+#endif /* !Py_OBJIMPL_H */