--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Python/bltinmodule.c Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,2927 @@
+/* Built-in functions */
+
+#include "Python.h"
+#include "Python-ast.h"
+
+#include "node.h"
+#include "code.h"
+#include "eval.h"
+
+#include <ctype.h>
+
+#ifdef RISCOS
+#include "unixstuff.h"
+#endif
+
+/* The default encoding used by the platform file system APIs
+ Can remain NULL for all platforms that don't have such a concept
+*/
+#if defined(MS_WINDOWS) && defined(HAVE_USABLE_WCHAR_T)
+const char *Py_FileSystemDefaultEncoding = "mbcs";
+#elif defined(__APPLE__)
+const char *Py_FileSystemDefaultEncoding = "utf-8";
+#else
+const char *Py_FileSystemDefaultEncoding = NULL; /* use default */
+#endif
+
+/* Forward */
+static PyObject *filterstring(PyObject *, PyObject *);
+#ifdef Py_USING_UNICODE
+static PyObject *filterunicode(PyObject *, PyObject *);
+#endif
+static PyObject *filtertuple (PyObject *, PyObject *);
+
+static PyObject *
+builtin___import__(PyObject *self, PyObject *args, PyObject *kwds)
+{
+ static char *kwlist[] = {"name", "globals", "locals", "fromlist",
+ "level", 0};
+ char *name;
+ PyObject *globals = NULL;
+ PyObject *locals = NULL;
+ PyObject *fromlist = NULL;
+ int level = -1;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "s|OOOi:__import__",
+ kwlist, &name, &globals, &locals, &fromlist, &level))
+ return NULL;
+ return PyImport_ImportModuleLevel(name, globals, locals,
+ fromlist, level);
+}
+
+PyDoc_STRVAR(import_doc,
+"__import__(name, globals={}, locals={}, fromlist=[], level=-1) -> module\n\
+\n\
+Import a module. The globals are only used to determine the context;\n\
+they are not modified. The locals are currently unused. The fromlist\n\
+should be a list of names to emulate ``from name import ...'', or an\n\
+empty list to emulate ``import name''.\n\
+When importing a module from a package, note that __import__('A.B', ...)\n\
+returns package A when fromlist is empty, but its submodule B when\n\
+fromlist is not empty. Level is used to determine whether to perform \n\
+absolute or relative imports. -1 is the original strategy of attempting\n\
+both absolute and relative imports, 0 is absolute, a positive number\n\
+is the number of parent directories to search relative to the current module.");
+
+
+static PyObject *
+builtin_abs(PyObject *self, PyObject *v)
+{
+ return PyNumber_Absolute(v);
+}
+
+PyDoc_STRVAR(abs_doc,
+"abs(number) -> number\n\
+\n\
+Return the absolute value of the argument.");
+
+static PyObject *
+builtin_all(PyObject *self, PyObject *v)
+{
+ PyObject *it, *item;
+ PyObject *(*iternext)(PyObject *);
+ int cmp;
+
+ it = PyObject_GetIter(v);
+ if (it == NULL)
+ return NULL;
+ iternext = *Py_TYPE(it)->tp_iternext;
+
+ for (;;) {
+ item = iternext(it);
+ if (item == NULL)
+ break;
+ cmp = PyObject_IsTrue(item);
+ Py_DECREF(item);
+ if (cmp < 0) {
+ Py_DECREF(it);
+ return NULL;
+ }
+ if (cmp == 0) {
+ Py_DECREF(it);
+ Py_RETURN_FALSE;
+ }
+ }
+ Py_DECREF(it);
+ if (PyErr_Occurred()) {
+ if (PyErr_ExceptionMatches(PyExc_StopIteration))
+ PyErr_Clear();
+ else
+ return NULL;
+ }
+ Py_RETURN_TRUE;
+}
+
+PyDoc_STRVAR(all_doc,
+"all(iterable) -> bool\n\
+\n\
+Return True if bool(x) is True for all values x in the iterable.");
+
+static PyObject *
+builtin_any(PyObject *self, PyObject *v)
+{
+ PyObject *it, *item;
+ PyObject *(*iternext)(PyObject *);
+ int cmp;
+
+ it = PyObject_GetIter(v);
+ if (it == NULL)
+ return NULL;
+ iternext = *Py_TYPE(it)->tp_iternext;
+
+ for (;;) {
+ item = iternext(it);
+ if (item == NULL)
+ break;
+ cmp = PyObject_IsTrue(item);
+ Py_DECREF(item);
+ if (cmp < 0) {
+ Py_DECREF(it);
+ return NULL;
+ }
+ if (cmp == 1) {
+ Py_DECREF(it);
+ Py_RETURN_TRUE;
+ }
+ }
+ Py_DECREF(it);
+ if (PyErr_Occurred()) {
+ if (PyErr_ExceptionMatches(PyExc_StopIteration))
+ PyErr_Clear();
+ else
+ return NULL;
+ }
+ Py_RETURN_FALSE;
+}
+
+PyDoc_STRVAR(any_doc,
+"any(iterable) -> bool\n\
+\n\
+Return True if bool(x) is True for any x in the iterable.");
+
+static PyObject *
+builtin_apply(PyObject *self, PyObject *args)
+{
+ PyObject *func, *alist = NULL, *kwdict = NULL;
+ PyObject *t = NULL, *retval = NULL;
+
+ if (PyErr_WarnPy3k("apply() not supported in 3.x; "
+ "use func(*args, **kwargs)", 1) < 0)
+ return NULL;
+
+ if (!PyArg_UnpackTuple(args, "apply", 1, 3, &func, &alist, &kwdict))
+ return NULL;
+ if (alist != NULL) {
+ if (!PyTuple_Check(alist)) {
+ if (!PySequence_Check(alist)) {
+ PyErr_Format(PyExc_TypeError,
+ "apply() arg 2 expected sequence, found %s",
+ alist->ob_type->tp_name);
+ return NULL;
+ }
+ t = PySequence_Tuple(alist);
+ if (t == NULL)
+ return NULL;
+ alist = t;
+ }
+ }
+ if (kwdict != NULL && !PyDict_Check(kwdict)) {
+ PyErr_Format(PyExc_TypeError,
+ "apply() arg 3 expected dictionary, found %s",
+ kwdict->ob_type->tp_name);
+ goto finally;
+ }
+ retval = PyEval_CallObjectWithKeywords(func, alist, kwdict);
+ finally:
+ Py_XDECREF(t);
+ return retval;
+}
+
+PyDoc_STRVAR(apply_doc,
+"apply(object[, args[, kwargs]]) -> value\n\
+\n\
+Call a callable object with positional arguments taken from the tuple args,\n\
+and keyword arguments taken from the optional dictionary kwargs.\n\
+Note that classes are callable, as are instances with a __call__() method.\n\
+\n\
+Deprecated since release 2.3. Instead, use the extended call syntax:\n\
+ function(*args, **keywords).");
+
+
+static PyObject *
+builtin_bin(PyObject *self, PyObject *v)
+{
+ return PyNumber_ToBase(v, 2);
+}
+
+PyDoc_STRVAR(bin_doc,
+"bin(number) -> string\n\
+\n\
+Return the binary representation of an integer or long integer.");
+
+
+static PyObject *
+builtin_callable(PyObject *self, PyObject *v)
+{
+ if (PyErr_WarnPy3k("callable() not supported in 3.x; "
+ "use hasattr(o, '__call__')", 1) < 0)
+ return NULL;
+ return PyBool_FromLong((long)PyCallable_Check(v));
+}
+
+PyDoc_STRVAR(callable_doc,
+"callable(object) -> bool\n\
+\n\
+Return whether the object is callable (i.e., some kind of function).\n\
+Note that classes are callable, as are instances with a __call__() method.");
+
+
+static PyObject *
+builtin_filter(PyObject *self, PyObject *args)
+{
+ PyObject *func, *seq, *result, *it, *arg;
+ Py_ssize_t len; /* guess for result list size */
+ register Py_ssize_t j;
+
+ if (!PyArg_UnpackTuple(args, "filter", 2, 2, &func, &seq))
+ return NULL;
+
+ /* Strings and tuples return a result of the same type. */
+ if (PyString_Check(seq))
+ return filterstring(func, seq);
+#ifdef Py_USING_UNICODE
+ if (PyUnicode_Check(seq))
+ return filterunicode(func, seq);
+#endif
+ if (PyTuple_Check(seq))
+ return filtertuple(func, seq);
+
+ /* Pre-allocate argument list tuple. */
+ arg = PyTuple_New(1);
+ if (arg == NULL)
+ return NULL;
+
+ /* Get iterator. */
+ it = PyObject_GetIter(seq);
+ if (it == NULL)
+ goto Fail_arg;
+
+ /* Guess a result list size. */
+ len = _PyObject_LengthHint(seq, 8);
+
+ /* Get a result list. */
+ if (PyList_Check(seq) && seq->ob_refcnt == 1) {
+ /* Eww - can modify the list in-place. */
+ Py_INCREF(seq);
+ result = seq;
+ }
+ else {
+ result = PyList_New(len);
+ if (result == NULL)
+ goto Fail_it;
+ }
+
+ /* Build the result list. */
+ j = 0;
+ for (;;) {
+ PyObject *item;
+ int ok;
+
+ item = PyIter_Next(it);
+ if (item == NULL) {
+ if (PyErr_Occurred())
+ goto Fail_result_it;
+ break;
+ }
+
+ if (func == (PyObject *)&PyBool_Type || func == Py_None) {
+ ok = PyObject_IsTrue(item);
+ }
+ else {
+ PyObject *good;
+ PyTuple_SET_ITEM(arg, 0, item);
+ good = PyObject_Call(func, arg, NULL);
+ PyTuple_SET_ITEM(arg, 0, NULL);
+ if (good == NULL) {
+ Py_DECREF(item);
+ goto Fail_result_it;
+ }
+ ok = PyObject_IsTrue(good);
+ Py_DECREF(good);
+ }
+ if (ok) {
+ if (j < len)
+ PyList_SET_ITEM(result, j, item);
+ else {
+ int status = PyList_Append(result, item);
+ Py_DECREF(item);
+ if (status < 0)
+ goto Fail_result_it;
+ }
+ ++j;
+ }
+ else
+ Py_DECREF(item);
+ }
+
+
+ /* Cut back result list if len is too big. */
+ if (j < len && PyList_SetSlice(result, j, len, NULL) < 0)
+ goto Fail_result_it;
+
+ Py_DECREF(it);
+ Py_DECREF(arg);
+ return result;
+
+Fail_result_it:
+ Py_DECREF(result);
+Fail_it:
+ Py_DECREF(it);
+Fail_arg:
+ Py_DECREF(arg);
+ return NULL;
+}
+
+PyDoc_STRVAR(filter_doc,
+"filter(function or None, sequence) -> list, tuple, or string\n"
+"\n"
+"Return those items of sequence for which function(item) is true. If\n"
+"function is None, return the items that are true. If sequence is a tuple\n"
+"or string, return the same type, else return a list.");
+
+static PyObject *
+builtin_format(PyObject *self, PyObject *args)
+{
+ PyObject *value;
+ PyObject *format_spec = NULL;
+
+ if (!PyArg_ParseTuple(args, "O|O:format", &value, &format_spec))
+ return NULL;
+
+ return PyObject_Format(value, format_spec);
+}
+
+PyDoc_STRVAR(format_doc,
+"format(value[, format_spec]) -> string\n\
+\n\
+Returns value.__format__(format_spec)\n\
+format_spec defaults to \"\"");
+
+static PyObject *
+builtin_chr(PyObject *self, PyObject *args)
+{
+ long x;
+ char s[1];
+
+ if (!PyArg_ParseTuple(args, "l:chr", &x))
+ return NULL;
+ if (x < 0 || x >= 256) {
+ PyErr_SetString(PyExc_ValueError,
+ "chr() arg not in range(256)");
+ return NULL;
+ }
+ s[0] = (char)x;
+ return PyString_FromStringAndSize(s, 1);
+}
+
+PyDoc_STRVAR(chr_doc,
+"chr(i) -> character\n\
+\n\
+Return a string of one character with ordinal i; 0 <= i < 256.");
+
+
+#ifdef Py_USING_UNICODE
+static PyObject *
+builtin_unichr(PyObject *self, PyObject *args)
+{
+ int x;
+
+ if (!PyArg_ParseTuple(args, "i:unichr", &x))
+ return NULL;
+
+ return PyUnicode_FromOrdinal(x);
+}
+
+PyDoc_STRVAR(unichr_doc,
+"unichr(i) -> Unicode character\n\
+\n\
+Return a Unicode string of one character with ordinal i; 0 <= i <= 0x10ffff.");
+#endif
+
+
+static PyObject *
+builtin_cmp(PyObject *self, PyObject *args)
+{
+ PyObject *a, *b;
+ int c;
+
+ if (!PyArg_UnpackTuple(args, "cmp", 2, 2, &a, &b))
+ return NULL;
+ if (PyObject_Cmp(a, b, &c) < 0)
+ return NULL;
+ return PyInt_FromLong((long)c);
+}
+
+PyDoc_STRVAR(cmp_doc,
+"cmp(x, y) -> integer\n\
+\n\
+Return negative if x<y, zero if x==y, positive if x>y.");
+
+
+static PyObject *
+builtin_coerce(PyObject *self, PyObject *args)
+{
+ PyObject *v, *w;
+ PyObject *res;
+
+ if (PyErr_WarnPy3k("coerce() not supported in 3.x", 1) < 0)
+ return NULL;
+
+ if (!PyArg_UnpackTuple(args, "coerce", 2, 2, &v, &w))
+ return NULL;
+ if (PyNumber_Coerce(&v, &w) < 0)
+ return NULL;
+ res = PyTuple_Pack(2, v, w);
+ Py_DECREF(v);
+ Py_DECREF(w);
+ return res;
+}
+
+PyDoc_STRVAR(coerce_doc,
+"coerce(x, y) -> (x1, y1)\n\
+\n\
+Return a tuple consisting of the two numeric arguments converted to\n\
+a common type, using the same rules as used by arithmetic operations.\n\
+If coercion is not possible, raise TypeError.");
+
+static PyObject *
+builtin_compile(PyObject *self, PyObject *args, PyObject *kwds)
+{
+ char *str;
+ char *filename;
+ char *startstr;
+ int mode = -1;
+ int dont_inherit = 0;
+ int supplied_flags = 0;
+ PyCompilerFlags cf;
+ PyObject *result = NULL, *cmd, *tmp = NULL;
+ Py_ssize_t length;
+ static char *kwlist[] = {"source", "filename", "mode", "flags",
+ "dont_inherit", NULL};
+ int start[] = {Py_file_input, Py_eval_input, Py_single_input};
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "Oss|ii:compile",
+ kwlist, &cmd, &filename, &startstr,
+ &supplied_flags, &dont_inherit))
+ return NULL;
+
+ cf.cf_flags = supplied_flags;
+
+ if (supplied_flags &
+ ~(PyCF_MASK | PyCF_MASK_OBSOLETE | PyCF_DONT_IMPLY_DEDENT | PyCF_ONLY_AST))
+ {
+ PyErr_SetString(PyExc_ValueError,
+ "compile(): unrecognised flags");
+ return NULL;
+ }
+ /* XXX Warn if (supplied_flags & PyCF_MASK_OBSOLETE) != 0? */
+
+ if (!dont_inherit) {
+ PyEval_MergeCompilerFlags(&cf);
+ }
+
+ if (strcmp(startstr, "exec") == 0)
+ mode = 0;
+ else if (strcmp(startstr, "eval") == 0)
+ mode = 1;
+ else if (strcmp(startstr, "single") == 0)
+ mode = 2;
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "compile() arg 3 must be 'exec', 'eval' or 'single'");
+ return NULL;
+ }
+
+ if (PyAST_Check(cmd)) {
+ if (supplied_flags & PyCF_ONLY_AST) {
+ Py_INCREF(cmd);
+ result = cmd;
+ }
+ else {
+ PyArena *arena;
+ mod_ty mod;
+
+ arena = PyArena_New();
+ mod = PyAST_obj2mod(cmd, arena, mode);
+ if (mod == NULL) {
+ PyArena_Free(arena);
+ return NULL;
+ }
+ result = (PyObject*)PyAST_Compile(mod, filename,
+ &cf, arena);
+ PyArena_Free(arena);
+ }
+ return result;
+ }
+
+#ifdef Py_USING_UNICODE
+ if (PyUnicode_Check(cmd)) {
+ tmp = PyUnicode_AsUTF8String(cmd);
+ if (tmp == NULL)
+ return NULL;
+ cmd = tmp;
+ cf.cf_flags |= PyCF_SOURCE_IS_UTF8;
+ }
+#endif
+
+ if (PyObject_AsReadBuffer(cmd, (const void **)&str, &length))
+ goto cleanup;
+ if ((size_t)length != strlen(str)) {
+ PyErr_SetString(PyExc_TypeError,
+ "compile() expected string without null bytes");
+ goto cleanup;
+ }
+ result = Py_CompileStringFlags(str, filename, start[mode], &cf);
+cleanup:
+ Py_XDECREF(tmp);
+ return result;
+}
+
+PyDoc_STRVAR(compile_doc,
+"compile(source, filename, mode[, flags[, dont_inherit]]) -> code object\n\
+\n\
+Compile the source string (a Python module, statement or expression)\n\
+into a code object that can be executed by the exec statement or eval().\n\
+The filename will be used for run-time error messages.\n\
+The mode must be 'exec' to compile a module, 'single' to compile a\n\
+single (interactive) statement, or 'eval' to compile an expression.\n\
+The flags argument, if present, controls which future statements influence\n\
+the compilation of the code.\n\
+The dont_inherit argument, if non-zero, stops the compilation inheriting\n\
+the effects of any future statements in effect in the code calling\n\
+compile; if absent or zero these statements do influence the compilation,\n\
+in addition to any features explicitly specified.");
+
+static PyObject *
+builtin_dir(PyObject *self, PyObject *args)
+{
+ PyObject *arg = NULL;
+
+ if (!PyArg_UnpackTuple(args, "dir", 0, 1, &arg))
+ return NULL;
+ return PyObject_Dir(arg);
+}
+
+PyDoc_STRVAR(dir_doc,
+"dir([object]) -> list of strings\n"
+"\n"
+"If called without an argument, return the names in the current scope.\n"
+"Else, return an alphabetized list of names comprising (some of) the attributes\n"
+"of the given object, and of attributes reachable from it.\n"
+"If the object supplies a method named __dir__, it will be used; otherwise\n"
+"the default dir() logic is used and returns:\n"
+" for a module object: the module's attributes.\n"
+" for a class object: its attributes, and recursively the attributes\n"
+" of its bases.\n"
+" for any other object: its attributes, its class's attributes, and\n"
+" recursively the attributes of its class's base classes.");
+
+static PyObject *
+builtin_divmod(PyObject *self, PyObject *args)
+{
+ PyObject *v, *w;
+
+ if (!PyArg_UnpackTuple(args, "divmod", 2, 2, &v, &w))
+ return NULL;
+ return PyNumber_Divmod(v, w);
+}
+
+PyDoc_STRVAR(divmod_doc,
+"divmod(x, y) -> (div, mod)\n\
+\n\
+Return the tuple ((x-x%y)/y, x%y). Invariant: div*y + mod == x.");
+
+
+static PyObject *
+builtin_eval(PyObject *self, PyObject *args)
+{
+ PyObject *cmd, *result, *tmp = NULL;
+ PyObject *globals = Py_None, *locals = Py_None;
+ char *str;
+ PyCompilerFlags cf;
+
+ if (!PyArg_UnpackTuple(args, "eval", 1, 3, &cmd, &globals, &locals))
+ return NULL;
+ if (locals != Py_None && !PyMapping_Check(locals)) {
+ PyErr_SetString(PyExc_TypeError, "locals must be a mapping");
+ return NULL;
+ }
+ if (globals != Py_None && !PyDict_Check(globals)) {
+ PyErr_SetString(PyExc_TypeError, PyMapping_Check(globals) ?
+ "globals must be a real dict; try eval(expr, {}, mapping)"
+ : "globals must be a dict");
+ return NULL;
+ }
+ if (globals == Py_None) {
+ globals = PyEval_GetGlobals();
+ if (locals == Py_None)
+ locals = PyEval_GetLocals();
+ }
+ else if (locals == Py_None)
+ locals = globals;
+
+ if (globals == NULL || locals == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "eval must be given globals and locals "
+ "when called without a frame");
+ return NULL;
+ }
+
+ if (PyDict_GetItemString(globals, "__builtins__") == NULL) {
+ if (PyDict_SetItemString(globals, "__builtins__",
+ PyEval_GetBuiltins()) != 0)
+ return NULL;
+ }
+
+ if (PyCode_Check(cmd)) {
+ if (PyCode_GetNumFree((PyCodeObject *)cmd) > 0) {
+ PyErr_SetString(PyExc_TypeError,
+ "code object passed to eval() may not contain free variables");
+ return NULL;
+ }
+ return PyEval_EvalCode((PyCodeObject *) cmd, globals, locals);
+ }
+
+ if (!PyString_Check(cmd) &&
+ !PyUnicode_Check(cmd)) {
+ PyErr_SetString(PyExc_TypeError,
+ "eval() arg 1 must be a string or code object");
+ return NULL;
+ }
+ cf.cf_flags = 0;
+
+#ifdef Py_USING_UNICODE
+ if (PyUnicode_Check(cmd)) {
+ tmp = PyUnicode_AsUTF8String(cmd);
+ if (tmp == NULL)
+ return NULL;
+ cmd = tmp;
+ cf.cf_flags |= PyCF_SOURCE_IS_UTF8;
+ }
+#endif
+ if (PyString_AsStringAndSize(cmd, &str, NULL)) {
+ Py_XDECREF(tmp);
+ return NULL;
+ }
+ while (*str == ' ' || *str == '\t')
+ str++;
+
+ (void)PyEval_MergeCompilerFlags(&cf);
+ result = PyRun_StringFlags(str, Py_eval_input, globals, locals, &cf);
+ Py_XDECREF(tmp);
+ return result;
+}
+
+PyDoc_STRVAR(eval_doc,
+"eval(source[, globals[, locals]]) -> value\n\
+\n\
+Evaluate the source in the context of globals and locals.\n\
+The source may be a string representing a Python expression\n\
+or a code object as returned by compile().\n\
+The globals must be a dictionary and locals can be any mapping,\n\
+defaulting to the current globals and locals.\n\
+If only globals is given, locals defaults to it.\n");
+
+
+static PyObject *
+builtin_execfile(PyObject *self, PyObject *args)
+{
+ char *filename;
+ PyObject *globals = Py_None, *locals = Py_None;
+ PyObject *res;
+ FILE* fp = NULL;
+ PyCompilerFlags cf;
+ int exists;
+
+ if (PyErr_WarnPy3k("execfile() not supported in 3.x; use exec()",
+ 1) < 0)
+ return NULL;
+
+ if (!PyArg_ParseTuple(args, "s|O!O:execfile",
+ &filename,
+ &PyDict_Type, &globals,
+ &locals))
+ return NULL;
+ if (locals != Py_None && !PyMapping_Check(locals)) {
+ PyErr_SetString(PyExc_TypeError, "locals must be a mapping");
+ return NULL;
+ }
+ if (globals == Py_None) {
+ globals = PyEval_GetGlobals();
+ if (locals == Py_None)
+ locals = PyEval_GetLocals();
+ }
+ else if (locals == Py_None)
+ locals = globals;
+ if (PyDict_GetItemString(globals, "__builtins__") == NULL) {
+ if (PyDict_SetItemString(globals, "__builtins__",
+ PyEval_GetBuiltins()) != 0)
+ return NULL;
+ }
+
+ exists = 0;
+ /* Test for existence or directory. */
+#if defined(PLAN9)
+ {
+ Dir *d;
+
+ if ((d = dirstat(filename))!=nil) {
+ if(d->mode & DMDIR)
+ werrstr("is a directory");
+ else
+ exists = 1;
+ free(d);
+ }
+ }
+#elif defined(RISCOS)
+ if (object_exists(filename)) {
+ if (isdir(filename))
+ errno = EISDIR;
+ else
+ exists = 1;
+ }
+#else /* standard Posix */
+ {
+ struct stat s;
+ if (stat(filename, &s) == 0) {
+ if (S_ISDIR(s.st_mode))
+# if defined(PYOS_OS2) && defined(PYCC_VACPP)
+ errno = EOS2ERR;
+# else
+ errno = EISDIR;
+# endif
+ else
+ exists = 1;
+ }
+ }
+#endif
+
+ if (exists) {
+ Py_BEGIN_ALLOW_THREADS
+ fp = fopen(filename, "r" PY_STDIOTEXTMODE);
+ Py_END_ALLOW_THREADS
+
+ if (fp == NULL) {
+ exists = 0;
+ }
+ }
+
+ if (!exists) {
+ PyErr_SetFromErrnoWithFilename(PyExc_IOError, filename);
+ return NULL;
+ }
+ cf.cf_flags = 0;
+ if (PyEval_MergeCompilerFlags(&cf))
+ res = PyRun_FileExFlags(fp, filename, Py_file_input, globals,
+ locals, 1, &cf);
+ else
+ res = PyRun_FileEx(fp, filename, Py_file_input, globals,
+ locals, 1);
+ return res;
+}
+
+PyDoc_STRVAR(execfile_doc,
+"execfile(filename[, globals[, locals]])\n\
+\n\
+Read and execute a Python script from a file.\n\
+The globals and locals are dictionaries, defaulting to the current\n\
+globals and locals. If only globals is given, locals defaults to it.");
+
+
+static PyObject *
+builtin_getattr(PyObject *self, PyObject *args)
+{
+ PyObject *v, *result, *dflt = NULL;
+ PyObject *name;
+
+ if (!PyArg_UnpackTuple(args, "getattr", 2, 3, &v, &name, &dflt))
+ return NULL;
+#ifdef Py_USING_UNICODE
+ if (PyUnicode_Check(name)) {
+ name = _PyUnicode_AsDefaultEncodedString(name, NULL);
+ if (name == NULL)
+ return NULL;
+ }
+#endif
+
+ if (!PyString_Check(name)) {
+ PyErr_SetString(PyExc_TypeError,
+ "getattr(): attribute name must be string");
+ return NULL;
+ }
+ result = PyObject_GetAttr(v, name);
+ if (result == NULL && dflt != NULL &&
+ PyErr_ExceptionMatches(PyExc_AttributeError))
+ {
+ PyErr_Clear();
+ Py_INCREF(dflt);
+ result = dflt;
+ }
+ return result;
+}
+
+PyDoc_STRVAR(getattr_doc,
+"getattr(object, name[, default]) -> value\n\
+\n\
+Get a named attribute from an object; getattr(x, 'y') is equivalent to x.y.\n\
+When a default argument is given, it is returned when the attribute doesn't\n\
+exist; without it, an exception is raised in that case.");
+
+
+static PyObject *
+builtin_globals(PyObject *self)
+{
+ PyObject *d;
+
+ d = PyEval_GetGlobals();
+ Py_XINCREF(d);
+ return d;
+}
+
+PyDoc_STRVAR(globals_doc,
+"globals() -> dictionary\n\
+\n\
+Return the dictionary containing the current scope's global variables.");
+
+
+static PyObject *
+builtin_hasattr(PyObject *self, PyObject *args)
+{
+ PyObject *v;
+ PyObject *name;
+
+ if (!PyArg_UnpackTuple(args, "hasattr", 2, 2, &v, &name))
+ return NULL;
+#ifdef Py_USING_UNICODE
+ if (PyUnicode_Check(name)) {
+ name = _PyUnicode_AsDefaultEncodedString(name, NULL);
+ if (name == NULL)
+ return NULL;
+ }
+#endif
+
+ if (!PyString_Check(name)) {
+ PyErr_SetString(PyExc_TypeError,
+ "hasattr(): attribute name must be string");
+ return NULL;
+ }
+ v = PyObject_GetAttr(v, name);
+ if (v == NULL) {
+ if (!PyErr_ExceptionMatches(PyExc_Exception))
+ return NULL;
+ else {
+ PyErr_Clear();
+ Py_INCREF(Py_False);
+ return Py_False;
+ }
+ }
+ Py_DECREF(v);
+ Py_INCREF(Py_True);
+ return Py_True;
+}
+
+PyDoc_STRVAR(hasattr_doc,
+"hasattr(object, name) -> bool\n\
+\n\
+Return whether the object has an attribute with the given name.\n\
+(This is done by calling getattr(object, name) and catching exceptions.)");
+
+
+static PyObject *
+builtin_id(PyObject *self, PyObject *v)
+{
+ return PyLong_FromVoidPtr(v);
+}
+
+PyDoc_STRVAR(id_doc,
+"id(object) -> integer\n\
+\n\
+Return the identity of an object. This is guaranteed to be unique among\n\
+simultaneously existing objects. (Hint: it's the object's memory address.)");
+
+
+static PyObject *
+builtin_map(PyObject *self, PyObject *args)
+{
+ typedef struct {
+ PyObject *it; /* the iterator object */
+ int saw_StopIteration; /* bool: did the iterator end? */
+ } sequence;
+
+ PyObject *func, *result;
+ sequence *seqs = NULL, *sqp;
+ Py_ssize_t n, len;
+ register int i, j;
+
+ n = PyTuple_Size(args);
+ if (n < 2) {
+ PyErr_SetString(PyExc_TypeError,
+ "map() requires at least two args");
+ return NULL;
+ }
+
+ func = PyTuple_GetItem(args, 0);
+ n--;
+
+ if (func == Py_None) {
+ if (PyErr_WarnPy3k("map(None, ...) not supported in 3.x; "
+ "use list(...)", 1) < 0)
+ return NULL;
+ if (n == 1) {
+ /* map(None, S) is the same as list(S). */
+ return PySequence_List(PyTuple_GetItem(args, 1));
+ }
+ }
+
+ /* Get space for sequence descriptors. Must NULL out the iterator
+ * pointers so that jumping to Fail_2 later doesn't see trash.
+ */
+ if ((seqs = PyMem_NEW(sequence, n)) == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ for (i = 0; i < n; ++i) {
+ seqs[i].it = (PyObject*)NULL;
+ seqs[i].saw_StopIteration = 0;
+ }
+
+ /* Do a first pass to obtain iterators for the arguments, and set len
+ * to the largest of their lengths.
+ */
+ len = 0;
+ for (i = 0, sqp = seqs; i < n; ++i, ++sqp) {
+ PyObject *curseq;
+ Py_ssize_t curlen;
+
+ /* Get iterator. */
+ curseq = PyTuple_GetItem(args, i+1);
+ sqp->it = PyObject_GetIter(curseq);
+ if (sqp->it == NULL) {
+ static char errmsg[] =
+ "argument %d to map() must support iteration";
+ char errbuf[sizeof(errmsg) + 25];
+ PyOS_snprintf(errbuf, sizeof(errbuf), errmsg, i+2);
+ PyErr_SetString(PyExc_TypeError, errbuf);
+ goto Fail_2;
+ }
+
+ /* Update len. */
+ curlen = _PyObject_LengthHint(curseq, 8);
+ if (curlen > len)
+ len = curlen;
+ }
+
+ /* Get space for the result list. */
+ if ((result = (PyObject *) PyList_New(len)) == NULL)
+ goto Fail_2;
+
+ /* Iterate over the sequences until all have stopped. */
+ for (i = 0; ; ++i) {
+ PyObject *alist, *item=NULL, *value;
+ int numactive = 0;
+
+ if (func == Py_None && n == 1)
+ alist = NULL;
+ else if ((alist = PyTuple_New(n)) == NULL)
+ goto Fail_1;
+
+ for (j = 0, sqp = seqs; j < n; ++j, ++sqp) {
+ if (sqp->saw_StopIteration) {
+ Py_INCREF(Py_None);
+ item = Py_None;
+ }
+ else {
+ item = PyIter_Next(sqp->it);
+ if (item)
+ ++numactive;
+ else {
+ if (PyErr_Occurred()) {
+ Py_XDECREF(alist);
+ goto Fail_1;
+ }
+ Py_INCREF(Py_None);
+ item = Py_None;
+ sqp->saw_StopIteration = 1;
+ }
+ }
+ if (alist)
+ PyTuple_SET_ITEM(alist, j, item);
+ else
+ break;
+ }
+
+ if (!alist)
+ alist = item;
+
+ if (numactive == 0) {
+ Py_DECREF(alist);
+ break;
+ }
+
+ if (func == Py_None)
+ value = alist;
+ else {
+ value = PyEval_CallObject(func, alist);
+ Py_DECREF(alist);
+ if (value == NULL)
+ goto Fail_1;
+ }
+ if (i >= len) {
+ int status = PyList_Append(result, value);
+ Py_DECREF(value);
+ if (status < 0)
+ goto Fail_1;
+ }
+ else if (PyList_SetItem(result, i, value) < 0)
+ goto Fail_1;
+ }
+
+ if (i < len && PyList_SetSlice(result, i, len, NULL) < 0)
+ goto Fail_1;
+
+ goto Succeed;
+
+Fail_1:
+ Py_DECREF(result);
+Fail_2:
+ result = NULL;
+Succeed:
+ assert(seqs);
+ for (i = 0; i < n; ++i)
+ Py_XDECREF(seqs[i].it);
+ PyMem_DEL(seqs);
+ return result;
+}
+
+PyDoc_STRVAR(map_doc,
+"map(function, sequence[, sequence, ...]) -> list\n\
+\n\
+Return a list of the results of applying the function to the items of\n\
+the argument sequence(s). If more than one sequence is given, the\n\
+function is called with an argument list consisting of the corresponding\n\
+item of each sequence, substituting None for missing values when not all\n\
+sequences have the same length. If the function is None, return a list of\n\
+the items of the sequence (or a list of tuples if more than one sequence).");
+
+
+static PyObject *
+builtin_next(PyObject *self, PyObject *args)
+{
+ PyObject *it, *res;
+ PyObject *def = NULL;
+
+ if (!PyArg_UnpackTuple(args, "next", 1, 2, &it, &def))
+ return NULL;
+ if (!PyIter_Check(it)) {
+ PyErr_Format(PyExc_TypeError,
+ "%.200s object is not an iterator",
+ it->ob_type->tp_name);
+ return NULL;
+ }
+
+ res = (*it->ob_type->tp_iternext)(it);
+ if (res != NULL) {
+ return res;
+ } else if (def != NULL) {
+ if (PyErr_Occurred()) {
+ if (!PyErr_ExceptionMatches(PyExc_StopIteration))
+ return NULL;
+ PyErr_Clear();
+ }
+ Py_INCREF(def);
+ return def;
+ } else if (PyErr_Occurred()) {
+ return NULL;
+ } else {
+ PyErr_SetNone(PyExc_StopIteration);
+ return NULL;
+ }
+}
+
+PyDoc_STRVAR(next_doc,
+"next(iterator[, default])\n\
+\n\
+Return the next item from the iterator. If default is given and the iterator\n\
+is exhausted, it is returned instead of raising StopIteration.");
+
+
+static PyObject *
+builtin_setattr(PyObject *self, PyObject *args)
+{
+ PyObject *v;
+ PyObject *name;
+ PyObject *value;
+
+ if (!PyArg_UnpackTuple(args, "setattr", 3, 3, &v, &name, &value))
+ return NULL;
+ if (PyObject_SetAttr(v, name, value) != 0)
+ return NULL;
+ Py_INCREF(Py_None);
+ return Py_None;
+}
+
+PyDoc_STRVAR(setattr_doc,
+"setattr(object, name, value)\n\
+\n\
+Set a named attribute on an object; setattr(x, 'y', v) is equivalent to\n\
+``x.y = v''.");
+
+
+static PyObject *
+builtin_delattr(PyObject *self, PyObject *args)
+{
+ PyObject *v;
+ PyObject *name;
+
+ if (!PyArg_UnpackTuple(args, "delattr", 2, 2, &v, &name))
+ return NULL;
+ if (PyObject_SetAttr(v, name, (PyObject *)NULL) != 0)
+ return NULL;
+ Py_INCREF(Py_None);
+ return Py_None;
+}
+
+PyDoc_STRVAR(delattr_doc,
+"delattr(object, name)\n\
+\n\
+Delete a named attribute on an object; delattr(x, 'y') is equivalent to\n\
+``del x.y''.");
+
+
+static PyObject *
+builtin_hash(PyObject *self, PyObject *v)
+{
+ long x;
+
+ x = PyObject_Hash(v);
+ if (x == -1)
+ return NULL;
+ return PyInt_FromLong(x);
+}
+
+PyDoc_STRVAR(hash_doc,
+"hash(object) -> integer\n\
+\n\
+Return a hash value for the object. Two objects with the same value have\n\
+the same hash value. The reverse is not necessarily true, but likely.");
+
+
+static PyObject *
+builtin_hex(PyObject *self, PyObject *v)
+{
+ PyNumberMethods *nb;
+ PyObject *res;
+
+ if ((nb = v->ob_type->tp_as_number) == NULL ||
+ nb->nb_hex == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "hex() argument can't be converted to hex");
+ return NULL;
+ }
+ res = (*nb->nb_hex)(v);
+ if (res && !PyString_Check(res)) {
+ PyErr_Format(PyExc_TypeError,
+ "__hex__ returned non-string (type %.200s)",
+ res->ob_type->tp_name);
+ Py_DECREF(res);
+ return NULL;
+ }
+ return res;
+}
+
+PyDoc_STRVAR(hex_doc,
+"hex(number) -> string\n\
+\n\
+Return the hexadecimal representation of an integer or long integer.");
+
+
+static PyObject *builtin_raw_input(PyObject *, PyObject *);
+
+static PyObject *
+builtin_input(PyObject *self, PyObject *args)
+{
+ PyObject *line;
+ char *str;
+ PyObject *res;
+ PyObject *globals, *locals;
+ PyCompilerFlags cf;
+
+ line = builtin_raw_input(self, args);
+ if (line == NULL)
+ return line;
+ if (!PyArg_Parse(line, "s;embedded '\\0' in input line", &str))
+ return NULL;
+ while (*str == ' ' || *str == '\t')
+ str++;
+ globals = PyEval_GetGlobals();
+ locals = PyEval_GetLocals();
+ if (PyDict_GetItemString(globals, "__builtins__") == NULL) {
+ if (PyDict_SetItemString(globals, "__builtins__",
+ PyEval_GetBuiltins()) != 0)
+ return NULL;
+ }
+ cf.cf_flags = 0;
+ PyEval_MergeCompilerFlags(&cf);
+ res = PyRun_StringFlags(str, Py_eval_input, globals, locals, &cf);
+ Py_DECREF(line);
+ return res;
+}
+
+PyDoc_STRVAR(input_doc,
+"input([prompt]) -> value\n\
+\n\
+Equivalent to eval(raw_input(prompt)).");
+
+
+static PyObject *
+builtin_intern(PyObject *self, PyObject *args)
+{
+ PyObject *s;
+ if (!PyArg_ParseTuple(args, "S:intern", &s))
+ return NULL;
+ if (!PyString_CheckExact(s)) {
+ PyErr_SetString(PyExc_TypeError,
+ "can't intern subclass of string");
+ return NULL;
+ }
+ Py_INCREF(s);
+ PyString_InternInPlace(&s);
+ return s;
+}
+
+PyDoc_STRVAR(intern_doc,
+"intern(string) -> string\n\
+\n\
+``Intern'' the given string. This enters the string in the (global)\n\
+table of interned strings whose purpose is to speed up dictionary lookups.\n\
+Return the string itself or the previously interned string object with the\n\
+same value.");
+
+
+static PyObject *
+builtin_iter(PyObject *self, PyObject *args)
+{
+ PyObject *v, *w = NULL;
+
+ if (!PyArg_UnpackTuple(args, "iter", 1, 2, &v, &w))
+ return NULL;
+ if (w == NULL)
+ return PyObject_GetIter(v);
+ if (!PyCallable_Check(v)) {
+ PyErr_SetString(PyExc_TypeError,
+ "iter(v, w): v must be callable");
+ return NULL;
+ }
+ return PyCallIter_New(v, w);
+}
+
+PyDoc_STRVAR(iter_doc,
+"iter(collection) -> iterator\n\
+iter(callable, sentinel) -> iterator\n\
+\n\
+Get an iterator from an object. In the first form, the argument must\n\
+supply its own iterator, or be a sequence.\n\
+In the second form, the callable is called until it returns the sentinel.");
+
+
+static PyObject *
+builtin_len(PyObject *self, PyObject *v)
+{
+ Py_ssize_t res;
+
+ res = PyObject_Size(v);
+ if (res < 0 && PyErr_Occurred())
+ return NULL;
+ return PyInt_FromSsize_t(res);
+}
+
+PyDoc_STRVAR(len_doc,
+"len(object) -> integer\n\
+\n\
+Return the number of items of a sequence or mapping.");
+
+
+static PyObject *
+builtin_locals(PyObject *self)
+{
+ PyObject *d;
+
+ d = PyEval_GetLocals();
+ Py_XINCREF(d);
+ return d;
+}
+
+PyDoc_STRVAR(locals_doc,
+"locals() -> dictionary\n\
+\n\
+Update and return a dictionary containing the current scope's local variables.");
+
+
+static PyObject *
+min_max(PyObject *args, PyObject *kwds, int op)
+{
+ PyObject *v, *it, *item, *val, *maxitem, *maxval, *keyfunc=NULL;
+ const char *name = op == Py_LT ? "min" : "max";
+
+ if (PyTuple_Size(args) > 1)
+ v = args;
+ else if (!PyArg_UnpackTuple(args, (char *)name, 1, 1, &v))
+ return NULL;
+
+ if (kwds != NULL && PyDict_Check(kwds) && PyDict_Size(kwds)) {
+ keyfunc = PyDict_GetItemString(kwds, "key");
+ if (PyDict_Size(kwds)!=1 || keyfunc == NULL) {
+ PyErr_Format(PyExc_TypeError,
+ "%s() got an unexpected keyword argument", name);
+ return NULL;
+ }
+ Py_INCREF(keyfunc);
+ }
+
+ it = PyObject_GetIter(v);
+ if (it == NULL) {
+ Py_XDECREF(keyfunc);
+ return NULL;
+ }
+
+ maxitem = NULL; /* the result */
+ maxval = NULL; /* the value associated with the result */
+ while (( item = PyIter_Next(it) )) {
+ /* get the value from the key function */
+ if (keyfunc != NULL) {
+ val = PyObject_CallFunctionObjArgs(keyfunc, item, NULL);
+ if (val == NULL)
+ goto Fail_it_item;
+ }
+ /* no key function; the value is the item */
+ else {
+ val = item;
+ Py_INCREF(val);
+ }
+
+ /* maximum value and item are unset; set them */
+ if (maxval == NULL) {
+ maxitem = item;
+ maxval = val;
+ }
+ /* maximum value and item are set; update them as necessary */
+ else {
+ int cmp = PyObject_RichCompareBool(val, maxval, op);
+ if (cmp < 0)
+ goto Fail_it_item_and_val;
+ else if (cmp > 0) {
+ Py_DECREF(maxval);
+ Py_DECREF(maxitem);
+ maxval = val;
+ maxitem = item;
+ }
+ else {
+ Py_DECREF(item);
+ Py_DECREF(val);
+ }
+ }
+ }
+ if (PyErr_Occurred())
+ goto Fail_it;
+ if (maxval == NULL) {
+ PyErr_Format(PyExc_ValueError,
+ "%s() arg is an empty sequence", name);
+ assert(maxitem == NULL);
+ }
+ else
+ Py_DECREF(maxval);
+ Py_DECREF(it);
+ Py_XDECREF(keyfunc);
+ return maxitem;
+
+Fail_it_item_and_val:
+ Py_DECREF(val);
+Fail_it_item:
+ Py_DECREF(item);
+Fail_it:
+ Py_XDECREF(maxval);
+ Py_XDECREF(maxitem);
+ Py_DECREF(it);
+ Py_XDECREF(keyfunc);
+ return NULL;
+}
+
+static PyObject *
+builtin_min(PyObject *self, PyObject *args, PyObject *kwds)
+{
+ return min_max(args, kwds, Py_LT);
+}
+
+PyDoc_STRVAR(min_doc,
+"min(iterable[, key=func]) -> value\n\
+min(a, b, c, ...[, key=func]) -> value\n\
+\n\
+With a single iterable argument, return its smallest item.\n\
+With two or more arguments, return the smallest argument.");
+
+
+static PyObject *
+builtin_max(PyObject *self, PyObject *args, PyObject *kwds)
+{
+ return min_max(args, kwds, Py_GT);
+}
+
+PyDoc_STRVAR(max_doc,
+"max(iterable[, key=func]) -> value\n\
+max(a, b, c, ...[, key=func]) -> value\n\
+\n\
+With a single iterable argument, return its largest item.\n\
+With two or more arguments, return the largest argument.");
+
+
+static PyObject *
+builtin_oct(PyObject *self, PyObject *v)
+{
+ PyNumberMethods *nb;
+ PyObject *res;
+
+ if (v == NULL || (nb = v->ob_type->tp_as_number) == NULL ||
+ nb->nb_oct == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "oct() argument can't be converted to oct");
+ return NULL;
+ }
+ res = (*nb->nb_oct)(v);
+ if (res && !PyString_Check(res)) {
+ PyErr_Format(PyExc_TypeError,
+ "__oct__ returned non-string (type %.200s)",
+ res->ob_type->tp_name);
+ Py_DECREF(res);
+ return NULL;
+ }
+ return res;
+}
+
+PyDoc_STRVAR(oct_doc,
+"oct(number) -> string\n\
+\n\
+Return the octal representation of an integer or long integer.");
+
+
+static PyObject *
+builtin_open(PyObject *self, PyObject *args, PyObject *kwds)
+{
+ return PyObject_Call((PyObject*)&PyFile_Type, args, kwds);
+}
+
+PyDoc_STRVAR(open_doc,
+"open(name[, mode[, buffering]]) -> file object\n\
+\n\
+Open a file using the file() type, returns a file object. This is the\n\
+preferred way to open a file.");
+
+
+static PyObject *
+builtin_ord(PyObject *self, PyObject* obj)
+{
+ long ord;
+ Py_ssize_t size;
+
+ if (PyString_Check(obj)) {
+ size = PyString_GET_SIZE(obj);
+ if (size == 1) {
+ ord = (long)((unsigned char)*PyString_AS_STRING(obj));
+ return PyInt_FromLong(ord);
+ }
+ } else if (PyByteArray_Check(obj)) {
+ size = PyByteArray_GET_SIZE(obj);
+ if (size == 1) {
+ ord = (long)((unsigned char)*PyByteArray_AS_STRING(obj));
+ return PyInt_FromLong(ord);
+ }
+
+#ifdef Py_USING_UNICODE
+ } else if (PyUnicode_Check(obj)) {
+ size = PyUnicode_GET_SIZE(obj);
+ if (size == 1) {
+ ord = (long)*PyUnicode_AS_UNICODE(obj);
+ return PyInt_FromLong(ord);
+ }
+#endif
+ } else {
+ PyErr_Format(PyExc_TypeError,
+ "ord() expected string of length 1, but " \
+ "%.200s found", obj->ob_type->tp_name);
+ return NULL;
+ }
+
+ PyErr_Format(PyExc_TypeError,
+ "ord() expected a character, "
+ "but string of length %zd found",
+ size);
+ return NULL;
+}
+
+PyDoc_STRVAR(ord_doc,
+"ord(c) -> integer\n\
+\n\
+Return the integer ordinal of a one-character string.");
+
+
+static PyObject *
+builtin_pow(PyObject *self, PyObject *args)
+{
+ PyObject *v, *w, *z = Py_None;
+
+ if (!PyArg_UnpackTuple(args, "pow", 2, 3, &v, &w, &z))
+ return NULL;
+ return PyNumber_Power(v, w, z);
+}
+
+PyDoc_STRVAR(pow_doc,
+"pow(x, y[, z]) -> number\n\
+\n\
+With two arguments, equivalent to x**y. With three arguments,\n\
+equivalent to (x**y) % z, but may be more efficient (e.g. for longs).");
+
+
+static PyObject *
+builtin_print(PyObject *self, PyObject *args, PyObject *kwds)
+{
+ static char *kwlist[] = {"sep", "end", "file", 0};
+ static PyObject *dummy_args;
+ PyObject *sep = NULL, *end = NULL, *file = NULL;
+ int i, err;
+
+ if (dummy_args == NULL) {
+ if (!(dummy_args = PyTuple_New(0)))
+ return NULL;
+ }
+ if (!PyArg_ParseTupleAndKeywords(dummy_args, kwds, "|OOO:print",
+ kwlist, &sep, &end, &file))
+ return NULL;
+ if (file == NULL || file == Py_None) {
+ file = PySys_GetObject("stdout");
+ /* sys.stdout may be None when FILE* stdout isn't connected */
+ if (file == Py_None)
+ Py_RETURN_NONE;
+ }
+
+ if (sep && sep != Py_None && !PyString_Check(sep) &&
+ !PyUnicode_Check(sep)) {
+ PyErr_Format(PyExc_TypeError,
+ "sep must be None, str or unicode, not %.200s",
+ sep->ob_type->tp_name);
+ return NULL;
+ }
+ if (end && end != Py_None && !PyString_Check(end) &&
+ !PyUnicode_Check(end)) {
+ PyErr_Format(PyExc_TypeError,
+ "end must be None, str or unicode, not %.200s",
+ end->ob_type->tp_name);
+ return NULL;
+ }
+
+ for (i = 0; i < PyTuple_Size(args); i++) {
+ if (i > 0) {
+ if (sep == NULL || sep == Py_None)
+ err = PyFile_WriteString(" ", file);
+ else
+ err = PyFile_WriteObject(sep, file,
+ Py_PRINT_RAW);
+ if (err)
+ return NULL;
+ }
+ err = PyFile_WriteObject(PyTuple_GetItem(args, i), file,
+ Py_PRINT_RAW);
+ if (err)
+ return NULL;
+ }
+
+ if (end == NULL || end == Py_None)
+ err = PyFile_WriteString("\n", file);
+ else
+ err = PyFile_WriteObject(end, file, Py_PRINT_RAW);
+ if (err)
+ return NULL;
+
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(print_doc,
+"print(value, ..., sep=' ', end='\\n', file=sys.stdout)\n\
+\n\
+Prints the values to a stream, or to sys.stdout by default.\n\
+Optional keyword arguments:\n\
+file: a file-like object (stream); defaults to the current sys.stdout.\n\
+sep: string inserted between values, default a space.\n\
+end: string appended after the last value, default a newline.");
+
+
+/* Return number of items in range (lo, hi, step), when arguments are
+ * PyInt or PyLong objects. step > 0 required. Return a value < 0 if
+ * & only if the true value is too large to fit in a signed long.
+ * Arguments MUST return 1 with either PyInt_Check() or
+ * PyLong_Check(). Return -1 when there is an error.
+ */
+static long
+get_len_of_range_longs(PyObject *lo, PyObject *hi, PyObject *step)
+{
+ /* -------------------------------------------------------------
+ Algorithm is equal to that of get_len_of_range(), but it operates
+ on PyObjects (which are assumed to be PyLong or PyInt objects).
+ ---------------------------------------------------------------*/
+ long n;
+ PyObject *diff = NULL;
+ PyObject *one = NULL;
+ PyObject *tmp1 = NULL, *tmp2 = NULL, *tmp3 = NULL;
+ /* holds sub-expression evaluations */
+
+ /* if (lo >= hi), return length of 0. */
+ if (PyObject_Compare(lo, hi) >= 0)
+ return 0;
+
+ if ((one = PyLong_FromLong(1L)) == NULL)
+ goto Fail;
+
+ if ((tmp1 = PyNumber_Subtract(hi, lo)) == NULL)
+ goto Fail;
+
+ if ((diff = PyNumber_Subtract(tmp1, one)) == NULL)
+ goto Fail;
+
+ if ((tmp2 = PyNumber_FloorDivide(diff, step)) == NULL)
+ goto Fail;
+
+ if ((tmp3 = PyNumber_Add(tmp2, one)) == NULL)
+ goto Fail;
+
+ n = PyLong_AsLong(tmp3);
+ if (PyErr_Occurred()) { /* Check for Overflow */
+ PyErr_Clear();
+ goto Fail;
+ }
+
+ Py_DECREF(tmp3);
+ Py_DECREF(tmp2);
+ Py_DECREF(diff);
+ Py_DECREF(tmp1);
+ Py_DECREF(one);
+ return n;
+
+ Fail:
+ Py_XDECREF(tmp3);
+ Py_XDECREF(tmp2);
+ Py_XDECREF(diff);
+ Py_XDECREF(tmp1);
+ Py_XDECREF(one);
+ return -1;
+}
+
+/* An extension of builtin_range() that handles the case when PyLong
+ * arguments are given. */
+static PyObject *
+handle_range_longs(PyObject *self, PyObject *args)
+{
+ PyObject *ilow;
+ PyObject *ihigh = NULL;
+ PyObject *istep = NULL;
+
+ PyObject *curnum = NULL;
+ PyObject *v = NULL;
+ long bign;
+ int i, n;
+ int cmp_result;
+
+ PyObject *zero = PyLong_FromLong(0);
+
+ if (zero == NULL)
+ return NULL;
+
+ if (!PyArg_UnpackTuple(args, "range", 1, 3, &ilow, &ihigh, &istep)) {
+ Py_DECREF(zero);
+ return NULL;
+ }
+
+ /* Figure out which way we were called, supply defaults, and be
+ * sure to incref everything so that the decrefs at the end
+ * are correct.
+ */
+ assert(ilow != NULL);
+ if (ihigh == NULL) {
+ /* only 1 arg -- it's the upper limit */
+ ihigh = ilow;
+ ilow = NULL;
+ }
+ assert(ihigh != NULL);
+ Py_INCREF(ihigh);
+
+ /* ihigh correct now; do ilow */
+ if (ilow == NULL)
+ ilow = zero;
+ Py_INCREF(ilow);
+
+ /* ilow and ihigh correct now; do istep */
+ if (istep == NULL) {
+ istep = PyLong_FromLong(1L);
+ if (istep == NULL)
+ goto Fail;
+ }
+ else {
+ Py_INCREF(istep);
+ }
+
+ if (!PyInt_Check(ilow) && !PyLong_Check(ilow)) {
+ PyErr_Format(PyExc_TypeError,
+ "range() integer start argument expected, got %s.",
+ ilow->ob_type->tp_name);
+ goto Fail;
+ }
+
+ if (!PyInt_Check(ihigh) && !PyLong_Check(ihigh)) {
+ PyErr_Format(PyExc_TypeError,
+ "range() integer end argument expected, got %s.",
+ ihigh->ob_type->tp_name);
+ goto Fail;
+ }
+
+ if (!PyInt_Check(istep) && !PyLong_Check(istep)) {
+ PyErr_Format(PyExc_TypeError,
+ "range() integer step argument expected, got %s.",
+ istep->ob_type->tp_name);
+ goto Fail;
+ }
+
+ if (PyObject_Cmp(istep, zero, &cmp_result) == -1)
+ goto Fail;
+ if (cmp_result == 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "range() step argument must not be zero");
+ goto Fail;
+ }
+
+ if (cmp_result > 0)
+ bign = get_len_of_range_longs(ilow, ihigh, istep);
+ else {
+ PyObject *neg_istep = PyNumber_Negative(istep);
+ if (neg_istep == NULL)
+ goto Fail;
+ bign = get_len_of_range_longs(ihigh, ilow, neg_istep);
+ Py_DECREF(neg_istep);
+ }
+
+ n = (int)bign;
+ if (bign < 0 || (long)n != bign) {
+ PyErr_SetString(PyExc_OverflowError,
+ "range() result has too many items");
+ goto Fail;
+ }
+
+ v = PyList_New(n);
+ if (v == NULL)
+ goto Fail;
+
+ curnum = ilow;
+ Py_INCREF(curnum);
+
+ for (i = 0; i < n; i++) {
+ PyObject *w = PyNumber_Long(curnum);
+ PyObject *tmp_num;
+ if (w == NULL)
+ goto Fail;
+
+ PyList_SET_ITEM(v, i, w);
+
+ tmp_num = PyNumber_Add(curnum, istep);
+ if (tmp_num == NULL)
+ goto Fail;
+
+ Py_DECREF(curnum);
+ curnum = tmp_num;
+ }
+ Py_DECREF(ilow);
+ Py_DECREF(ihigh);
+ Py_DECREF(istep);
+ Py_DECREF(zero);
+ Py_DECREF(curnum);
+ return v;
+
+ Fail:
+ Py_DECREF(ilow);
+ Py_DECREF(ihigh);
+ Py_XDECREF(istep);
+ Py_DECREF(zero);
+ Py_XDECREF(curnum);
+ Py_XDECREF(v);
+ return NULL;
+}
+
+/* Return number of items in range/xrange (lo, hi, step). step > 0
+ * required. Return a value < 0 if & only if the true value is too
+ * large to fit in a signed long.
+ */
+static long
+get_len_of_range(long lo, long hi, long step)
+{
+ /* -------------------------------------------------------------
+ If lo >= hi, the range is empty.
+ Else if n values are in the range, the last one is
+ lo + (n-1)*step, which must be <= hi-1. Rearranging,
+ n <= (hi - lo - 1)/step + 1, so taking the floor of the RHS gives
+ the proper value. Since lo < hi in this case, hi-lo-1 >= 0, so
+ the RHS is non-negative and so truncation is the same as the
+ floor. Letting M be the largest positive long, the worst case
+ for the RHS numerator is hi=M, lo=-M-1, and then
+ hi-lo-1 = M-(-M-1)-1 = 2*M. Therefore unsigned long has enough
+ precision to compute the RHS exactly.
+ ---------------------------------------------------------------*/
+ long n = 0;
+ if (lo < hi) {
+ unsigned long uhi = (unsigned long)hi;
+ unsigned long ulo = (unsigned long)lo;
+ unsigned long diff = uhi - ulo - 1;
+ n = (long)(diff / (unsigned long)step + 1);
+ }
+ return n;
+}
+
+static PyObject *
+builtin_range(PyObject *self, PyObject *args)
+{
+ long ilow = 0, ihigh = 0, istep = 1;
+ long bign;
+ int i, n;
+
+ PyObject *v;
+
+ if (PyTuple_Size(args) <= 1) {
+ if (!PyArg_ParseTuple(args,
+ "l;range() requires 1-3 int arguments",
+ &ihigh)) {
+ PyErr_Clear();
+ return handle_range_longs(self, args);
+ }
+ }
+ else {
+ if (!PyArg_ParseTuple(args,
+ "ll|l;range() requires 1-3 int arguments",
+ &ilow, &ihigh, &istep)) {
+ PyErr_Clear();
+ return handle_range_longs(self, args);
+ }
+ }
+ if (istep == 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "range() step argument must not be zero");
+ return NULL;
+ }
+ if (istep > 0)
+ bign = get_len_of_range(ilow, ihigh, istep);
+ else
+ bign = get_len_of_range(ihigh, ilow, -istep);
+ n = (int)bign;
+ if (bign < 0 || (long)n != bign) {
+ PyErr_SetString(PyExc_OverflowError,
+ "range() result has too many items");
+ return NULL;
+ }
+ v = PyList_New(n);
+ if (v == NULL)
+ return NULL;
+ for (i = 0; i < n; i++) {
+ PyObject *w = PyInt_FromLong(ilow);
+ if (w == NULL) {
+ Py_DECREF(v);
+ return NULL;
+ }
+ PyList_SET_ITEM(v, i, w);
+ ilow += istep;
+ }
+ return v;
+}
+
+PyDoc_STRVAR(range_doc,
+"range([start,] stop[, step]) -> list of integers\n\
+\n\
+Return a list containing an arithmetic progression of integers.\n\
+range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.\n\
+When step is given, it specifies the increment (or decrement).\n\
+For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!\n\
+These are exactly the valid indices for a list of 4 elements.");
+
+
+static PyObject *
+builtin_raw_input(PyObject *self, PyObject *args)
+{
+ PyObject *v = NULL;
+ PyObject *fin = PySys_GetObject("stdin");
+ PyObject *fout = PySys_GetObject("stdout");
+
+ if (!PyArg_UnpackTuple(args, "[raw_]input", 0, 1, &v))
+ return NULL;
+
+ if (fin == NULL) {
+ PyErr_SetString(PyExc_RuntimeError, "[raw_]input: lost sys.stdin");
+ return NULL;
+ }
+ if (fout == NULL) {
+ PyErr_SetString(PyExc_RuntimeError, "[raw_]input: lost sys.stdout");
+ return NULL;
+ }
+ if (PyFile_SoftSpace(fout, 0)) {
+ if (PyFile_WriteString(" ", fout) != 0)
+ return NULL;
+ }
+ if (PyFile_AsFile(fin) && PyFile_AsFile(fout)
+ && isatty(fileno(PyFile_AsFile(fin)))
+ && isatty(fileno(PyFile_AsFile(fout)))) {
+ PyObject *po;
+ char *prompt;
+ char *s;
+ PyObject *result;
+ if (v != NULL) {
+ po = PyObject_Str(v);
+ if (po == NULL)
+ return NULL;
+ prompt = PyString_AsString(po);
+ if (prompt == NULL)
+ return NULL;
+ }
+ else {
+ po = NULL;
+ prompt = "";
+ }
+ s = PyOS_Readline(PyFile_AsFile(fin), PyFile_AsFile(fout),
+ prompt);
+ Py_XDECREF(po);
+ if (s == NULL) {
+ if (!PyErr_Occurred())
+ PyErr_SetNone(PyExc_KeyboardInterrupt);
+ return NULL;
+ }
+ if (*s == '\0') {
+ PyErr_SetNone(PyExc_EOFError);
+ result = NULL;
+ }
+ else { /* strip trailing '\n' */
+ size_t len = strlen(s);
+ if (len > PY_SSIZE_T_MAX) {
+ PyErr_SetString(PyExc_OverflowError,
+ "[raw_]input: input too long");
+ result = NULL;
+ }
+ else {
+ result = PyString_FromStringAndSize(s, len-1);
+ }
+ }
+ PyMem_FREE(s);
+ return result;
+ }
+ if (v != NULL) {
+ if (PyFile_WriteObject(v, fout, Py_PRINT_RAW) != 0)
+ return NULL;
+ }
+ return PyFile_GetLine(fin, -1);
+}
+
+PyDoc_STRVAR(raw_input_doc,
+"raw_input([prompt]) -> string\n\
+\n\
+Read a string from standard input. The trailing newline is stripped.\n\
+If the user hits EOF (Unix: Ctl-D, Windows: Ctl-Z+Return), raise EOFError.\n\
+On Unix, GNU readline is used if enabled. The prompt string, if given,\n\
+is printed without a trailing newline before reading.");
+
+
+static PyObject *
+builtin_reduce(PyObject *self, PyObject *args)
+{
+ static PyObject *functools_reduce = NULL;
+
+ if (PyErr_WarnPy3k("reduce() not supported in 3.x; "
+ "use functools.reduce()", 1) < 0)
+ return NULL;
+
+ if (functools_reduce == NULL) {
+ PyObject *functools = PyImport_ImportModule("functools");
+ if (functools == NULL)
+ return NULL;
+ functools_reduce = PyObject_GetAttrString(functools, "reduce");
+ Py_DECREF(functools);
+ if (functools_reduce == NULL)
+ return NULL;
+ }
+ return PyObject_Call(functools_reduce, args, NULL);
+}
+
+PyDoc_STRVAR(reduce_doc,
+"reduce(function, sequence[, initial]) -> value\n\
+\n\
+Apply a function of two arguments cumulatively to the items of a sequence,\n\
+from left to right, so as to reduce the sequence to a single value.\n\
+For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates\n\
+((((1+2)+3)+4)+5). If initial is present, it is placed before the items\n\
+of the sequence in the calculation, and serves as a default when the\n\
+sequence is empty.");
+
+
+static PyObject *
+builtin_reload(PyObject *self, PyObject *v)
+{
+ if (PyErr_WarnPy3k("In 3.x, reload() is renamed to imp.reload()",
+ 1) < 0)
+ return NULL;
+
+ return PyImport_ReloadModule(v);
+}
+
+PyDoc_STRVAR(reload_doc,
+"reload(module) -> module\n\
+\n\
+Reload the module. The module must have been successfully imported before.");
+
+
+static PyObject *
+builtin_repr(PyObject *self, PyObject *v)
+{
+ return PyObject_Repr(v);
+}
+
+PyDoc_STRVAR(repr_doc,
+"repr(object) -> string\n\
+\n\
+Return the canonical string representation of the object.\n\
+For most object types, eval(repr(object)) == object.");
+
+
+static PyObject *
+builtin_round(PyObject *self, PyObject *args, PyObject *kwds)
+{
+ double number;
+ double f;
+ int ndigits = 0;
+ int i;
+ static char *kwlist[] = {"number", "ndigits", 0};
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "d|i:round",
+ kwlist, &number, &ndigits))
+ return NULL;
+ f = 1.0;
+ i = abs(ndigits);
+ while (--i >= 0)
+ f = f*10.0;
+ if (ndigits < 0)
+ number /= f;
+ else
+ number *= f;
+ if (number >= 0.0)
+ number = floor(number + 0.5);
+ else
+ number = ceil(number - 0.5);
+ if (ndigits < 0)
+ number *= f;
+ else
+ number /= f;
+ return PyFloat_FromDouble(number);
+}
+
+PyDoc_STRVAR(round_doc,
+"round(number[, ndigits]) -> floating point number\n\
+\n\
+Round a number to a given precision in decimal digits (default 0 digits).\n\
+This always returns a floating point number. Precision may be negative.");
+
+static PyObject *
+builtin_sorted(PyObject *self, PyObject *args, PyObject *kwds)
+{
+ PyObject *newlist, *v, *seq, *compare=NULL, *keyfunc=NULL, *newargs;
+ PyObject *callable;
+ static char *kwlist[] = {"iterable", "cmp", "key", "reverse", 0};
+ int reverse;
+
+ /* args 1-4 should match listsort in Objects/listobject.c */
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|OOi:sorted",
+ kwlist, &seq, &compare, &keyfunc, &reverse))
+ return NULL;
+
+ newlist = PySequence_List(seq);
+ if (newlist == NULL)
+ return NULL;
+
+ callable = PyObject_GetAttrString(newlist, "sort");
+ if (callable == NULL) {
+ Py_DECREF(newlist);
+ return NULL;
+ }
+
+ newargs = PyTuple_GetSlice(args, 1, 4);
+ if (newargs == NULL) {
+ Py_DECREF(newlist);
+ Py_DECREF(callable);
+ return NULL;
+ }
+
+ v = PyObject_Call(callable, newargs, kwds);
+ Py_DECREF(newargs);
+ Py_DECREF(callable);
+ if (v == NULL) {
+ Py_DECREF(newlist);
+ return NULL;
+ }
+ Py_DECREF(v);
+ return newlist;
+}
+
+PyDoc_STRVAR(sorted_doc,
+"sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list");
+
+static PyObject *
+builtin_vars(PyObject *self, PyObject *args)
+{
+ PyObject *v = NULL;
+ PyObject *d;
+
+ if (!PyArg_UnpackTuple(args, "vars", 0, 1, &v))
+ return NULL;
+ if (v == NULL) {
+ d = PyEval_GetLocals();
+ if (d == NULL) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_SystemError,
+ "vars(): no locals!?");
+ }
+ else
+ Py_INCREF(d);
+ }
+ else {
+ d = PyObject_GetAttrString(v, "__dict__");
+ if (d == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "vars() argument must have __dict__ attribute");
+ return NULL;
+ }
+ }
+ return d;
+}
+
+PyDoc_STRVAR(vars_doc,
+"vars([object]) -> dictionary\n\
+\n\
+Without arguments, equivalent to locals().\n\
+With an argument, equivalent to object.__dict__.");
+
+
+static PyObject*
+builtin_sum(PyObject *self, PyObject *args)
+{
+ PyObject *seq;
+ PyObject *result = NULL;
+ PyObject *temp, *item, *iter;
+
+ if (!PyArg_UnpackTuple(args, "sum", 1, 2, &seq, &result))
+ return NULL;
+
+ iter = PyObject_GetIter(seq);
+ if (iter == NULL)
+ return NULL;
+
+ if (result == NULL) {
+ result = PyInt_FromLong(0);
+ if (result == NULL) {
+ Py_DECREF(iter);
+ return NULL;
+ }
+ } else {
+ /* reject string values for 'start' parameter */
+ if (PyObject_TypeCheck(result, &PyBaseString_Type)) {
+ PyErr_SetString(PyExc_TypeError,
+ "sum() can't sum strings [use ''.join(seq) instead]");
+ Py_DECREF(iter);
+ return NULL;
+ }
+ Py_INCREF(result);
+ }
+
+#ifndef SLOW_SUM
+ /* Fast addition by keeping temporary sums in C instead of new Python objects.
+ Assumes all inputs are the same type. If the assumption fails, default
+ to the more general routine.
+ */
+ if (PyInt_CheckExact(result)) {
+ long i_result = PyInt_AS_LONG(result);
+ Py_DECREF(result);
+ result = NULL;
+ while(result == NULL) {
+ item = PyIter_Next(iter);
+ if (item == NULL) {
+ Py_DECREF(iter);
+ if (PyErr_Occurred())
+ return NULL;
+ return PyInt_FromLong(i_result);
+ }
+ if (PyInt_CheckExact(item)) {
+ long b = PyInt_AS_LONG(item);
+ long x = i_result + b;
+ if ((x^i_result) >= 0 || (x^b) >= 0) {
+ i_result = x;
+ Py_DECREF(item);
+ continue;
+ }
+ }
+ /* Either overflowed or is not an int. Restore real objects and process normally */
+ result = PyInt_FromLong(i_result);
+ temp = PyNumber_Add(result, item);
+ Py_DECREF(result);
+ Py_DECREF(item);
+ result = temp;
+ if (result == NULL) {
+ Py_DECREF(iter);
+ return NULL;
+ }
+ }
+ }
+
+ if (PyFloat_CheckExact(result)) {
+ double f_result = PyFloat_AS_DOUBLE(result);
+ Py_DECREF(result);
+ result = NULL;
+ while(result == NULL) {
+ item = PyIter_Next(iter);
+ if (item == NULL) {
+ Py_DECREF(iter);
+ if (PyErr_Occurred())
+ return NULL;
+ return PyFloat_FromDouble(f_result);
+ }
+ if (PyFloat_CheckExact(item)) {
+ PyFPE_START_PROTECT("add", Py_DECREF(item); Py_DECREF(iter); return 0)
+ f_result += PyFloat_AS_DOUBLE(item);
+ PyFPE_END_PROTECT(f_result)
+ Py_DECREF(item);
+ continue;
+ }
+ if (PyInt_CheckExact(item)) {
+ PyFPE_START_PROTECT("add", Py_DECREF(item); Py_DECREF(iter); return 0)
+ f_result += (double)PyInt_AS_LONG(item);
+ PyFPE_END_PROTECT(f_result)
+ Py_DECREF(item);
+ continue;
+ }
+ result = PyFloat_FromDouble(f_result);
+ temp = PyNumber_Add(result, item);
+ Py_DECREF(result);
+ Py_DECREF(item);
+ result = temp;
+ if (result == NULL) {
+ Py_DECREF(iter);
+ return NULL;
+ }
+ }
+ }
+#endif
+
+ for(;;) {
+ item = PyIter_Next(iter);
+ if (item == NULL) {
+ /* error, or end-of-sequence */
+ if (PyErr_Occurred()) {
+ Py_DECREF(result);
+ result = NULL;
+ }
+ break;
+ }
+ temp = PyNumber_Add(result, item);
+ Py_DECREF(result);
+ Py_DECREF(item);
+ result = temp;
+ if (result == NULL)
+ break;
+ }
+ Py_DECREF(iter);
+ return result;
+}
+
+PyDoc_STRVAR(sum_doc,
+"sum(sequence[, start]) -> value\n\
+\n\
+Returns the sum of a sequence of numbers (NOT strings) plus the value\n\
+of parameter 'start' (which defaults to 0). When the sequence is\n\
+empty, returns start.");
+
+
+static PyObject *
+builtin_isinstance(PyObject *self, PyObject *args)
+{
+ PyObject *inst;
+ PyObject *cls;
+ int retval;
+
+ if (!PyArg_UnpackTuple(args, "isinstance", 2, 2, &inst, &cls))
+ return NULL;
+
+ retval = PyObject_IsInstance(inst, cls);
+ if (retval < 0)
+ return NULL;
+ return PyBool_FromLong(retval);
+}
+
+PyDoc_STRVAR(isinstance_doc,
+"isinstance(object, class-or-type-or-tuple) -> bool\n\
+\n\
+Return whether an object is an instance of a class or of a subclass thereof.\n\
+With a type as second argument, return whether that is the object's type.\n\
+The form using a tuple, isinstance(x, (A, B, ...)), is a shortcut for\n\
+isinstance(x, A) or isinstance(x, B) or ... (etc.).");
+
+
+static PyObject *
+builtin_issubclass(PyObject *self, PyObject *args)
+{
+ PyObject *derived;
+ PyObject *cls;
+ int retval;
+
+ if (!PyArg_UnpackTuple(args, "issubclass", 2, 2, &derived, &cls))
+ return NULL;
+
+ retval = PyObject_IsSubclass(derived, cls);
+ if (retval < 0)
+ return NULL;
+ return PyBool_FromLong(retval);
+}
+
+PyDoc_STRVAR(issubclass_doc,
+"issubclass(C, B) -> bool\n\
+\n\
+Return whether class C is a subclass (i.e., a derived class) of class B.\n\
+When using a tuple as the second argument issubclass(X, (A, B, ...)),\n\
+is a shortcut for issubclass(X, A) or issubclass(X, B) or ... (etc.).");
+
+
+static PyObject*
+builtin_zip(PyObject *self, PyObject *args)
+{
+ PyObject *ret;
+ const Py_ssize_t itemsize = PySequence_Length(args);
+ Py_ssize_t i;
+ PyObject *itlist; /* tuple of iterators */
+ Py_ssize_t len; /* guess at result length */
+
+ if (itemsize == 0)
+ return PyList_New(0);
+
+ /* args must be a tuple */
+ assert(PyTuple_Check(args));
+
+ /* Guess at result length: the shortest of the input lengths.
+ If some argument refuses to say, we refuse to guess too, lest
+ an argument like xrange(sys.maxint) lead us astray.*/
+ len = -1; /* unknown */
+ for (i = 0; i < itemsize; ++i) {
+ PyObject *item = PyTuple_GET_ITEM(args, i);
+ Py_ssize_t thislen = _PyObject_LengthHint(item, -1);
+ if (thislen < 0) {
+ len = -1;
+ break;
+ }
+ else if (len < 0 || thislen < len)
+ len = thislen;
+ }
+
+ /* allocate result list */
+ if (len < 0)
+ len = 10; /* arbitrary */
+ if ((ret = PyList_New(len)) == NULL)
+ return NULL;
+
+ /* obtain iterators */
+ itlist = PyTuple_New(itemsize);
+ if (itlist == NULL)
+ goto Fail_ret;
+ for (i = 0; i < itemsize; ++i) {
+ PyObject *item = PyTuple_GET_ITEM(args, i);
+ PyObject *it = PyObject_GetIter(item);
+ if (it == NULL) {
+ if (PyErr_ExceptionMatches(PyExc_TypeError))
+ PyErr_Format(PyExc_TypeError,
+ "zip argument #%zd must support iteration",
+ i+1);
+ goto Fail_ret_itlist;
+ }
+ PyTuple_SET_ITEM(itlist, i, it);
+ }
+
+ /* build result into ret list */
+ for (i = 0; ; ++i) {
+ int j;
+ PyObject *next = PyTuple_New(itemsize);
+ if (!next)
+ goto Fail_ret_itlist;
+
+ for (j = 0; j < itemsize; j++) {
+ PyObject *it = PyTuple_GET_ITEM(itlist, j);
+ PyObject *item = PyIter_Next(it);
+ if (!item) {
+ if (PyErr_Occurred()) {
+ Py_DECREF(ret);
+ ret = NULL;
+ }
+ Py_DECREF(next);
+ Py_DECREF(itlist);
+ goto Done;
+ }
+ PyTuple_SET_ITEM(next, j, item);
+ }
+
+ if (i < len)
+ PyList_SET_ITEM(ret, i, next);
+ else {
+ int status = PyList_Append(ret, next);
+ Py_DECREF(next);
+ ++len;
+ if (status < 0)
+ goto Fail_ret_itlist;
+ }
+ }
+
+Done:
+ if (ret != NULL && i < len) {
+ /* The list is too big. */
+ if (PyList_SetSlice(ret, i, len, NULL) < 0)
+ return NULL;
+ }
+ return ret;
+
+Fail_ret_itlist:
+ Py_DECREF(itlist);
+Fail_ret:
+ Py_DECREF(ret);
+ return NULL;
+}
+
+
+PyDoc_STRVAR(zip_doc,
+"zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)]\n\
+\n\
+Return a list of tuples, where each tuple contains the i-th element\n\
+from each of the argument sequences. The returned list is truncated\n\
+in length to the length of the shortest argument sequence.");
+
+
+static PyMethodDef builtin_methods[] = {
+ {"__import__", (PyCFunction)builtin___import__, METH_VARARGS | METH_KEYWORDS, import_doc},
+ {"abs", builtin_abs, METH_O, abs_doc},
+ {"all", builtin_all, METH_O, all_doc},
+ {"any", builtin_any, METH_O, any_doc},
+ {"apply", builtin_apply, METH_VARARGS, apply_doc},
+ {"bin", builtin_bin, METH_O, bin_doc},
+ {"callable", builtin_callable, METH_O, callable_doc},
+ {"chr", builtin_chr, METH_VARARGS, chr_doc},
+ {"cmp", builtin_cmp, METH_VARARGS, cmp_doc},
+ {"coerce", builtin_coerce, METH_VARARGS, coerce_doc},
+ {"compile", (PyCFunction)builtin_compile, METH_VARARGS | METH_KEYWORDS, compile_doc},
+ {"delattr", builtin_delattr, METH_VARARGS, delattr_doc},
+ {"dir", builtin_dir, METH_VARARGS, dir_doc},
+ {"divmod", builtin_divmod, METH_VARARGS, divmod_doc},
+ {"eval", builtin_eval, METH_VARARGS, eval_doc},
+ {"execfile", builtin_execfile, METH_VARARGS, execfile_doc},
+ {"filter", builtin_filter, METH_VARARGS, filter_doc},
+ {"format", builtin_format, METH_VARARGS, format_doc},
+ {"getattr", builtin_getattr, METH_VARARGS, getattr_doc},
+ {"globals", (PyCFunction)builtin_globals, METH_NOARGS, globals_doc},
+ {"hasattr", builtin_hasattr, METH_VARARGS, hasattr_doc},
+ {"hash", builtin_hash, METH_O, hash_doc},
+ {"hex", builtin_hex, METH_O, hex_doc},
+ {"id", builtin_id, METH_O, id_doc},
+ {"input", builtin_input, METH_VARARGS, input_doc},
+ {"intern", builtin_intern, METH_VARARGS, intern_doc},
+ {"isinstance", builtin_isinstance, METH_VARARGS, isinstance_doc},
+ {"issubclass", builtin_issubclass, METH_VARARGS, issubclass_doc},
+ {"iter", builtin_iter, METH_VARARGS, iter_doc},
+ {"len", builtin_len, METH_O, len_doc},
+ {"locals", (PyCFunction)builtin_locals, METH_NOARGS, locals_doc},
+ {"map", builtin_map, METH_VARARGS, map_doc},
+ {"max", (PyCFunction)builtin_max, METH_VARARGS | METH_KEYWORDS, max_doc},
+ {"min", (PyCFunction)builtin_min, METH_VARARGS | METH_KEYWORDS, min_doc},
+ {"next", builtin_next, METH_VARARGS, next_doc},
+ {"oct", builtin_oct, METH_O, oct_doc},
+ {"open", (PyCFunction)builtin_open, METH_VARARGS | METH_KEYWORDS, open_doc},
+ {"ord", builtin_ord, METH_O, ord_doc},
+ {"pow", builtin_pow, METH_VARARGS, pow_doc},
+ {"print", (PyCFunction)builtin_print, METH_VARARGS | METH_KEYWORDS, print_doc},
+ {"range", builtin_range, METH_VARARGS, range_doc},
+ {"raw_input", builtin_raw_input, METH_VARARGS, raw_input_doc},
+ {"reduce", builtin_reduce, METH_VARARGS, reduce_doc},
+ {"reload", builtin_reload, METH_O, reload_doc},
+ {"repr", builtin_repr, METH_O, repr_doc},
+ {"round", (PyCFunction)builtin_round, METH_VARARGS | METH_KEYWORDS, round_doc},
+ {"setattr", builtin_setattr, METH_VARARGS, setattr_doc},
+ {"sorted", (PyCFunction)builtin_sorted, METH_VARARGS | METH_KEYWORDS, sorted_doc},
+ {"sum", builtin_sum, METH_VARARGS, sum_doc},
+#ifdef Py_USING_UNICODE
+ {"unichr", builtin_unichr, METH_VARARGS, unichr_doc},
+#endif
+ {"vars", builtin_vars, METH_VARARGS, vars_doc},
+ {"zip", builtin_zip, METH_VARARGS, zip_doc},
+ {NULL, NULL},
+};
+
+PyDoc_STRVAR(builtin_doc,
+"Built-in functions, exceptions, and other objects.\n\
+\n\
+Noteworthy: None is the `nil' object; Ellipsis represents `...' in slices.");
+
+PyObject *
+_PyBuiltin_Init(void)
+{
+ PyObject *mod, *dict, *debug;
+ mod = Py_InitModule4("__builtin__", builtin_methods,
+ builtin_doc, (PyObject *)NULL,
+ PYTHON_API_VERSION);
+ if (mod == NULL)
+ return NULL;
+ dict = PyModule_GetDict(mod);
+
+#ifdef Py_TRACE_REFS
+ /* __builtin__ exposes a number of statically allocated objects
+ * that, before this code was added in 2.3, never showed up in
+ * the list of "all objects" maintained by Py_TRACE_REFS. As a
+ * result, programs leaking references to None and False (etc)
+ * couldn't be diagnosed by examining sys.getobjects(0).
+ */
+#define ADD_TO_ALL(OBJECT) _Py_AddToAllObjects((PyObject *)(OBJECT), 0)
+#else
+#define ADD_TO_ALL(OBJECT) (void)0
+#endif
+
+#define SETBUILTIN(NAME, OBJECT) \
+ if (PyDict_SetItemString(dict, NAME, (PyObject *)OBJECT) < 0) \
+ return NULL; \
+ ADD_TO_ALL(OBJECT)
+
+ SETBUILTIN("None", Py_None);
+ SETBUILTIN("Ellipsis", Py_Ellipsis);
+ SETBUILTIN("NotImplemented", Py_NotImplemented);
+ SETBUILTIN("False", Py_False);
+ SETBUILTIN("True", Py_True);
+ SETBUILTIN("basestring", &PyBaseString_Type);
+ SETBUILTIN("bool", &PyBool_Type);
+ /* SETBUILTIN("memoryview", &PyMemoryView_Type); */
+ SETBUILTIN("bytearray", &PyByteArray_Type);
+ SETBUILTIN("bytes", &PyString_Type);
+ SETBUILTIN("buffer", &PyBuffer_Type);
+ SETBUILTIN("classmethod", &PyClassMethod_Type);
+#ifndef WITHOUT_COMPLEX
+ SETBUILTIN("complex", &PyComplex_Type);
+#endif
+ SETBUILTIN("dict", &PyDict_Type);
+ SETBUILTIN("enumerate", &PyEnum_Type);
+ SETBUILTIN("file", &PyFile_Type);
+ SETBUILTIN("float", &PyFloat_Type);
+ SETBUILTIN("frozenset", &PyFrozenSet_Type);
+ SETBUILTIN("property", &PyProperty_Type);
+ SETBUILTIN("int", &PyInt_Type);
+ SETBUILTIN("list", &PyList_Type);
+ SETBUILTIN("long", &PyLong_Type);
+ SETBUILTIN("object", &PyBaseObject_Type);
+ SETBUILTIN("reversed", &PyReversed_Type);
+ SETBUILTIN("set", &PySet_Type);
+ SETBUILTIN("slice", &PySlice_Type);
+ SETBUILTIN("staticmethod", &PyStaticMethod_Type);
+ SETBUILTIN("str", &PyString_Type);
+ SETBUILTIN("super", &PySuper_Type);
+ SETBUILTIN("tuple", &PyTuple_Type);
+ SETBUILTIN("type", &PyType_Type);
+ SETBUILTIN("xrange", &PyRange_Type);
+#ifdef Py_USING_UNICODE
+ SETBUILTIN("unicode", &PyUnicode_Type);
+#endif
+ debug = PyBool_FromLong(Py_OptimizeFlag == 0);
+ if (PyDict_SetItemString(dict, "__debug__", debug) < 0) {
+ Py_XDECREF(debug);
+ return NULL;
+ }
+ Py_XDECREF(debug);
+
+ return mod;
+#undef ADD_TO_ALL
+#undef SETBUILTIN
+}
+
+/* Helper for filter(): filter a tuple through a function */
+
+static PyObject *
+filtertuple(PyObject *func, PyObject *tuple)
+{
+ PyObject *result;
+ Py_ssize_t i, j;
+ Py_ssize_t len = PyTuple_Size(tuple);
+
+ if (len == 0) {
+ if (PyTuple_CheckExact(tuple))
+ Py_INCREF(tuple);
+ else
+ tuple = PyTuple_New(0);
+ return tuple;
+ }
+
+ if ((result = PyTuple_New(len)) == NULL)
+ return NULL;
+
+ for (i = j = 0; i < len; ++i) {
+ PyObject *item, *good;
+ int ok;
+
+ if (tuple->ob_type->tp_as_sequence &&
+ tuple->ob_type->tp_as_sequence->sq_item) {
+ item = tuple->ob_type->tp_as_sequence->sq_item(tuple, i);
+ if (item == NULL)
+ goto Fail_1;
+ } else {
+ PyErr_SetString(PyExc_TypeError, "filter(): unsubscriptable tuple");
+ goto Fail_1;
+ }
+ if (func == Py_None) {
+ Py_INCREF(item);
+ good = item;
+ }
+ else {
+ PyObject *arg = PyTuple_Pack(1, item);
+ if (arg == NULL) {
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+ good = PyEval_CallObject(func, arg);
+ Py_DECREF(arg);
+ if (good == NULL) {
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+ }
+ ok = PyObject_IsTrue(good);
+ Py_DECREF(good);
+ if (ok) {
+ if (PyTuple_SetItem(result, j++, item) < 0)
+ goto Fail_1;
+ }
+ else
+ Py_DECREF(item);
+ }
+
+ if (_PyTuple_Resize(&result, j) < 0)
+ return NULL;
+
+ return result;
+
+Fail_1:
+ Py_DECREF(result);
+ return NULL;
+}
+
+
+/* Helper for filter(): filter a string through a function */
+
+static PyObject *
+filterstring(PyObject *func, PyObject *strobj)
+{
+ PyObject *result;
+ Py_ssize_t i, j;
+ Py_ssize_t len = PyString_Size(strobj);
+ Py_ssize_t outlen = len;
+
+ if (func == Py_None) {
+ /* If it's a real string we can return the original,
+ * as no character is ever false and __getitem__
+ * does return this character. If it's a subclass
+ * we must go through the __getitem__ loop */
+ if (PyString_CheckExact(strobj)) {
+ Py_INCREF(strobj);
+ return strobj;
+ }
+ }
+ if ((result = PyString_FromStringAndSize(NULL, len)) == NULL)
+ return NULL;
+
+ for (i = j = 0; i < len; ++i) {
+ PyObject *item;
+ int ok;
+
+ item = (*strobj->ob_type->tp_as_sequence->sq_item)(strobj, i);
+ if (item == NULL)
+ goto Fail_1;
+ if (func==Py_None) {
+ ok = 1;
+ } else {
+ PyObject *arg, *good;
+ arg = PyTuple_Pack(1, item);
+ if (arg == NULL) {
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+ good = PyEval_CallObject(func, arg);
+ Py_DECREF(arg);
+ if (good == NULL) {
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+ ok = PyObject_IsTrue(good);
+ Py_DECREF(good);
+ }
+ if (ok) {
+ Py_ssize_t reslen;
+ if (!PyString_Check(item)) {
+ PyErr_SetString(PyExc_TypeError, "can't filter str to str:"
+ " __getitem__ returned different type");
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+ reslen = PyString_GET_SIZE(item);
+ if (reslen == 1) {
+ PyString_AS_STRING(result)[j++] =
+ PyString_AS_STRING(item)[0];
+ } else {
+ /* do we need more space? */
+ Py_ssize_t need = j;
+
+ /* calculate space requirements while checking for overflow */
+ if (need > PY_SSIZE_T_MAX - reslen) {
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+
+ need += reslen;
+
+ if (need > PY_SSIZE_T_MAX - len) {
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+
+ need += len;
+
+ if (need <= i) {
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+
+ need = need - i - 1;
+
+ assert(need >= 0);
+ assert(outlen >= 0);
+
+ if (need > outlen) {
+ /* overallocate, to avoid reallocations */
+ if (outlen > PY_SSIZE_T_MAX / 2) {
+ Py_DECREF(item);
+ return NULL;
+ }
+
+ if (need<2*outlen) {
+ need = 2*outlen;
+ }
+ if (_PyString_Resize(&result, need)) {
+ Py_DECREF(item);
+ return NULL;
+ }
+ outlen = need;
+ }
+ memcpy(
+ PyString_AS_STRING(result) + j,
+ PyString_AS_STRING(item),
+ reslen
+ );
+ j += reslen;
+ }
+ }
+ Py_DECREF(item);
+ }
+
+ if (j < outlen)
+ _PyString_Resize(&result, j);
+
+ return result;
+
+Fail_1:
+ Py_DECREF(result);
+ return NULL;
+}
+
+#ifdef Py_USING_UNICODE
+/* Helper for filter(): filter a Unicode object through a function */
+
+static PyObject *
+filterunicode(PyObject *func, PyObject *strobj)
+{
+ PyObject *result;
+ register Py_ssize_t i, j;
+ Py_ssize_t len = PyUnicode_GetSize(strobj);
+ Py_ssize_t outlen = len;
+
+ if (func == Py_None) {
+ /* If it's a real string we can return the original,
+ * as no character is ever false and __getitem__
+ * does return this character. If it's a subclass
+ * we must go through the __getitem__ loop */
+ if (PyUnicode_CheckExact(strobj)) {
+ Py_INCREF(strobj);
+ return strobj;
+ }
+ }
+ if ((result = PyUnicode_FromUnicode(NULL, len)) == NULL)
+ return NULL;
+
+ for (i = j = 0; i < len; ++i) {
+ PyObject *item, *arg, *good;
+ int ok;
+
+ item = (*strobj->ob_type->tp_as_sequence->sq_item)(strobj, i);
+ if (item == NULL)
+ goto Fail_1;
+ if (func == Py_None) {
+ ok = 1;
+ } else {
+ arg = PyTuple_Pack(1, item);
+ if (arg == NULL) {
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+ good = PyEval_CallObject(func, arg);
+ Py_DECREF(arg);
+ if (good == NULL) {
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+ ok = PyObject_IsTrue(good);
+ Py_DECREF(good);
+ }
+ if (ok) {
+ Py_ssize_t reslen;
+ if (!PyUnicode_Check(item)) {
+ PyErr_SetString(PyExc_TypeError,
+ "can't filter unicode to unicode:"
+ " __getitem__ returned different type");
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+ reslen = PyUnicode_GET_SIZE(item);
+ if (reslen == 1)
+ PyUnicode_AS_UNICODE(result)[j++] =
+ PyUnicode_AS_UNICODE(item)[0];
+ else {
+ /* do we need more space? */
+ Py_ssize_t need = j + reslen + len - i - 1;
+
+ /* check that didnt overflow */
+ if ((j > PY_SSIZE_T_MAX - reslen) ||
+ ((j + reslen) > PY_SSIZE_T_MAX - len) ||
+ ((j + reslen + len) < i) ||
+ ((j + reslen + len - i) <= 0)) {
+ Py_DECREF(item);
+ return NULL;
+ }
+
+ assert(need >= 0);
+ assert(outlen >= 0);
+
+ if (need > outlen) {
+ /* overallocate,
+ to avoid reallocations */
+ if (need < 2 * outlen) {
+ if (outlen > PY_SSIZE_T_MAX / 2) {
+ Py_DECREF(item);
+ return NULL;
+ } else {
+ need = 2 * outlen;
+ }
+ }
+
+ if (PyUnicode_Resize(
+ &result, need) < 0) {
+ Py_DECREF(item);
+ goto Fail_1;
+ }
+ outlen = need;
+ }
+ memcpy(PyUnicode_AS_UNICODE(result) + j,
+ PyUnicode_AS_UNICODE(item),
+ reslen*sizeof(Py_UNICODE));
+ j += reslen;
+ }
+ }
+ Py_DECREF(item);
+ }
+
+ if (j < outlen)
+ PyUnicode_Resize(&result, j);
+
+ return result;
+
+Fail_1:
+ Py_DECREF(result);
+ return NULL;
+}
+#endif