symbian-qemu-0.9.1-12/python-2.6.1/Modules/mathmodule.c
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Modules/mathmodule.c	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,1063 @@
+/* Math module -- standard C math library functions, pi and e */
+
+/* Here are some comments from Tim Peters, extracted from the
+   discussion attached to http://bugs.python.org/issue1640.  They
+   describe the general aims of the math module with respect to
+   special values, IEEE-754 floating-point exceptions, and Python
+   exceptions.
+
+These are the "spirit of 754" rules:
+
+1. If the mathematical result is a real number, but of magnitude too
+large to approximate by a machine float, overflow is signaled and the
+result is an infinity (with the appropriate sign).
+
+2. If the mathematical result is a real number, but of magnitude too
+small to approximate by a machine float, underflow is signaled and the
+result is a zero (with the appropriate sign).
+
+3. At a singularity (a value x such that the limit of f(y) as y
+approaches x exists and is an infinity), "divide by zero" is signaled
+and the result is an infinity (with the appropriate sign).  This is
+complicated a little by that the left-side and right-side limits may
+not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
+from the positive or negative directions.  In that specific case, the
+sign of the zero determines the result of 1/0.
+
+4. At a point where a function has no defined result in the extended
+reals (i.e., the reals plus an infinity or two), invalid operation is
+signaled and a NaN is returned.
+
+And these are what Python has historically /tried/ to do (but not
+always successfully, as platform libm behavior varies a lot):
+
+For #1, raise OverflowError.
+
+For #2, return a zero (with the appropriate sign if that happens by
+accident ;-)).
+
+For #3 and #4, raise ValueError.  It may have made sense to raise
+Python's ZeroDivisionError in #3, but historically that's only been
+raised for division by zero and mod by zero.
+
+*/
+
+/*
+   In general, on an IEEE-754 platform the aim is to follow the C99
+   standard, including Annex 'F', whenever possible.  Where the
+   standard recommends raising the 'divide-by-zero' or 'invalid'
+   floating-point exceptions, Python should raise a ValueError.  Where
+   the standard recommends raising 'overflow', Python should raise an
+   OverflowError.  In all other circumstances a value should be
+   returned.
+ */
+
+#include "Python.h"
+#include "longintrepr.h" /* just for SHIFT */
+
+#ifdef _OSF_SOURCE
+/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
+extern double copysign(double, double);
+#endif
+
+/* Call is_error when errno != 0, and where x is the result libm
+ * returned.  is_error will usually set up an exception and return
+ * true (1), but may return false (0) without setting up an exception.
+ */
+static int
+is_error(double x)
+{
+	int result = 1;	/* presumption of guilt */
+	assert(errno);	/* non-zero errno is a precondition for calling */
+	if (errno == EDOM)
+		PyErr_SetString(PyExc_ValueError, "math domain error");
+
+	else if (errno == ERANGE) {
+		/* ANSI C generally requires libm functions to set ERANGE
+		 * on overflow, but also generally *allows* them to set
+		 * ERANGE on underflow too.  There's no consistency about
+		 * the latter across platforms.
+		 * Alas, C99 never requires that errno be set.
+		 * Here we suppress the underflow errors (libm functions
+		 * should return a zero on underflow, and +- HUGE_VAL on
+		 * overflow, so testing the result for zero suffices to
+		 * distinguish the cases).
+		 *
+		 * On some platforms (Ubuntu/ia64) it seems that errno can be
+		 * set to ERANGE for subnormal results that do *not* underflow
+		 * to zero.  So to be safe, we'll ignore ERANGE whenever the
+		 * function result is less than one in absolute value.
+		 */
+		if (fabs(x) < 1.0)
+			result = 0;
+		else
+			PyErr_SetString(PyExc_OverflowError,
+					"math range error");
+	}
+	else
+                /* Unexpected math error */
+		PyErr_SetFromErrno(PyExc_ValueError);
+	return result;
+}
+
+/*
+   wrapper for atan2 that deals directly with special cases before
+   delegating to the platform libm for the remaining cases.  This
+   is necessary to get consistent behaviour across platforms.
+   Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
+   always follow C99.
+*/
+
+static double
+m_atan2(double y, double x)
+{
+	if (Py_IS_NAN(x) || Py_IS_NAN(y))
+		return Py_NAN;
+	if (Py_IS_INFINITY(y)) {
+		if (Py_IS_INFINITY(x)) {
+			if (copysign(1., x) == 1.)
+				/* atan2(+-inf, +inf) == +-pi/4 */
+				return copysign(0.25*Py_MATH_PI, y);
+			else
+				/* atan2(+-inf, -inf) == +-pi*3/4 */
+				return copysign(0.75*Py_MATH_PI, y);
+		}
+		/* atan2(+-inf, x) == +-pi/2 for finite x */
+		return copysign(0.5*Py_MATH_PI, y);
+	}
+	if (Py_IS_INFINITY(x) || y == 0.) {
+		if (copysign(1., x) == 1.)
+			/* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
+			return copysign(0., y);
+		else
+			/* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
+			return copysign(Py_MATH_PI, y);
+	}
+	return atan2(y, x);
+}
+
+/*
+   math_1 is used to wrap a libm function f that takes a double
+   arguments and returns a double.
+
+   The error reporting follows these rules, which are designed to do
+   the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
+   platforms.
+
+   - a NaN result from non-NaN inputs causes ValueError to be raised
+   - an infinite result from finite inputs causes OverflowError to be
+     raised if can_overflow is 1, or raises ValueError if can_overflow
+     is 0.
+   - if the result is finite and errno == EDOM then ValueError is
+     raised
+   - if the result is finite and nonzero and errno == ERANGE then
+     OverflowError is raised
+
+   The last rule is used to catch overflow on platforms which follow
+   C89 but for which HUGE_VAL is not an infinity.
+
+   For the majority of one-argument functions these rules are enough
+   to ensure that Python's functions behave as specified in 'Annex F'
+   of the C99 standard, with the 'invalid' and 'divide-by-zero'
+   floating-point exceptions mapping to Python's ValueError and the
+   'overflow' floating-point exception mapping to OverflowError.
+   math_1 only works for functions that don't have singularities *and*
+   the possibility of overflow; fortunately, that covers everything we
+   care about right now.
+*/
+
+static PyObject *
+math_1(PyObject *arg, double (*func) (double), int can_overflow)
+{
+	double x, r;
+	x = PyFloat_AsDouble(arg);
+	if (x == -1.0 && PyErr_Occurred())
+		return NULL;
+	errno = 0;
+	PyFPE_START_PROTECT("in math_1", return 0);
+	r = (*func)(x);
+	PyFPE_END_PROTECT(r);
+	if (Py_IS_NAN(r)) {
+		if (!Py_IS_NAN(x))
+			errno = EDOM;
+		else
+			errno = 0;
+	}
+	else if (Py_IS_INFINITY(r)) {
+		if (Py_IS_FINITE(x))
+			errno = can_overflow ? ERANGE : EDOM;
+		else
+			errno = 0;
+	}
+	if (errno && is_error(r))
+		return NULL;
+	else
+		return PyFloat_FromDouble(r);
+}
+
+/*
+   math_2 is used to wrap a libm function f that takes two double
+   arguments and returns a double.
+
+   The error reporting follows these rules, which are designed to do
+   the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
+   platforms.
+
+   - a NaN result from non-NaN inputs causes ValueError to be raised
+   - an infinite result from finite inputs causes OverflowError to be
+     raised.
+   - if the result is finite and errno == EDOM then ValueError is
+     raised
+   - if the result is finite and nonzero and errno == ERANGE then
+     OverflowError is raised
+
+   The last rule is used to catch overflow on platforms which follow
+   C89 but for which HUGE_VAL is not an infinity.
+
+   For most two-argument functions (copysign, fmod, hypot, atan2)
+   these rules are enough to ensure that Python's functions behave as
+   specified in 'Annex F' of the C99 standard, with the 'invalid' and
+   'divide-by-zero' floating-point exceptions mapping to Python's
+   ValueError and the 'overflow' floating-point exception mapping to
+   OverflowError.
+*/
+
+static PyObject *
+math_2(PyObject *args, double (*func) (double, double), char *funcname)
+{
+	PyObject *ox, *oy;
+	double x, y, r;
+	if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
+		return NULL;
+	x = PyFloat_AsDouble(ox);
+	y = PyFloat_AsDouble(oy);
+	if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
+		return NULL;
+	errno = 0;
+	PyFPE_START_PROTECT("in math_2", return 0);
+	r = (*func)(x, y);
+	PyFPE_END_PROTECT(r);
+	if (Py_IS_NAN(r)) {
+		if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
+			errno = EDOM;
+		else
+			errno = 0;
+	}
+	else if (Py_IS_INFINITY(r)) {
+		if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
+			errno = ERANGE;
+		else
+			errno = 0;
+	}
+	if (errno && is_error(r))
+		return NULL;
+	else
+		return PyFloat_FromDouble(r);
+}
+
+#define FUNC1(funcname, func, can_overflow, docstring)			\
+	static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
+		return math_1(args, func, can_overflow);		    \
+	}\
+        PyDoc_STRVAR(math_##funcname##_doc, docstring);
+
+#define FUNC2(funcname, func, docstring) \
+	static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
+		return math_2(args, func, #funcname); \
+	}\
+        PyDoc_STRVAR(math_##funcname##_doc, docstring);
+
+FUNC1(acos, acos, 0,
+      "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
+FUNC1(acosh, acosh, 0,
+      "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
+FUNC1(asin, asin, 0,
+      "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
+FUNC1(asinh, asinh, 0,
+      "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
+FUNC1(atan, atan, 0,
+      "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
+FUNC2(atan2, m_atan2,
+      "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
+      "Unlike atan(y/x), the signs of both x and y are considered.")
+FUNC1(atanh, atanh, 0,
+      "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
+FUNC1(ceil, ceil, 0,
+      "ceil(x)\n\nReturn the ceiling of x as a float.\n"
+      "This is the smallest integral value >= x.")
+FUNC2(copysign, copysign,
+      "copysign(x,y)\n\nReturn x with the sign of y.")
+FUNC1(cos, cos, 0,
+      "cos(x)\n\nReturn the cosine of x (measured in radians).")
+FUNC1(cosh, cosh, 1,
+      "cosh(x)\n\nReturn the hyperbolic cosine of x.")
+FUNC1(exp, exp, 1,
+      "exp(x)\n\nReturn e raised to the power of x.")
+FUNC1(fabs, fabs, 0,
+      "fabs(x)\n\nReturn the absolute value of the float x.")
+FUNC1(floor, floor, 0,
+      "floor(x)\n\nReturn the floor of x as a float.\n"
+      "This is the largest integral value <= x.")
+FUNC1(log1p, log1p, 1,
+      "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\
+      The result is computed in a way which is accurate for x near zero.")
+FUNC1(sin, sin, 0,
+      "sin(x)\n\nReturn the sine of x (measured in radians).")
+FUNC1(sinh, sinh, 1,
+      "sinh(x)\n\nReturn the hyperbolic sine of x.")
+FUNC1(sqrt, sqrt, 0,
+      "sqrt(x)\n\nReturn the square root of x.")
+FUNC1(tan, tan, 0,
+      "tan(x)\n\nReturn the tangent of x (measured in radians).")
+FUNC1(tanh, tanh, 0,
+      "tanh(x)\n\nReturn the hyperbolic tangent of x.")
+
+/* Precision summation function as msum() by Raymond Hettinger in
+   <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
+   enhanced with the exact partials sum and roundoff from Mark
+   Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
+   See those links for more details, proofs and other references.
+
+   Note 1: IEEE 754R floating point semantics are assumed,
+   but the current implementation does not re-establish special
+   value semantics across iterations (i.e. handling -Inf + Inf).
+
+   Note 2:  No provision is made for intermediate overflow handling;
+   therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
+   sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
+   overflow of the first partial sum.
+
+   Note 3: The intermediate values lo, yr, and hi are declared volatile so
+   aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
+   Also, the volatile declaration forces the values to be stored in memory as
+   regular doubles instead of extended long precision (80-bit) values.  This
+   prevents double rounding because any addition or subtraction of two doubles
+   can be resolved exactly into double-sized hi and lo values.  As long as the 
+   hi value gets forced into a double before yr and lo are computed, the extra
+   bits in downstream extended precision operations (x87 for example) will be
+   exactly zero and therefore can be losslessly stored back into a double,
+   thereby preventing double rounding.
+
+   Note 4: A similar implementation is in Modules/cmathmodule.c.
+   Be sure to update both when making changes.
+
+   Note 5: The signature of math.fsum() differs from __builtin__.sum()
+   because the start argument doesn't make sense in the context of
+   accurate summation.  Since the partials table is collapsed before
+   returning a result, sum(seq2, start=sum(seq1)) may not equal the
+   accurate result returned by sum(itertools.chain(seq1, seq2)).
+*/
+
+#define NUM_PARTIALS  32  /* initial partials array size, on stack */
+
+/* Extend the partials array p[] by doubling its size. */
+static int                          /* non-zero on error */
+_fsum_realloc(double **p_ptr, Py_ssize_t  n,
+             double  *ps,    Py_ssize_t *m_ptr)
+{
+	void *v = NULL;
+	Py_ssize_t m = *m_ptr;
+
+	m += m;  /* double */
+	if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
+		double *p = *p_ptr;
+		if (p == ps) {
+			v = PyMem_Malloc(sizeof(double) * m);
+			if (v != NULL)
+				memcpy(v, ps, sizeof(double) * n);
+		}
+		else
+			v = PyMem_Realloc(p, sizeof(double) * m);
+	}
+	if (v == NULL) {        /* size overflow or no memory */
+		PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
+		return 1;
+	}
+	*p_ptr = (double*) v;
+	*m_ptr = m;
+	return 0;
+}
+
+/* Full precision summation of a sequence of floats.
+
+   def msum(iterable):
+       partials = []  # sorted, non-overlapping partial sums
+       for x in iterable:
+           i = 0
+           for y in partials:
+               if abs(x) < abs(y):
+                   x, y = y, x
+               hi = x + y
+               lo = y - (hi - x)
+               if lo:
+                   partials[i] = lo
+                   i += 1
+               x = hi
+           partials[i:] = [x]
+       return sum_exact(partials)
+
+   Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo
+   are exactly equal to x+y.  The inner loop applies hi/lo summation to each
+   partial so that the list of partial sums remains exact.
+
+   Sum_exact() adds the partial sums exactly and correctly rounds the final
+   result (using the round-half-to-even rule).  The items in partials remain
+   non-zero, non-special, non-overlapping and strictly increasing in
+   magnitude, but possibly not all having the same sign.
+
+   Depends on IEEE 754 arithmetic guarantees and half-even rounding.
+*/
+
+static PyObject*
+math_fsum(PyObject *self, PyObject *seq)
+{
+	PyObject *item, *iter, *sum = NULL;
+	Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
+	double x, y, t, ps[NUM_PARTIALS], *p = ps;
+	double xsave, special_sum = 0.0, inf_sum = 0.0;
+	volatile double hi, yr, lo;
+
+	iter = PyObject_GetIter(seq);
+	if (iter == NULL)
+		return NULL;
+
+	PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
+
+	for(;;) {           /* for x in iterable */
+		assert(0 <= n && n <= m);
+		assert((m == NUM_PARTIALS && p == ps) ||
+		       (m >  NUM_PARTIALS && p != NULL));
+
+		item = PyIter_Next(iter);
+		if (item == NULL) {
+			if (PyErr_Occurred())
+				goto _fsum_error;
+			break;
+		}
+		x = PyFloat_AsDouble(item);
+		Py_DECREF(item);
+		if (PyErr_Occurred())
+			goto _fsum_error;
+
+		xsave = x;
+		for (i = j = 0; j < n; j++) {       /* for y in partials */
+			y = p[j];
+			if (fabs(x) < fabs(y)) {
+				t = x; x = y; y = t;
+			}
+			hi = x + y;
+			yr = hi - x;
+			lo = y - yr;
+			if (lo != 0.0)
+				p[i++] = lo;
+			x = hi;
+		}
+
+		n = i;                              /* ps[i:] = [x] */
+		if (x != 0.0) {
+			if (! Py_IS_FINITE(x)) {
+				/* a nonfinite x could arise either as
+				   a result of intermediate overflow, or
+				   as a result of a nan or inf in the
+				   summands */
+				if (Py_IS_FINITE(xsave)) {
+					PyErr_SetString(PyExc_OverflowError,
+					      "intermediate overflow in fsum");
+					goto _fsum_error;
+				}
+				if (Py_IS_INFINITY(xsave))
+					inf_sum += xsave;
+				special_sum += xsave;
+				/* reset partials */
+				n = 0;
+			}
+			else if (n >= m && _fsum_realloc(&p, n, ps, &m))
+				goto _fsum_error;
+			else
+				p[n++] = x;
+		}
+	}
+
+	if (special_sum != 0.0) {
+		if (Py_IS_NAN(inf_sum))
+			PyErr_SetString(PyExc_ValueError,
+					"-inf + inf in fsum");
+		else
+			sum = PyFloat_FromDouble(special_sum);
+		goto _fsum_error;
+	}
+
+	hi = 0.0;
+	if (n > 0) {
+		hi = p[--n];
+		/* sum_exact(ps, hi) from the top, stop when the sum becomes
+		   inexact. */
+		while (n > 0) {
+			x = hi;
+			y = p[--n];
+			assert(fabs(y) < fabs(x));
+			hi = x + y;
+			yr = hi - x;
+			lo = y - yr;
+			if (lo != 0.0)
+				break;
+		}
+		/* Make half-even rounding work across multiple partials.
+		   Needed so that sum([1e-16, 1, 1e16]) will round-up the last
+		   digit to two instead of down to zero (the 1e-16 makes the 1
+		   slightly closer to two).  With a potential 1 ULP rounding
+		   error fixed-up, math.fsum() can guarantee commutativity. */
+		if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
+			      (lo > 0.0 && p[n-1] > 0.0))) {
+			y = lo * 2.0;
+			x = hi + y;
+			yr = x - hi;
+			if (y == yr)
+				hi = x;
+		}
+	}
+	sum = PyFloat_FromDouble(hi);
+
+_fsum_error:
+	PyFPE_END_PROTECT(hi)
+	Py_DECREF(iter);
+	if (p != ps)
+		PyMem_Free(p);
+	return sum;
+}
+
+#undef NUM_PARTIALS
+
+PyDoc_STRVAR(math_fsum_doc,
+"sum(iterable)\n\n\
+Return an accurate floating point sum of values in the iterable.\n\
+Assumes IEEE-754 floating point arithmetic.");
+
+static PyObject *
+math_factorial(PyObject *self, PyObject *arg)
+{
+	long i, x;
+	PyObject *result, *iobj, *newresult;
+
+	if (PyFloat_Check(arg)) {
+		double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
+		if (dx != floor(dx)) {
+			PyErr_SetString(PyExc_ValueError, 
+				"factorial() only accepts integral values");
+			return NULL;
+		}
+	}
+
+	x = PyInt_AsLong(arg);
+	if (x == -1 && PyErr_Occurred())
+		return NULL;
+	if (x < 0) {
+		PyErr_SetString(PyExc_ValueError, 
+			"factorial() not defined for negative values");
+		return NULL;
+	}
+
+	result = (PyObject *)PyInt_FromLong(1);
+	if (result == NULL)
+		return NULL;
+	for (i=1 ; i<=x ; i++) {
+		iobj = (PyObject *)PyInt_FromLong(i);
+		if (iobj == NULL)
+			goto error;
+		newresult = PyNumber_Multiply(result, iobj);
+		Py_DECREF(iobj);
+		if (newresult == NULL)
+			goto error;
+		Py_DECREF(result);
+		result = newresult;
+	}
+	return result;
+
+error:
+	Py_DECREF(result);
+	return NULL;
+}
+
+PyDoc_STRVAR(math_factorial_doc, "Return n!");
+
+static PyObject *
+math_trunc(PyObject *self, PyObject *number)
+{
+	return PyObject_CallMethod(number, "__trunc__", NULL);
+}
+
+PyDoc_STRVAR(math_trunc_doc,
+"trunc(x:Real) -> Integral\n"
+"\n"
+"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
+
+static PyObject *
+math_frexp(PyObject *self, PyObject *arg)
+{
+	int i;
+	double x = PyFloat_AsDouble(arg);
+	if (x == -1.0 && PyErr_Occurred())
+		return NULL;
+	/* deal with special cases directly, to sidestep platform
+	   differences */
+	if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
+		i = 0;
+	}
+	else {
+		PyFPE_START_PROTECT("in math_frexp", return 0);
+		x = frexp(x, &i);
+		PyFPE_END_PROTECT(x);
+	}
+	return Py_BuildValue("(di)", x, i);
+}
+
+PyDoc_STRVAR(math_frexp_doc,
+"frexp(x)\n"
+"\n"
+"Return the mantissa and exponent of x, as pair (m, e).\n"
+"m is a float and e is an int, such that x = m * 2.**e.\n"
+"If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.");
+
+static PyObject *
+math_ldexp(PyObject *self, PyObject *args)
+{
+	double x, r;
+	PyObject *oexp;
+	long exp;
+	if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
+		return NULL;
+
+	if (PyLong_Check(oexp)) {
+		/* on overflow, replace exponent with either LONG_MAX
+		   or LONG_MIN, depending on the sign. */
+		exp = PyLong_AsLong(oexp);
+		if (exp == -1 && PyErr_Occurred()) {
+			if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
+				if (Py_SIZE(oexp) < 0) {
+					exp = LONG_MIN;
+				}
+				else {
+					exp = LONG_MAX;
+				}
+				PyErr_Clear();
+			}
+			else {
+				/* propagate any unexpected exception */
+				return NULL;
+			}
+		}
+	}
+	else if (PyInt_Check(oexp)) {
+		exp = PyInt_AS_LONG(oexp);
+	}
+	else {
+		PyErr_SetString(PyExc_TypeError,
+				"Expected an int or long as second argument "
+				"to ldexp.");
+		return NULL;
+	}
+
+	if (x == 0. || !Py_IS_FINITE(x)) {
+		/* NaNs, zeros and infinities are returned unchanged */
+		r = x;
+		errno = 0;
+	} else if (exp > INT_MAX) {
+		/* overflow */
+		r = copysign(Py_HUGE_VAL, x);
+		errno = ERANGE;
+	} else if (exp < INT_MIN) {
+		/* underflow to +-0 */
+		r = copysign(0., x);
+		errno = 0;
+	} else {
+		errno = 0;
+		PyFPE_START_PROTECT("in math_ldexp", return 0);
+		r = ldexp(x, (int)exp);
+		PyFPE_END_PROTECT(r);
+		if (Py_IS_INFINITY(r))
+			errno = ERANGE;
+	}
+
+	if (errno && is_error(r))
+		return NULL;
+	return PyFloat_FromDouble(r);
+}
+
+PyDoc_STRVAR(math_ldexp_doc,
+"ldexp(x, i) -> x * (2**i)");
+
+static PyObject *
+math_modf(PyObject *self, PyObject *arg)
+{
+	double y, x = PyFloat_AsDouble(arg);
+	if (x == -1.0 && PyErr_Occurred())
+		return NULL;
+	/* some platforms don't do the right thing for NaNs and
+	   infinities, so we take care of special cases directly. */
+	if (!Py_IS_FINITE(x)) {
+		if (Py_IS_INFINITY(x))
+			return Py_BuildValue("(dd)", copysign(0., x), x);
+		else if (Py_IS_NAN(x))
+			return Py_BuildValue("(dd)", x, x);
+	}          
+
+	errno = 0;
+	PyFPE_START_PROTECT("in math_modf", return 0);
+	x = modf(x, &y);
+	PyFPE_END_PROTECT(x);
+	return Py_BuildValue("(dd)", x, y);
+}
+
+PyDoc_STRVAR(math_modf_doc,
+"modf(x)\n"
+"\n"
+"Return the fractional and integer parts of x.  Both results carry the sign\n"
+"of x.  The integer part is returned as a real.");
+
+/* A decent logarithm is easy to compute even for huge longs, but libm can't
+   do that by itself -- loghelper can.  func is log or log10, and name is
+   "log" or "log10".  Note that overflow isn't possible:  a long can contain
+   no more than INT_MAX * SHIFT bits, so has value certainly less than
+   2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
+   small enough to fit in an IEEE single.  log and log10 are even smaller.
+*/
+
+static PyObject*
+loghelper(PyObject* arg, double (*func)(double), char *funcname)
+{
+	/* If it is long, do it ourselves. */
+	if (PyLong_Check(arg)) {
+		double x;
+		int e;
+		x = _PyLong_AsScaledDouble(arg, &e);
+		if (x <= 0.0) {
+			PyErr_SetString(PyExc_ValueError,
+					"math domain error");
+			return NULL;
+		}
+		/* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
+		   log(x) + log(2) * e * PyLong_SHIFT.
+		   CAUTION:  e*PyLong_SHIFT may overflow using int arithmetic,
+		   so force use of double. */
+		x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
+		return PyFloat_FromDouble(x);
+	}
+
+	/* Else let libm handle it by itself. */
+	return math_1(arg, func, 0);
+}
+
+static PyObject *
+math_log(PyObject *self, PyObject *args)
+{
+	PyObject *arg;
+	PyObject *base = NULL;
+	PyObject *num, *den;
+	PyObject *ans;
+
+	if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
+		return NULL;
+
+	num = loghelper(arg, log, "log");
+	if (num == NULL || base == NULL)
+		return num;
+
+	den = loghelper(base, log, "log");
+	if (den == NULL) {
+		Py_DECREF(num);
+		return NULL;
+	}
+
+	ans = PyNumber_Divide(num, den);
+	Py_DECREF(num);
+	Py_DECREF(den);
+	return ans;
+}
+
+PyDoc_STRVAR(math_log_doc,
+"log(x[, base]) -> the logarithm of x to the given base.\n\
+If the base not specified, returns the natural logarithm (base e) of x.");
+
+static PyObject *
+math_log10(PyObject *self, PyObject *arg)
+{
+	return loghelper(arg, log10, "log10");
+}
+
+PyDoc_STRVAR(math_log10_doc,
+"log10(x) -> the base 10 logarithm of x.");
+
+static PyObject *
+math_fmod(PyObject *self, PyObject *args)
+{
+	PyObject *ox, *oy;
+	double r, x, y;
+	if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
+		return NULL;
+	x = PyFloat_AsDouble(ox);
+	y = PyFloat_AsDouble(oy);
+	if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
+		return NULL;
+	/* fmod(x, +/-Inf) returns x for finite x. */
+	if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
+		return PyFloat_FromDouble(x);
+	errno = 0;
+	PyFPE_START_PROTECT("in math_fmod", return 0);
+	r = fmod(x, y);
+	PyFPE_END_PROTECT(r);
+	if (Py_IS_NAN(r)) {
+		if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
+			errno = EDOM;
+		else
+			errno = 0;
+	}
+	if (errno && is_error(r))
+		return NULL;
+	else
+		return PyFloat_FromDouble(r);
+}
+
+PyDoc_STRVAR(math_fmod_doc,
+"fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
+"  x % y may differ.");
+
+static PyObject *
+math_hypot(PyObject *self, PyObject *args)
+{
+	PyObject *ox, *oy;
+	double r, x, y;
+	if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
+		return NULL;
+	x = PyFloat_AsDouble(ox);
+	y = PyFloat_AsDouble(oy);
+	if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
+		return NULL;
+	/* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
+	if (Py_IS_INFINITY(x))
+		return PyFloat_FromDouble(fabs(x));
+	if (Py_IS_INFINITY(y))
+		return PyFloat_FromDouble(fabs(y));
+	errno = 0;
+	PyFPE_START_PROTECT("in math_hypot", return 0);
+	r = hypot(x, y);
+	PyFPE_END_PROTECT(r);
+	if (Py_IS_NAN(r)) {
+		if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
+			errno = EDOM;
+		else
+			errno = 0;
+	}
+	else if (Py_IS_INFINITY(r)) {
+		if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
+			errno = ERANGE;
+		else
+			errno = 0;
+	}
+	if (errno && is_error(r))
+		return NULL;
+	else
+		return PyFloat_FromDouble(r);
+}
+
+PyDoc_STRVAR(math_hypot_doc,
+"hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
+
+/* pow can't use math_2, but needs its own wrapper: the problem is
+   that an infinite result can arise either as a result of overflow
+   (in which case OverflowError should be raised) or as a result of
+   e.g. 0.**-5. (for which ValueError needs to be raised.)
+*/
+
+static PyObject *
+math_pow(PyObject *self, PyObject *args)
+{
+	PyObject *ox, *oy;
+	double r, x, y;
+	int odd_y;
+
+	if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
+		return NULL;
+	x = PyFloat_AsDouble(ox);
+	y = PyFloat_AsDouble(oy);
+	if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
+		return NULL;
+
+	/* deal directly with IEEE specials, to cope with problems on various
+	   platforms whose semantics don't exactly match C99 */
+	r = 0.; /* silence compiler warning */
+	if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
+		errno = 0;
+		if (Py_IS_NAN(x))
+			r = y == 0. ? 1. : x; /* NaN**0 = 1 */
+		else if (Py_IS_NAN(y))
+			r = x == 1. ? 1. : y; /* 1**NaN = 1 */
+		else if (Py_IS_INFINITY(x)) {
+			odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
+			if (y > 0.)
+				r = odd_y ? x : fabs(x);
+			else if (y == 0.)
+				r = 1.;
+			else /* y < 0. */
+				r = odd_y ? copysign(0., x) : 0.;
+		}
+		else if (Py_IS_INFINITY(y)) {
+			if (fabs(x) == 1.0)
+				r = 1.;
+			else if (y > 0. && fabs(x) > 1.0)
+				r = y;
+			else if (y < 0. && fabs(x) < 1.0) {
+				r = -y; /* result is +inf */
+				if (x == 0.) /* 0**-inf: divide-by-zero */
+					errno = EDOM;
+			}
+			else
+				r = 0.;
+		}
+	}
+	else {
+		/* let libm handle finite**finite */
+		errno = 0;
+		PyFPE_START_PROTECT("in math_pow", return 0);
+		r = pow(x, y);
+		PyFPE_END_PROTECT(r);
+		/* a NaN result should arise only from (-ve)**(finite
+		   non-integer); in this case we want to raise ValueError. */
+		if (!Py_IS_FINITE(r)) {
+			if (Py_IS_NAN(r)) {
+				errno = EDOM;
+			}
+			/* 
+			   an infinite result here arises either from:
+			   (A) (+/-0.)**negative (-> divide-by-zero)
+			   (B) overflow of x**y with x and y finite
+			*/
+			else if (Py_IS_INFINITY(r)) {
+				if (x == 0.)
+					errno = EDOM;
+				else
+					errno = ERANGE;
+			}
+		}
+	}
+
+	if (errno && is_error(r))
+		return NULL;
+	else
+		return PyFloat_FromDouble(r);
+}
+
+PyDoc_STRVAR(math_pow_doc,
+"pow(x,y)\n\nReturn x**y (x to the power of y).");
+
+static const double degToRad = Py_MATH_PI / 180.0;
+static const double radToDeg = 180.0 / Py_MATH_PI;
+
+static PyObject *
+math_degrees(PyObject *self, PyObject *arg)
+{
+	double x = PyFloat_AsDouble(arg);
+	if (x == -1.0 && PyErr_Occurred())
+		return NULL;
+	return PyFloat_FromDouble(x * radToDeg);
+}
+
+PyDoc_STRVAR(math_degrees_doc,
+"degrees(x) -> converts angle x from radians to degrees");
+
+static PyObject *
+math_radians(PyObject *self, PyObject *arg)
+{
+	double x = PyFloat_AsDouble(arg);
+	if (x == -1.0 && PyErr_Occurred())
+		return NULL;
+	return PyFloat_FromDouble(x * degToRad);
+}
+
+PyDoc_STRVAR(math_radians_doc,
+"radians(x) -> converts angle x from degrees to radians");
+
+static PyObject *
+math_isnan(PyObject *self, PyObject *arg)
+{
+	double x = PyFloat_AsDouble(arg);
+	if (x == -1.0 && PyErr_Occurred())
+		return NULL;
+	return PyBool_FromLong((long)Py_IS_NAN(x));
+}
+
+PyDoc_STRVAR(math_isnan_doc,
+"isnan(x) -> bool\n\
+Checks if float x is not a number (NaN)");
+
+static PyObject *
+math_isinf(PyObject *self, PyObject *arg)
+{
+	double x = PyFloat_AsDouble(arg);
+	if (x == -1.0 && PyErr_Occurred())
+		return NULL;
+	return PyBool_FromLong((long)Py_IS_INFINITY(x));
+}
+
+PyDoc_STRVAR(math_isinf_doc,
+"isinf(x) -> bool\n\
+Checks if float x is infinite (positive or negative)");
+
+static PyMethodDef math_methods[] = {
+	{"acos",	math_acos,	METH_O,		math_acos_doc},
+	{"acosh",	math_acosh,	METH_O,		math_acosh_doc},
+	{"asin",	math_asin,	METH_O,		math_asin_doc},
+	{"asinh",	math_asinh,	METH_O,		math_asinh_doc},
+	{"atan",	math_atan,	METH_O,		math_atan_doc},
+	{"atan2",	math_atan2,	METH_VARARGS,	math_atan2_doc},
+	{"atanh",	math_atanh,	METH_O,		math_atanh_doc},
+	{"ceil",	math_ceil,	METH_O,		math_ceil_doc},
+	{"copysign",	math_copysign,	METH_VARARGS,	math_copysign_doc},
+	{"cos",		math_cos,	METH_O,		math_cos_doc},
+	{"cosh",	math_cosh,	METH_O,		math_cosh_doc},
+	{"degrees",	math_degrees,	METH_O,		math_degrees_doc},
+	{"exp",		math_exp,	METH_O,		math_exp_doc},
+	{"fabs",	math_fabs,	METH_O,		math_fabs_doc},
+	{"factorial",	math_factorial,	METH_O,		math_factorial_doc},
+	{"floor",	math_floor,	METH_O,		math_floor_doc},
+	{"fmod",	math_fmod,	METH_VARARGS,	math_fmod_doc},
+	{"frexp",	math_frexp,	METH_O,		math_frexp_doc},
+	{"fsum",	math_fsum,	METH_O,		math_fsum_doc},
+	{"hypot",	math_hypot,	METH_VARARGS,	math_hypot_doc},
+	{"isinf",	math_isinf,	METH_O,		math_isinf_doc},
+	{"isnan",	math_isnan,	METH_O,		math_isnan_doc},
+	{"ldexp",	math_ldexp,	METH_VARARGS,	math_ldexp_doc},
+	{"log",		math_log,	METH_VARARGS,	math_log_doc},
+	{"log1p",	math_log1p,	METH_O,		math_log1p_doc},
+	{"log10",	math_log10,	METH_O,		math_log10_doc},
+	{"modf",	math_modf,	METH_O,		math_modf_doc},
+	{"pow",		math_pow,	METH_VARARGS,	math_pow_doc},
+	{"radians",	math_radians,	METH_O,		math_radians_doc},
+	{"sin",		math_sin,	METH_O,		math_sin_doc},
+	{"sinh",	math_sinh,	METH_O,		math_sinh_doc},
+	{"sqrt",	math_sqrt,	METH_O,		math_sqrt_doc},
+	{"tan",		math_tan,	METH_O,		math_tan_doc},
+	{"tanh",	math_tanh,	METH_O,		math_tanh_doc},
+	{"trunc",	math_trunc,	METH_O,		math_trunc_doc},
+	{NULL,		NULL}		/* sentinel */
+};
+
+
+PyDoc_STRVAR(module_doc,
+"This module is always available.  It provides access to the\n"
+"mathematical functions defined by the C standard.");
+
+PyMODINIT_FUNC
+initmath(void)
+{
+	PyObject *m;
+
+	m = Py_InitModule3("math", math_methods, module_doc);
+	if (m == NULL)
+		goto finally;
+
+	PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
+	PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
+
+    finally:
+	return;
+}