--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Lib/test/test_generators.py Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,1881 @@
+tutorial_tests = """
+Let's try a simple generator:
+
+ >>> def f():
+ ... yield 1
+ ... yield 2
+
+ >>> for i in f():
+ ... print i
+ 1
+ 2
+ >>> g = f()
+ >>> g.next()
+ 1
+ >>> g.next()
+ 2
+
+"Falling off the end" stops the generator:
+
+ >>> g.next()
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in ?
+ File "<stdin>", line 2, in g
+ StopIteration
+
+"return" also stops the generator:
+
+ >>> def f():
+ ... yield 1
+ ... return
+ ... yield 2 # never reached
+ ...
+ >>> g = f()
+ >>> g.next()
+ 1
+ >>> g.next()
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in ?
+ File "<stdin>", line 3, in f
+ StopIteration
+ >>> g.next() # once stopped, can't be resumed
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in ?
+ StopIteration
+
+"raise StopIteration" stops the generator too:
+
+ >>> def f():
+ ... yield 1
+ ... raise StopIteration
+ ... yield 2 # never reached
+ ...
+ >>> g = f()
+ >>> g.next()
+ 1
+ >>> g.next()
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in ?
+ StopIteration
+ >>> g.next()
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in ?
+ StopIteration
+
+However, they are not exactly equivalent:
+
+ >>> def g1():
+ ... try:
+ ... return
+ ... except:
+ ... yield 1
+ ...
+ >>> list(g1())
+ []
+
+ >>> def g2():
+ ... try:
+ ... raise StopIteration
+ ... except:
+ ... yield 42
+ >>> print list(g2())
+ [42]
+
+This may be surprising at first:
+
+ >>> def g3():
+ ... try:
+ ... return
+ ... finally:
+ ... yield 1
+ ...
+ >>> list(g3())
+ [1]
+
+Let's create an alternate range() function implemented as a generator:
+
+ >>> def yrange(n):
+ ... for i in range(n):
+ ... yield i
+ ...
+ >>> list(yrange(5))
+ [0, 1, 2, 3, 4]
+
+Generators always return to the most recent caller:
+
+ >>> def creator():
+ ... r = yrange(5)
+ ... print "creator", r.next()
+ ... return r
+ ...
+ >>> def caller():
+ ... r = creator()
+ ... for i in r:
+ ... print "caller", i
+ ...
+ >>> caller()
+ creator 0
+ caller 1
+ caller 2
+ caller 3
+ caller 4
+
+Generators can call other generators:
+
+ >>> def zrange(n):
+ ... for i in yrange(n):
+ ... yield i
+ ...
+ >>> list(zrange(5))
+ [0, 1, 2, 3, 4]
+
+"""
+
+# The examples from PEP 255.
+
+pep_tests = """
+
+Specification: Yield
+
+ Restriction: A generator cannot be resumed while it is actively
+ running:
+
+ >>> def g():
+ ... i = me.next()
+ ... yield i
+ >>> me = g()
+ >>> me.next()
+ Traceback (most recent call last):
+ ...
+ File "<string>", line 2, in g
+ ValueError: generator already executing
+
+Specification: Return
+
+ Note that return isn't always equivalent to raising StopIteration: the
+ difference lies in how enclosing try/except constructs are treated.
+ For example,
+
+ >>> def f1():
+ ... try:
+ ... return
+ ... except:
+ ... yield 1
+ >>> print list(f1())
+ []
+
+ because, as in any function, return simply exits, but
+
+ >>> def f2():
+ ... try:
+ ... raise StopIteration
+ ... except:
+ ... yield 42
+ >>> print list(f2())
+ [42]
+
+ because StopIteration is captured by a bare "except", as is any
+ exception.
+
+Specification: Generators and Exception Propagation
+
+ >>> def f():
+ ... return 1//0
+ >>> def g():
+ ... yield f() # the zero division exception propagates
+ ... yield 42 # and we'll never get here
+ >>> k = g()
+ >>> k.next()
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in ?
+ File "<stdin>", line 2, in g
+ File "<stdin>", line 2, in f
+ ZeroDivisionError: integer division or modulo by zero
+ >>> k.next() # and the generator cannot be resumed
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in ?
+ StopIteration
+ >>>
+
+Specification: Try/Except/Finally
+
+ >>> def f():
+ ... try:
+ ... yield 1
+ ... try:
+ ... yield 2
+ ... 1//0
+ ... yield 3 # never get here
+ ... except ZeroDivisionError:
+ ... yield 4
+ ... yield 5
+ ... raise
+ ... except:
+ ... yield 6
+ ... yield 7 # the "raise" above stops this
+ ... except:
+ ... yield 8
+ ... yield 9
+ ... try:
+ ... x = 12
+ ... finally:
+ ... yield 10
+ ... yield 11
+ >>> print list(f())
+ [1, 2, 4, 5, 8, 9, 10, 11]
+ >>>
+
+Guido's binary tree example.
+
+ >>> # A binary tree class.
+ >>> class Tree:
+ ...
+ ... def __init__(self, label, left=None, right=None):
+ ... self.label = label
+ ... self.left = left
+ ... self.right = right
+ ...
+ ... def __repr__(self, level=0, indent=" "):
+ ... s = level*indent + repr(self.label)
+ ... if self.left:
+ ... s = s + "\\n" + self.left.__repr__(level+1, indent)
+ ... if self.right:
+ ... s = s + "\\n" + self.right.__repr__(level+1, indent)
+ ... return s
+ ...
+ ... def __iter__(self):
+ ... return inorder(self)
+
+ >>> # Create a Tree from a list.
+ >>> def tree(list):
+ ... n = len(list)
+ ... if n == 0:
+ ... return []
+ ... i = n // 2
+ ... return Tree(list[i], tree(list[:i]), tree(list[i+1:]))
+
+ >>> # Show it off: create a tree.
+ >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
+
+ >>> # A recursive generator that generates Tree labels in in-order.
+ >>> def inorder(t):
+ ... if t:
+ ... for x in inorder(t.left):
+ ... yield x
+ ... yield t.label
+ ... for x in inorder(t.right):
+ ... yield x
+
+ >>> # Show it off: create a tree.
+ >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
+ >>> # Print the nodes of the tree in in-order.
+ >>> for x in t:
+ ... print x,
+ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
+
+ >>> # A non-recursive generator.
+ >>> def inorder(node):
+ ... stack = []
+ ... while node:
+ ... while node.left:
+ ... stack.append(node)
+ ... node = node.left
+ ... yield node.label
+ ... while not node.right:
+ ... try:
+ ... node = stack.pop()
+ ... except IndexError:
+ ... return
+ ... yield node.label
+ ... node = node.right
+
+ >>> # Exercise the non-recursive generator.
+ >>> for x in t:
+ ... print x,
+ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
+
+"""
+
+# Examples from Iterator-List and Python-Dev and c.l.py.
+
+email_tests = """
+
+The difference between yielding None and returning it.
+
+>>> def g():
+... for i in range(3):
+... yield None
+... yield None
+... return
+>>> list(g())
+[None, None, None, None]
+
+Ensure that explicitly raising StopIteration acts like any other exception
+in try/except, not like a return.
+
+>>> def g():
+... yield 1
+... try:
+... raise StopIteration
+... except:
+... yield 2
+... yield 3
+>>> list(g())
+[1, 2, 3]
+
+Next one was posted to c.l.py.
+
+>>> def gcomb(x, k):
+... "Generate all combinations of k elements from list x."
+...
+... if k > len(x):
+... return
+... if k == 0:
+... yield []
+... else:
+... first, rest = x[0], x[1:]
+... # A combination does or doesn't contain first.
+... # If it does, the remainder is a k-1 comb of rest.
+... for c in gcomb(rest, k-1):
+... c.insert(0, first)
+... yield c
+... # If it doesn't contain first, it's a k comb of rest.
+... for c in gcomb(rest, k):
+... yield c
+
+>>> seq = range(1, 5)
+>>> for k in range(len(seq) + 2):
+... print "%d-combs of %s:" % (k, seq)
+... for c in gcomb(seq, k):
+... print " ", c
+0-combs of [1, 2, 3, 4]:
+ []
+1-combs of [1, 2, 3, 4]:
+ [1]
+ [2]
+ [3]
+ [4]
+2-combs of [1, 2, 3, 4]:
+ [1, 2]
+ [1, 3]
+ [1, 4]
+ [2, 3]
+ [2, 4]
+ [3, 4]
+3-combs of [1, 2, 3, 4]:
+ [1, 2, 3]
+ [1, 2, 4]
+ [1, 3, 4]
+ [2, 3, 4]
+4-combs of [1, 2, 3, 4]:
+ [1, 2, 3, 4]
+5-combs of [1, 2, 3, 4]:
+
+From the Iterators list, about the types of these things.
+
+>>> def g():
+... yield 1
+...
+>>> type(g)
+<type 'function'>
+>>> i = g()
+>>> type(i)
+<type 'generator'>
+>>> [s for s in dir(i) if not s.startswith('_')]
+['close', 'gi_code', 'gi_frame', 'gi_running', 'next', 'send', 'throw']
+>>> print i.next.__doc__
+x.next() -> the next value, or raise StopIteration
+>>> iter(i) is i
+True
+>>> import types
+>>> isinstance(i, types.GeneratorType)
+True
+
+And more, added later.
+
+>>> i.gi_running
+0
+>>> type(i.gi_frame)
+<type 'frame'>
+>>> i.gi_running = 42
+Traceback (most recent call last):
+ ...
+TypeError: readonly attribute
+>>> def g():
+... yield me.gi_running
+>>> me = g()
+>>> me.gi_running
+0
+>>> me.next()
+1
+>>> me.gi_running
+0
+
+A clever union-find implementation from c.l.py, due to David Eppstein.
+Sent: Friday, June 29, 2001 12:16 PM
+To: python-list@python.org
+Subject: Re: PEP 255: Simple Generators
+
+>>> class disjointSet:
+... def __init__(self, name):
+... self.name = name
+... self.parent = None
+... self.generator = self.generate()
+...
+... def generate(self):
+... while not self.parent:
+... yield self
+... for x in self.parent.generator:
+... yield x
+...
+... def find(self):
+... return self.generator.next()
+...
+... def union(self, parent):
+... if self.parent:
+... raise ValueError("Sorry, I'm not a root!")
+... self.parent = parent
+...
+... def __str__(self):
+... return self.name
+
+>>> names = "ABCDEFGHIJKLM"
+>>> sets = [disjointSet(name) for name in names]
+>>> roots = sets[:]
+
+>>> import random
+>>> gen = random.WichmannHill(42)
+>>> while 1:
+... for s in sets:
+... print "%s->%s" % (s, s.find()),
+... print
+... if len(roots) > 1:
+... s1 = gen.choice(roots)
+... roots.remove(s1)
+... s2 = gen.choice(roots)
+... s1.union(s2)
+... print "merged", s1, "into", s2
+... else:
+... break
+A->A B->B C->C D->D E->E F->F G->G H->H I->I J->J K->K L->L M->M
+merged D into G
+A->A B->B C->C D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M
+merged C into F
+A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M
+merged L into A
+A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->A M->M
+merged H into E
+A->A B->B C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M
+merged B into E
+A->A B->E C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M
+merged J into G
+A->A B->E C->F D->G E->E F->F G->G H->E I->I J->G K->K L->A M->M
+merged E into G
+A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->M
+merged M into G
+A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->G
+merged I into K
+A->A B->G C->F D->G E->G F->F G->G H->G I->K J->G K->K L->A M->G
+merged K into A
+A->A B->G C->F D->G E->G F->F G->G H->G I->A J->G K->A L->A M->G
+merged F into A
+A->A B->G C->A D->G E->G F->A G->G H->G I->A J->G K->A L->A M->G
+merged A into G
+A->G B->G C->G D->G E->G F->G G->G H->G I->G J->G K->G L->G M->G
+
+"""
+# Emacs turd '
+
+# Fun tests (for sufficiently warped notions of "fun").
+
+fun_tests = """
+
+Build up to a recursive Sieve of Eratosthenes generator.
+
+>>> def firstn(g, n):
+... return [g.next() for i in range(n)]
+
+>>> def intsfrom(i):
+... while 1:
+... yield i
+... i += 1
+
+>>> firstn(intsfrom(5), 7)
+[5, 6, 7, 8, 9, 10, 11]
+
+>>> def exclude_multiples(n, ints):
+... for i in ints:
+... if i % n:
+... yield i
+
+>>> firstn(exclude_multiples(3, intsfrom(1)), 6)
+[1, 2, 4, 5, 7, 8]
+
+>>> def sieve(ints):
+... prime = ints.next()
+... yield prime
+... not_divisible_by_prime = exclude_multiples(prime, ints)
+... for p in sieve(not_divisible_by_prime):
+... yield p
+
+>>> primes = sieve(intsfrom(2))
+>>> firstn(primes, 20)
+[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]
+
+
+Another famous problem: generate all integers of the form
+ 2**i * 3**j * 5**k
+in increasing order, where i,j,k >= 0. Trickier than it may look at first!
+Try writing it without generators, and correctly, and without generating
+3 internal results for each result output.
+
+>>> def times(n, g):
+... for i in g:
+... yield n * i
+>>> firstn(times(10, intsfrom(1)), 10)
+[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
+
+>>> def merge(g, h):
+... ng = g.next()
+... nh = h.next()
+... while 1:
+... if ng < nh:
+... yield ng
+... ng = g.next()
+... elif ng > nh:
+... yield nh
+... nh = h.next()
+... else:
+... yield ng
+... ng = g.next()
+... nh = h.next()
+
+The following works, but is doing a whale of a lot of redundant work --
+it's not clear how to get the internal uses of m235 to share a single
+generator. Note that me_times2 (etc) each need to see every element in the
+result sequence. So this is an example where lazy lists are more natural
+(you can look at the head of a lazy list any number of times).
+
+>>> def m235():
+... yield 1
+... me_times2 = times(2, m235())
+... me_times3 = times(3, m235())
+... me_times5 = times(5, m235())
+... for i in merge(merge(me_times2,
+... me_times3),
+... me_times5):
+... yield i
+
+Don't print "too many" of these -- the implementation above is extremely
+inefficient: each call of m235() leads to 3 recursive calls, and in
+turn each of those 3 more, and so on, and so on, until we've descended
+enough levels to satisfy the print stmts. Very odd: when I printed 5
+lines of results below, this managed to screw up Win98's malloc in "the
+usual" way, i.e. the heap grew over 4Mb so Win98 started fragmenting
+address space, and it *looked* like a very slow leak.
+
+>>> result = m235()
+>>> for i in range(3):
+... print firstn(result, 15)
+[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
+[25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
+[81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
+
+Heh. Here's one way to get a shared list, complete with an excruciating
+namespace renaming trick. The *pretty* part is that the times() and merge()
+functions can be reused as-is, because they only assume their stream
+arguments are iterable -- a LazyList is the same as a generator to times().
+
+>>> class LazyList:
+... def __init__(self, g):
+... self.sofar = []
+... self.fetch = g.next
+...
+... def __getitem__(self, i):
+... sofar, fetch = self.sofar, self.fetch
+... while i >= len(sofar):
+... sofar.append(fetch())
+... return sofar[i]
+
+>>> def m235():
+... yield 1
+... # Gack: m235 below actually refers to a LazyList.
+... me_times2 = times(2, m235)
+... me_times3 = times(3, m235)
+... me_times5 = times(5, m235)
+... for i in merge(merge(me_times2,
+... me_times3),
+... me_times5):
+... yield i
+
+Print as many of these as you like -- *this* implementation is memory-
+efficient.
+
+>>> m235 = LazyList(m235())
+>>> for i in range(5):
+... print [m235[j] for j in range(15*i, 15*(i+1))]
+[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
+[25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
+[81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
+[200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384]
+[400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675]
+
+Ye olde Fibonacci generator, LazyList style.
+
+>>> def fibgen(a, b):
+...
+... def sum(g, h):
+... while 1:
+... yield g.next() + h.next()
+...
+... def tail(g):
+... g.next() # throw first away
+... for x in g:
+... yield x
+...
+... yield a
+... yield b
+... for s in sum(iter(fib),
+... tail(iter(fib))):
+... yield s
+
+>>> fib = LazyList(fibgen(1, 2))
+>>> firstn(iter(fib), 17)
+[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584]
+
+
+Running after your tail with itertools.tee (new in version 2.4)
+
+The algorithms "m235" (Hamming) and Fibonacci presented above are both
+examples of a whole family of FP (functional programming) algorithms
+where a function produces and returns a list while the production algorithm
+suppose the list as already produced by recursively calling itself.
+For these algorithms to work, they must:
+
+- produce at least a first element without presupposing the existence of
+ the rest of the list
+- produce their elements in a lazy manner
+
+To work efficiently, the beginning of the list must not be recomputed over
+and over again. This is ensured in most FP languages as a built-in feature.
+In python, we have to explicitly maintain a list of already computed results
+and abandon genuine recursivity.
+
+This is what had been attempted above with the LazyList class. One problem
+with that class is that it keeps a list of all of the generated results and
+therefore continually grows. This partially defeats the goal of the generator
+concept, viz. produce the results only as needed instead of producing them
+all and thereby wasting memory.
+
+Thanks to itertools.tee, it is now clear "how to get the internal uses of
+m235 to share a single generator".
+
+>>> from itertools import tee
+>>> def m235():
+... def _m235():
+... yield 1
+... for n in merge(times(2, m2),
+... merge(times(3, m3),
+... times(5, m5))):
+... yield n
+... m1 = _m235()
+... m2, m3, m5, mRes = tee(m1, 4)
+... return mRes
+
+>>> it = m235()
+>>> for i in range(5):
+... print firstn(it, 15)
+[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
+[25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
+[81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
+[200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384]
+[400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675]
+
+The "tee" function does just what we want. It internally keeps a generated
+result for as long as it has not been "consumed" from all of the duplicated
+iterators, whereupon it is deleted. You can therefore print the hamming
+sequence during hours without increasing memory usage, or very little.
+
+The beauty of it is that recursive running-after-their-tail FP algorithms
+are quite straightforwardly expressed with this Python idiom.
+
+Ye olde Fibonacci generator, tee style.
+
+>>> def fib():
+...
+... def _isum(g, h):
+... while 1:
+... yield g.next() + h.next()
+...
+... def _fib():
+... yield 1
+... yield 2
+... fibTail.next() # throw first away
+... for res in _isum(fibHead, fibTail):
+... yield res
+...
+... realfib = _fib()
+... fibHead, fibTail, fibRes = tee(realfib, 3)
+... return fibRes
+
+>>> firstn(fib(), 17)
+[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584]
+
+"""
+
+# syntax_tests mostly provokes SyntaxErrors. Also fiddling with #if 0
+# hackery.
+
+syntax_tests = """
+
+>>> def f():
+... return 22
+... yield 1
+Traceback (most recent call last):
+ ..
+SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[0]>, line 3)
+
+>>> def f():
+... yield 1
+... return 22
+Traceback (most recent call last):
+ ..
+SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[1]>, line 3)
+
+"return None" is not the same as "return" in a generator:
+
+>>> def f():
+... yield 1
+... return None
+Traceback (most recent call last):
+ ..
+SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[2]>, line 3)
+
+These are fine:
+
+>>> def f():
+... yield 1
+... return
+
+>>> def f():
+... try:
+... yield 1
+... finally:
+... pass
+
+>>> def f():
+... try:
+... try:
+... 1//0
+... except ZeroDivisionError:
+... yield 666
+... except:
+... pass
+... finally:
+... pass
+
+>>> def f():
+... try:
+... try:
+... yield 12
+... 1//0
+... except ZeroDivisionError:
+... yield 666
+... except:
+... try:
+... x = 12
+... finally:
+... yield 12
+... except:
+... return
+>>> list(f())
+[12, 666]
+
+>>> def f():
+... yield
+>>> type(f())
+<type 'generator'>
+
+
+>>> def f():
+... if 0:
+... yield
+>>> type(f())
+<type 'generator'>
+
+
+>>> def f():
+... if 0:
+... yield 1
+>>> type(f())
+<type 'generator'>
+
+>>> def f():
+... if "":
+... yield None
+>>> type(f())
+<type 'generator'>
+
+>>> def f():
+... return
+... try:
+... if x==4:
+... pass
+... elif 0:
+... try:
+... 1//0
+... except SyntaxError:
+... pass
+... else:
+... if 0:
+... while 12:
+... x += 1
+... yield 2 # don't blink
+... f(a, b, c, d, e)
+... else:
+... pass
+... except:
+... x = 1
+... return
+>>> type(f())
+<type 'generator'>
+
+>>> def f():
+... if 0:
+... def g():
+... yield 1
+...
+>>> type(f())
+<type 'NoneType'>
+
+>>> def f():
+... if 0:
+... class C:
+... def __init__(self):
+... yield 1
+... def f(self):
+... yield 2
+>>> type(f())
+<type 'NoneType'>
+
+>>> def f():
+... if 0:
+... return
+... if 0:
+... yield 2
+>>> type(f())
+<type 'generator'>
+
+
+>>> def f():
+... if 0:
+... lambda x: x # shouldn't trigger here
+... return # or here
+... def f(i):
+... return 2*i # or here
+... if 0:
+... return 3 # but *this* sucks (line 8)
+... if 0:
+... yield 2 # because it's a generator (line 10)
+Traceback (most recent call last):
+SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[24]>, line 10)
+
+This one caused a crash (see SF bug 567538):
+
+>>> def f():
+... for i in range(3):
+... try:
+... continue
+... finally:
+... yield i
+...
+>>> g = f()
+>>> print g.next()
+0
+>>> print g.next()
+1
+>>> print g.next()
+2
+>>> print g.next()
+Traceback (most recent call last):
+StopIteration
+
+
+Test the gi_code attribute
+
+>>> def f():
+... yield 5
+...
+>>> g = f()
+>>> g.gi_code is f.func_code
+True
+>>> g.next()
+5
+>>> g.next()
+Traceback (most recent call last):
+StopIteration
+>>> g.gi_code is f.func_code
+True
+
+
+Test the __name__ attribute and the repr()
+
+>>> def f():
+... yield 5
+...
+>>> g = f()
+>>> g.__name__
+'f'
+>>> repr(g) # doctest: +ELLIPSIS
+'<generator object f at ...>'
+"""
+
+# conjoin is a simple backtracking generator, named in honor of Icon's
+# "conjunction" control structure. Pass a list of no-argument functions
+# that return iterable objects. Easiest to explain by example: assume the
+# function list [x, y, z] is passed. Then conjoin acts like:
+#
+# def g():
+# values = [None] * 3
+# for values[0] in x():
+# for values[1] in y():
+# for values[2] in z():
+# yield values
+#
+# So some 3-lists of values *may* be generated, each time we successfully
+# get into the innermost loop. If an iterator fails (is exhausted) before
+# then, it "backtracks" to get the next value from the nearest enclosing
+# iterator (the one "to the left"), and starts all over again at the next
+# slot (pumps a fresh iterator). Of course this is most useful when the
+# iterators have side-effects, so that which values *can* be generated at
+# each slot depend on the values iterated at previous slots.
+
+def conjoin(gs):
+
+ values = [None] * len(gs)
+
+ def gen(i, values=values):
+ if i >= len(gs):
+ yield values
+ else:
+ for values[i] in gs[i]():
+ for x in gen(i+1):
+ yield x
+
+ for x in gen(0):
+ yield x
+
+# That works fine, but recursing a level and checking i against len(gs) for
+# each item produced is inefficient. By doing manual loop unrolling across
+# generator boundaries, it's possible to eliminate most of that overhead.
+# This isn't worth the bother *in general* for generators, but conjoin() is
+# a core building block for some CPU-intensive generator applications.
+
+def conjoin(gs):
+
+ n = len(gs)
+ values = [None] * n
+
+ # Do one loop nest at time recursively, until the # of loop nests
+ # remaining is divisible by 3.
+
+ def gen(i, values=values):
+ if i >= n:
+ yield values
+
+ elif (n-i) % 3:
+ ip1 = i+1
+ for values[i] in gs[i]():
+ for x in gen(ip1):
+ yield x
+
+ else:
+ for x in _gen3(i):
+ yield x
+
+ # Do three loop nests at a time, recursing only if at least three more
+ # remain. Don't call directly: this is an internal optimization for
+ # gen's use.
+
+ def _gen3(i, values=values):
+ assert i < n and (n-i) % 3 == 0
+ ip1, ip2, ip3 = i+1, i+2, i+3
+ g, g1, g2 = gs[i : ip3]
+
+ if ip3 >= n:
+ # These are the last three, so we can yield values directly.
+ for values[i] in g():
+ for values[ip1] in g1():
+ for values[ip2] in g2():
+ yield values
+
+ else:
+ # At least 6 loop nests remain; peel off 3 and recurse for the
+ # rest.
+ for values[i] in g():
+ for values[ip1] in g1():
+ for values[ip2] in g2():
+ for x in _gen3(ip3):
+ yield x
+
+ for x in gen(0):
+ yield x
+
+# And one more approach: For backtracking apps like the Knight's Tour
+# solver below, the number of backtracking levels can be enormous (one
+# level per square, for the Knight's Tour, so that e.g. a 100x100 board
+# needs 10,000 levels). In such cases Python is likely to run out of
+# stack space due to recursion. So here's a recursion-free version of
+# conjoin too.
+# NOTE WELL: This allows large problems to be solved with only trivial
+# demands on stack space. Without explicitly resumable generators, this is
+# much harder to achieve. OTOH, this is much slower (up to a factor of 2)
+# than the fancy unrolled recursive conjoin.
+
+def flat_conjoin(gs): # rename to conjoin to run tests with this instead
+ n = len(gs)
+ values = [None] * n
+ iters = [None] * n
+ _StopIteration = StopIteration # make local because caught a *lot*
+ i = 0
+ while 1:
+ # Descend.
+ try:
+ while i < n:
+ it = iters[i] = gs[i]().next
+ values[i] = it()
+ i += 1
+ except _StopIteration:
+ pass
+ else:
+ assert i == n
+ yield values
+
+ # Backtrack until an older iterator can be resumed.
+ i -= 1
+ while i >= 0:
+ try:
+ values[i] = iters[i]()
+ # Success! Start fresh at next level.
+ i += 1
+ break
+ except _StopIteration:
+ # Continue backtracking.
+ i -= 1
+ else:
+ assert i < 0
+ break
+
+# A conjoin-based N-Queens solver.
+
+class Queens:
+ def __init__(self, n):
+ self.n = n
+ rangen = range(n)
+
+ # Assign a unique int to each column and diagonal.
+ # columns: n of those, range(n).
+ # NW-SE diagonals: 2n-1 of these, i-j unique and invariant along
+ # each, smallest i-j is 0-(n-1) = 1-n, so add n-1 to shift to 0-
+ # based.
+ # NE-SW diagonals: 2n-1 of these, i+j unique and invariant along
+ # each, smallest i+j is 0, largest is 2n-2.
+
+ # For each square, compute a bit vector of the columns and
+ # diagonals it covers, and for each row compute a function that
+ # generates the possiblities for the columns in that row.
+ self.rowgenerators = []
+ for i in rangen:
+ rowuses = [(1L << j) | # column ordinal
+ (1L << (n + i-j + n-1)) | # NW-SE ordinal
+ (1L << (n + 2*n-1 + i+j)) # NE-SW ordinal
+ for j in rangen]
+
+ def rowgen(rowuses=rowuses):
+ for j in rangen:
+ uses = rowuses[j]
+ if uses & self.used == 0:
+ self.used |= uses
+ yield j
+ self.used &= ~uses
+
+ self.rowgenerators.append(rowgen)
+
+ # Generate solutions.
+ def solve(self):
+ self.used = 0
+ for row2col in conjoin(self.rowgenerators):
+ yield row2col
+
+ def printsolution(self, row2col):
+ n = self.n
+ assert n == len(row2col)
+ sep = "+" + "-+" * n
+ print sep
+ for i in range(n):
+ squares = [" " for j in range(n)]
+ squares[row2col[i]] = "Q"
+ print "|" + "|".join(squares) + "|"
+ print sep
+
+# A conjoin-based Knight's Tour solver. This is pretty sophisticated
+# (e.g., when used with flat_conjoin above, and passing hard=1 to the
+# constructor, a 200x200 Knight's Tour was found quickly -- note that we're
+# creating 10s of thousands of generators then!), and is lengthy.
+
+class Knights:
+ def __init__(self, m, n, hard=0):
+ self.m, self.n = m, n
+
+ # solve() will set up succs[i] to be a list of square #i's
+ # successors.
+ succs = self.succs = []
+
+ # Remove i0 from each of its successor's successor lists, i.e.
+ # successors can't go back to i0 again. Return 0 if we can
+ # detect this makes a solution impossible, else return 1.
+
+ def remove_from_successors(i0, len=len):
+ # If we remove all exits from a free square, we're dead:
+ # even if we move to it next, we can't leave it again.
+ # If we create a square with one exit, we must visit it next;
+ # else somebody else will have to visit it, and since there's
+ # only one adjacent, there won't be a way to leave it again.
+ # Finelly, if we create more than one free square with a
+ # single exit, we can only move to one of them next, leaving
+ # the other one a dead end.
+ ne0 = ne1 = 0
+ for i in succs[i0]:
+ s = succs[i]
+ s.remove(i0)
+ e = len(s)
+ if e == 0:
+ ne0 += 1
+ elif e == 1:
+ ne1 += 1
+ return ne0 == 0 and ne1 < 2
+
+ # Put i0 back in each of its successor's successor lists.
+
+ def add_to_successors(i0):
+ for i in succs[i0]:
+ succs[i].append(i0)
+
+ # Generate the first move.
+ def first():
+ if m < 1 or n < 1:
+ return
+
+ # Since we're looking for a cycle, it doesn't matter where we
+ # start. Starting in a corner makes the 2nd move easy.
+ corner = self.coords2index(0, 0)
+ remove_from_successors(corner)
+ self.lastij = corner
+ yield corner
+ add_to_successors(corner)
+
+ # Generate the second moves.
+ def second():
+ corner = self.coords2index(0, 0)
+ assert self.lastij == corner # i.e., we started in the corner
+ if m < 3 or n < 3:
+ return
+ assert len(succs[corner]) == 2
+ assert self.coords2index(1, 2) in succs[corner]
+ assert self.coords2index(2, 1) in succs[corner]
+ # Only two choices. Whichever we pick, the other must be the
+ # square picked on move m*n, as it's the only way to get back
+ # to (0, 0). Save its index in self.final so that moves before
+ # the last know it must be kept free.
+ for i, j in (1, 2), (2, 1):
+ this = self.coords2index(i, j)
+ final = self.coords2index(3-i, 3-j)
+ self.final = final
+
+ remove_from_successors(this)
+ succs[final].append(corner)
+ self.lastij = this
+ yield this
+ succs[final].remove(corner)
+ add_to_successors(this)
+
+ # Generate moves 3 thru m*n-1.
+ def advance(len=len):
+ # If some successor has only one exit, must take it.
+ # Else favor successors with fewer exits.
+ candidates = []
+ for i in succs[self.lastij]:
+ e = len(succs[i])
+ assert e > 0, "else remove_from_successors() pruning flawed"
+ if e == 1:
+ candidates = [(e, i)]
+ break
+ candidates.append((e, i))
+ else:
+ candidates.sort()
+
+ for e, i in candidates:
+ if i != self.final:
+ if remove_from_successors(i):
+ self.lastij = i
+ yield i
+ add_to_successors(i)
+
+ # Generate moves 3 thru m*n-1. Alternative version using a
+ # stronger (but more expensive) heuristic to order successors.
+ # Since the # of backtracking levels is m*n, a poor move early on
+ # can take eons to undo. Smallest square board for which this
+ # matters a lot is 52x52.
+ def advance_hard(vmid=(m-1)/2.0, hmid=(n-1)/2.0, len=len):
+ # If some successor has only one exit, must take it.
+ # Else favor successors with fewer exits.
+ # Break ties via max distance from board centerpoint (favor
+ # corners and edges whenever possible).
+ candidates = []
+ for i in succs[self.lastij]:
+ e = len(succs[i])
+ assert e > 0, "else remove_from_successors() pruning flawed"
+ if e == 1:
+ candidates = [(e, 0, i)]
+ break
+ i1, j1 = self.index2coords(i)
+ d = (i1 - vmid)**2 + (j1 - hmid)**2
+ candidates.append((e, -d, i))
+ else:
+ candidates.sort()
+
+ for e, d, i in candidates:
+ if i != self.final:
+ if remove_from_successors(i):
+ self.lastij = i
+ yield i
+ add_to_successors(i)
+
+ # Generate the last move.
+ def last():
+ assert self.final in succs[self.lastij]
+ yield self.final
+
+ if m*n < 4:
+ self.squaregenerators = [first]
+ else:
+ self.squaregenerators = [first, second] + \
+ [hard and advance_hard or advance] * (m*n - 3) + \
+ [last]
+
+ def coords2index(self, i, j):
+ assert 0 <= i < self.m
+ assert 0 <= j < self.n
+ return i * self.n + j
+
+ def index2coords(self, index):
+ assert 0 <= index < self.m * self.n
+ return divmod(index, self.n)
+
+ def _init_board(self):
+ succs = self.succs
+ del succs[:]
+ m, n = self.m, self.n
+ c2i = self.coords2index
+
+ offsets = [( 1, 2), ( 2, 1), ( 2, -1), ( 1, -2),
+ (-1, -2), (-2, -1), (-2, 1), (-1, 2)]
+ rangen = range(n)
+ for i in range(m):
+ for j in rangen:
+ s = [c2i(i+io, j+jo) for io, jo in offsets
+ if 0 <= i+io < m and
+ 0 <= j+jo < n]
+ succs.append(s)
+
+ # Generate solutions.
+ def solve(self):
+ self._init_board()
+ for x in conjoin(self.squaregenerators):
+ yield x
+
+ def printsolution(self, x):
+ m, n = self.m, self.n
+ assert len(x) == m*n
+ w = len(str(m*n))
+ format = "%" + str(w) + "d"
+
+ squares = [[None] * n for i in range(m)]
+ k = 1
+ for i in x:
+ i1, j1 = self.index2coords(i)
+ squares[i1][j1] = format % k
+ k += 1
+
+ sep = "+" + ("-" * w + "+") * n
+ print sep
+ for i in range(m):
+ row = squares[i]
+ print "|" + "|".join(row) + "|"
+ print sep
+
+conjoin_tests = """
+
+Generate the 3-bit binary numbers in order. This illustrates dumbest-
+possible use of conjoin, just to generate the full cross-product.
+
+>>> for c in conjoin([lambda: iter((0, 1))] * 3):
+... print c
+[0, 0, 0]
+[0, 0, 1]
+[0, 1, 0]
+[0, 1, 1]
+[1, 0, 0]
+[1, 0, 1]
+[1, 1, 0]
+[1, 1, 1]
+
+For efficiency in typical backtracking apps, conjoin() yields the same list
+object each time. So if you want to save away a full account of its
+generated sequence, you need to copy its results.
+
+>>> def gencopy(iterator):
+... for x in iterator:
+... yield x[:]
+
+>>> for n in range(10):
+... all = list(gencopy(conjoin([lambda: iter((0, 1))] * n)))
+... print n, len(all), all[0] == [0] * n, all[-1] == [1] * n
+0 1 True True
+1 2 True True
+2 4 True True
+3 8 True True
+4 16 True True
+5 32 True True
+6 64 True True
+7 128 True True
+8 256 True True
+9 512 True True
+
+And run an 8-queens solver.
+
+>>> q = Queens(8)
+>>> LIMIT = 2
+>>> count = 0
+>>> for row2col in q.solve():
+... count += 1
+... if count <= LIMIT:
+... print "Solution", count
+... q.printsolution(row2col)
+Solution 1
++-+-+-+-+-+-+-+-+
+|Q| | | | | | | |
++-+-+-+-+-+-+-+-+
+| | | | |Q| | | |
++-+-+-+-+-+-+-+-+
+| | | | | | | |Q|
++-+-+-+-+-+-+-+-+
+| | | | | |Q| | |
++-+-+-+-+-+-+-+-+
+| | |Q| | | | | |
++-+-+-+-+-+-+-+-+
+| | | | | | |Q| |
++-+-+-+-+-+-+-+-+
+| |Q| | | | | | |
++-+-+-+-+-+-+-+-+
+| | | |Q| | | | |
++-+-+-+-+-+-+-+-+
+Solution 2
++-+-+-+-+-+-+-+-+
+|Q| | | | | | | |
++-+-+-+-+-+-+-+-+
+| | | | | |Q| | |
++-+-+-+-+-+-+-+-+
+| | | | | | | |Q|
++-+-+-+-+-+-+-+-+
+| | |Q| | | | | |
++-+-+-+-+-+-+-+-+
+| | | | | | |Q| |
++-+-+-+-+-+-+-+-+
+| | | |Q| | | | |
++-+-+-+-+-+-+-+-+
+| |Q| | | | | | |
++-+-+-+-+-+-+-+-+
+| | | | |Q| | | |
++-+-+-+-+-+-+-+-+
+
+>>> print count, "solutions in all."
+92 solutions in all.
+
+And run a Knight's Tour on a 10x10 board. Note that there are about
+20,000 solutions even on a 6x6 board, so don't dare run this to exhaustion.
+
+>>> k = Knights(10, 10)
+>>> LIMIT = 2
+>>> count = 0
+>>> for x in k.solve():
+... count += 1
+... if count <= LIMIT:
+... print "Solution", count
+... k.printsolution(x)
+... else:
+... break
+Solution 1
++---+---+---+---+---+---+---+---+---+---+
+| 1| 58| 27| 34| 3| 40| 29| 10| 5| 8|
++---+---+---+---+---+---+---+---+---+---+
+| 26| 35| 2| 57| 28| 33| 4| 7| 30| 11|
++---+---+---+---+---+---+---+---+---+---+
+| 59|100| 73| 36| 41| 56| 39| 32| 9| 6|
++---+---+---+---+---+---+---+---+---+---+
+| 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
++---+---+---+---+---+---+---+---+---+---+
+| 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
++---+---+---+---+---+---+---+---+---+---+
+| 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
++---+---+---+---+---+---+---+---+---+---+
+| 87| 98| 91| 80| 77| 84| 53| 46| 65| 44|
++---+---+---+---+---+---+---+---+---+---+
+| 90| 23| 88| 95| 70| 79| 68| 83| 14| 17|
++---+---+---+---+---+---+---+---+---+---+
+| 97| 92| 21| 78| 81| 94| 19| 16| 45| 66|
++---+---+---+---+---+---+---+---+---+---+
+| 22| 89| 96| 93| 20| 69| 82| 67| 18| 15|
++---+---+---+---+---+---+---+---+---+---+
+Solution 2
++---+---+---+---+---+---+---+---+---+---+
+| 1| 58| 27| 34| 3| 40| 29| 10| 5| 8|
++---+---+---+---+---+---+---+---+---+---+
+| 26| 35| 2| 57| 28| 33| 4| 7| 30| 11|
++---+---+---+---+---+---+---+---+---+---+
+| 59|100| 73| 36| 41| 56| 39| 32| 9| 6|
++---+---+---+---+---+---+---+---+---+---+
+| 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
++---+---+---+---+---+---+---+---+---+---+
+| 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
++---+---+---+---+---+---+---+---+---+---+
+| 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
++---+---+---+---+---+---+---+---+---+---+
+| 87| 98| 89| 80| 77| 84| 53| 46| 65| 44|
++---+---+---+---+---+---+---+---+---+---+
+| 90| 23| 92| 95| 70| 79| 68| 83| 14| 17|
++---+---+---+---+---+---+---+---+---+---+
+| 97| 88| 21| 78| 81| 94| 19| 16| 45| 66|
++---+---+---+---+---+---+---+---+---+---+
+| 22| 91| 96| 93| 20| 69| 82| 67| 18| 15|
++---+---+---+---+---+---+---+---+---+---+
+"""
+
+weakref_tests = """\
+Generators are weakly referencable:
+
+>>> import weakref
+>>> def gen():
+... yield 'foo!'
+...
+>>> wr = weakref.ref(gen)
+>>> wr() is gen
+True
+>>> p = weakref.proxy(gen)
+
+Generator-iterators are weakly referencable as well:
+
+>>> gi = gen()
+>>> wr = weakref.ref(gi)
+>>> wr() is gi
+True
+>>> p = weakref.proxy(gi)
+>>> list(p)
+['foo!']
+
+"""
+
+coroutine_tests = """\
+Sending a value into a started generator:
+
+>>> def f():
+... print (yield 1)
+... yield 2
+>>> g = f()
+>>> g.next()
+1
+>>> g.send(42)
+42
+2
+
+Sending a value into a new generator produces a TypeError:
+
+>>> f().send("foo")
+Traceback (most recent call last):
+...
+TypeError: can't send non-None value to a just-started generator
+
+
+Yield by itself yields None:
+
+>>> def f(): yield
+>>> list(f())
+[None]
+
+
+
+An obscene abuse of a yield expression within a generator expression:
+
+>>> list((yield 21) for i in range(4))
+[21, None, 21, None, 21, None, 21, None]
+
+And a more sane, but still weird usage:
+
+>>> def f(): list(i for i in [(yield 26)])
+>>> type(f())
+<type 'generator'>
+
+
+A yield expression with augmented assignment.
+
+>>> def coroutine(seq):
+... count = 0
+... while count < 200:
+... count += yield
+... seq.append(count)
+>>> seq = []
+>>> c = coroutine(seq)
+>>> c.next()
+>>> print seq
+[]
+>>> c.send(10)
+>>> print seq
+[10]
+>>> c.send(10)
+>>> print seq
+[10, 20]
+>>> c.send(10)
+>>> print seq
+[10, 20, 30]
+
+
+Check some syntax errors for yield expressions:
+
+>>> f=lambda: (yield 1),(yield 2)
+Traceback (most recent call last):
+ ...
+SyntaxError: 'yield' outside function (<doctest test.test_generators.__test__.coroutine[21]>, line 1)
+
+>>> def f(): return lambda x=(yield): 1
+Traceback (most recent call last):
+ ...
+SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.coroutine[22]>, line 1)
+
+>>> def f(): x = yield = y
+Traceback (most recent call last):
+ ...
+SyntaxError: assignment to yield expression not possible (<doctest test.test_generators.__test__.coroutine[23]>, line 1)
+
+>>> def f(): (yield bar) = y
+Traceback (most recent call last):
+ ...
+SyntaxError: can't assign to yield expression (<doctest test.test_generators.__test__.coroutine[24]>, line 1)
+
+>>> def f(): (yield bar) += y
+Traceback (most recent call last):
+ ...
+SyntaxError: augmented assignment to yield expression not possible (<doctest test.test_generators.__test__.coroutine[25]>, line 1)
+
+
+Now check some throw() conditions:
+
+>>> def f():
+... while True:
+... try:
+... print (yield)
+... except ValueError,v:
+... print "caught ValueError (%s)" % (v),
+>>> import sys
+>>> g = f()
+>>> g.next()
+
+>>> g.throw(ValueError) # type only
+caught ValueError ()
+
+>>> g.throw(ValueError("xyz")) # value only
+caught ValueError (xyz)
+
+>>> g.throw(ValueError, ValueError(1)) # value+matching type
+caught ValueError (1)
+
+>>> g.throw(ValueError, TypeError(1)) # mismatched type, rewrapped
+caught ValueError (1)
+
+>>> g.throw(ValueError, ValueError(1), None) # explicit None traceback
+caught ValueError (1)
+
+>>> g.throw(ValueError(1), "foo") # bad args
+Traceback (most recent call last):
+ ...
+TypeError: instance exception may not have a separate value
+
+>>> g.throw(ValueError, "foo", 23) # bad args
+Traceback (most recent call last):
+ ...
+TypeError: throw() third argument must be a traceback object
+
+>>> def throw(g,exc):
+... try:
+... raise exc
+... except:
+... g.throw(*sys.exc_info())
+>>> throw(g,ValueError) # do it with traceback included
+caught ValueError ()
+
+>>> g.send(1)
+1
+
+>>> throw(g,TypeError) # terminate the generator
+Traceback (most recent call last):
+ ...
+TypeError
+
+>>> print g.gi_frame
+None
+
+>>> g.send(2)
+Traceback (most recent call last):
+ ...
+StopIteration
+
+>>> g.throw(ValueError,6) # throw on closed generator
+Traceback (most recent call last):
+ ...
+ValueError: 6
+
+>>> f().throw(ValueError,7) # throw on just-opened generator
+Traceback (most recent call last):
+ ...
+ValueError: 7
+
+>>> f().throw("abc") # throw on just-opened generator
+Traceback (most recent call last):
+ ...
+TypeError: exceptions must be classes, or instances, not str
+
+Now let's try closing a generator:
+
+>>> def f():
+... try: yield
+... except GeneratorExit:
+... print "exiting"
+
+>>> g = f()
+>>> g.next()
+>>> g.close()
+exiting
+>>> g.close() # should be no-op now
+
+>>> f().close() # close on just-opened generator should be fine
+
+>>> def f(): yield # an even simpler generator
+>>> f().close() # close before opening
+>>> g = f()
+>>> g.next()
+>>> g.close() # close normally
+
+And finalization:
+
+>>> def f():
+... try: yield
+... finally:
+... print "exiting"
+
+>>> g = f()
+>>> g.next()
+>>> del g
+exiting
+
+
+GeneratorExit is not caught by except Exception:
+
+>>> def f():
+... try: yield
+... except Exception: print 'except'
+... finally: print 'finally'
+
+>>> g = f()
+>>> g.next()
+>>> del g
+finally
+
+
+Now let's try some ill-behaved generators:
+
+>>> def f():
+... try: yield
+... except GeneratorExit:
+... yield "foo!"
+>>> g = f()
+>>> g.next()
+>>> g.close()
+Traceback (most recent call last):
+ ...
+RuntimeError: generator ignored GeneratorExit
+>>> g.close()
+
+
+Our ill-behaved code should be invoked during GC:
+
+>>> import sys, StringIO
+>>> old, sys.stderr = sys.stderr, StringIO.StringIO()
+>>> g = f()
+>>> g.next()
+>>> del g
+>>> sys.stderr.getvalue().startswith(
+... "Exception RuntimeError: 'generator ignored GeneratorExit' in "
+... )
+True
+>>> sys.stderr = old
+
+
+And errors thrown during closing should propagate:
+
+>>> def f():
+... try: yield
+... except GeneratorExit:
+... raise TypeError("fie!")
+>>> g = f()
+>>> g.next()
+>>> g.close()
+Traceback (most recent call last):
+ ...
+TypeError: fie!
+
+
+Ensure that various yield expression constructs make their
+enclosing function a generator:
+
+>>> def f(): x += yield
+>>> type(f())
+<type 'generator'>
+
+>>> def f(): x = yield
+>>> type(f())
+<type 'generator'>
+
+>>> def f(): lambda x=(yield): 1
+>>> type(f())
+<type 'generator'>
+
+>>> def f(): x=(i for i in (yield) if (yield))
+>>> type(f())
+<type 'generator'>
+
+>>> def f(d): d[(yield "a")] = d[(yield "b")] = 27
+>>> data = [1,2]
+>>> g = f(data)
+>>> type(g)
+<type 'generator'>
+>>> g.send(None)
+'a'
+>>> data
+[1, 2]
+>>> g.send(0)
+'b'
+>>> data
+[27, 2]
+>>> try: g.send(1)
+... except StopIteration: pass
+>>> data
+[27, 27]
+
+"""
+
+refleaks_tests = """
+Prior to adding cycle-GC support to itertools.tee, this code would leak
+references. We add it to the standard suite so the routine refleak-tests
+would trigger if it starts being uncleanable again.
+
+>>> import itertools
+>>> def leak():
+... class gen:
+... def __iter__(self):
+... return self
+... def next(self):
+... return self.item
+... g = gen()
+... head, tail = itertools.tee(g)
+... g.item = head
+... return head
+>>> it = leak()
+
+Make sure to also test the involvement of the tee-internal teedataobject,
+which stores returned items.
+
+>>> item = it.next()
+
+
+
+This test leaked at one point due to generator finalization/destruction.
+It was copied from Lib/test/leakers/test_generator_cycle.py before the file
+was removed.
+
+>>> def leak():
+... def gen():
+... while True:
+... yield g
+... g = gen()
+
+>>> leak()
+
+
+
+This test isn't really generator related, but rather exception-in-cleanup
+related. The coroutine tests (above) just happen to cause an exception in
+the generator's __del__ (tp_del) method. We can also test for this
+explicitly, without generators. We do have to redirect stderr to avoid
+printing warnings and to doublecheck that we actually tested what we wanted
+to test.
+
+>>> import sys, StringIO
+>>> old = sys.stderr
+>>> try:
+... sys.stderr = StringIO.StringIO()
+... class Leaker:
+... def __del__(self):
+... raise RuntimeError
+...
+... l = Leaker()
+... del l
+... err = sys.stderr.getvalue().strip()
+... err.startswith(
+... "Exception RuntimeError: RuntimeError() in <"
+... )
+... err.endswith("> ignored")
+... len(err.splitlines())
+... finally:
+... sys.stderr = old
+True
+True
+1
+
+
+
+These refleak tests should perhaps be in a testfile of their own,
+test_generators just happened to be the test that drew these out.
+
+"""
+
+__test__ = {"tut": tutorial_tests,
+ "pep": pep_tests,
+ "email": email_tests,
+ "fun": fun_tests,
+ "syntax": syntax_tests,
+ "conjoin": conjoin_tests,
+ "weakref": weakref_tests,
+ "coroutine": coroutine_tests,
+ "refleaks": refleaks_tests,
+ }
+
+# Magic test name that regrtest.py invokes *after* importing this module.
+# This worms around a bootstrap problem.
+# Note that doctest and regrtest both look in sys.argv for a "-v" argument,
+# so this works as expected in both ways of running regrtest.
+def test_main(verbose=None):
+ from test import test_support, test_generators
+ test_support.run_doctest(test_generators, verbose)
+
+# This part isn't needed for regrtest, but for running the test directly.
+if __name__ == "__main__":
+ test_main(1)