symbian-qemu-0.9.1-12/qemu-symbian-svp/exec.c
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/qemu-symbian-svp/exec.c	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,3507 @@
+/*
+ *  virtual page mapping and translated block handling
+ *
+ *  Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+#include "config.h"
+#ifdef _WIN32
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#else
+#include <sys/types.h>
+#include <sys/mman.h>
+#endif
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <errno.h>
+#include <unistd.h>
+#include <inttypes.h>
+
+#include "cpu.h"
+#include "exec-all.h"
+#include "qemu-common.h"
+#include "tcg.h"
+#include "hw/hw.h"
+#include "osdep.h"
+#include "kvm.h"
+#if defined(CONFIG_USER_ONLY)
+#include <qemu.h>
+#endif
+
+//#define DEBUG_TB_INVALIDATE
+//#define DEBUG_FLUSH
+//#define DEBUG_TLB
+//#define DEBUG_UNASSIGNED
+
+/* make various TB consistency checks */
+//#define DEBUG_TB_CHECK
+//#define DEBUG_TLB_CHECK
+
+//#define DEBUG_IOPORT
+//#define DEBUG_SUBPAGE
+
+#if !defined(CONFIG_USER_ONLY)
+/* TB consistency checks only implemented for usermode emulation.  */
+#undef DEBUG_TB_CHECK
+#endif
+
+#define SMC_BITMAP_USE_THRESHOLD 10
+
+#define MMAP_AREA_START        0x00000000
+#define MMAP_AREA_END          0xa8000000
+
+#if defined(TARGET_SPARC64)
+#define TARGET_PHYS_ADDR_SPACE_BITS 41
+#elif defined(TARGET_SPARC)
+#define TARGET_PHYS_ADDR_SPACE_BITS 36
+#elif defined(TARGET_ALPHA)
+#define TARGET_PHYS_ADDR_SPACE_BITS 42
+#define TARGET_VIRT_ADDR_SPACE_BITS 42
+#elif defined(TARGET_PPC64)
+#define TARGET_PHYS_ADDR_SPACE_BITS 42
+#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
+#define TARGET_PHYS_ADDR_SPACE_BITS 42
+#elif defined(TARGET_I386) && !defined(USE_KQEMU)
+#define TARGET_PHYS_ADDR_SPACE_BITS 36
+#else
+/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
+#define TARGET_PHYS_ADDR_SPACE_BITS 32
+#endif
+
+static TranslationBlock *tbs;
+int code_gen_max_blocks;
+TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
+static int nb_tbs;
+/* any access to the tbs or the page table must use this lock */
+spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
+
+#if defined(__arm__) || defined(__sparc_v9__)
+/* The prologue must be reachable with a direct jump. ARM and Sparc64
+ have limited branch ranges (possibly also PPC) so place it in a
+ section close to code segment. */
+#define code_gen_section                                \
+    __attribute__((__section__(".gen_code")))           \
+    __attribute__((aligned (32)))
+#else
+#define code_gen_section                                \
+    __attribute__((aligned (32)))
+#endif
+
+uint8_t code_gen_prologue[1024] code_gen_section;
+static uint8_t *code_gen_buffer;
+static unsigned long code_gen_buffer_size;
+/* threshold to flush the translated code buffer */
+static unsigned long code_gen_buffer_max_size;
+uint8_t *code_gen_ptr;
+
+#if !defined(CONFIG_USER_ONLY)
+ram_addr_t phys_ram_size;
+int phys_ram_fd;
+uint8_t *phys_ram_dirty;
+static int in_migration;
+static ram_addr_t phys_ram_alloc_offset = 0;
+#endif
+
+CPUState *first_cpu;
+/* current CPU in the current thread. It is only valid inside
+   cpu_exec() */
+CPUState *cpu_single_env;
+/* 0 = Do not count executed instructions.
+   1 = Precise instruction counting.
+   2 = Adaptive rate instruction counting.  */
+int use_icount = 0;
+/* Current instruction counter.  While executing translated code this may
+   include some instructions that have not yet been executed.  */
+int64_t qemu_icount;
+
+typedef struct PageDesc {
+    /* list of TBs intersecting this ram page */
+    TranslationBlock *first_tb;
+    /* in order to optimize self modifying code, we count the number
+       of lookups we do to a given page to use a bitmap */
+    unsigned int code_write_count;
+    uint8_t *code_bitmap;
+#if defined(CONFIG_USER_ONLY)
+    unsigned long flags;
+#endif
+} PageDesc;
+
+typedef struct PhysPageDesc {
+    /* offset in host memory of the page + io_index in the low bits */
+    ram_addr_t phys_offset;
+    ram_addr_t region_offset;
+} PhysPageDesc;
+
+#define L2_BITS 10
+#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
+/* XXX: this is a temporary hack for alpha target.
+ *      In the future, this is to be replaced by a multi-level table
+ *      to actually be able to handle the complete 64 bits address space.
+ */
+#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
+#else
+#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
+#endif
+
+#define L1_SIZE (1 << L1_BITS)
+#define L2_SIZE (1 << L2_BITS)
+
+unsigned long qemu_real_host_page_size;
+unsigned long qemu_host_page_bits;
+unsigned long qemu_host_page_size;
+unsigned long qemu_host_page_mask;
+
+/* XXX: for system emulation, it could just be an array */
+static PageDesc *l1_map[L1_SIZE];
+static PhysPageDesc **l1_phys_map;
+
+#if !defined(CONFIG_USER_ONLY)
+static void io_mem_init(void);
+
+/* io memory support */
+CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
+CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
+void *io_mem_opaque[IO_MEM_NB_ENTRIES];
+static int io_mem_nb;
+static int io_mem_watch;
+#endif
+
+/* log support */
+static const char *logfilename = "/tmp/qemu.log";
+FILE *logfile;
+int loglevel;
+static int log_append = 0;
+
+/* statistics */
+static int tlb_flush_count;
+static int tb_flush_count;
+static int tb_phys_invalidate_count;
+
+#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
+typedef struct subpage_t {
+    target_phys_addr_t base;
+    CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
+    CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
+    void *opaque[TARGET_PAGE_SIZE][2][4];
+    ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
+} subpage_t;
+
+#ifdef _WIN32
+static void map_exec(void *addr, long size)
+{
+    DWORD old_protect;
+    VirtualProtect(addr, size,
+                   PAGE_EXECUTE_READWRITE, &old_protect);
+    
+}
+#else
+static void map_exec(void *addr, long size)
+{
+    unsigned long start, end, page_size;
+    
+    page_size = getpagesize();
+    start = (unsigned long)addr;
+    start &= ~(page_size - 1);
+    
+    end = (unsigned long)addr + size;
+    end += page_size - 1;
+    end &= ~(page_size - 1);
+    
+    mprotect((void *)start, end - start,
+             PROT_READ | PROT_WRITE | PROT_EXEC);
+}
+#endif
+
+static void page_init(void)
+{
+    /* NOTE: we can always suppose that qemu_host_page_size >=
+       TARGET_PAGE_SIZE */
+#ifdef _WIN32
+    {
+        SYSTEM_INFO system_info;
+
+        GetSystemInfo(&system_info);
+        qemu_real_host_page_size = system_info.dwPageSize;
+    }
+#else
+    qemu_real_host_page_size = getpagesize();
+#endif
+    if (qemu_host_page_size == 0)
+        qemu_host_page_size = qemu_real_host_page_size;
+    if (qemu_host_page_size < TARGET_PAGE_SIZE)
+        qemu_host_page_size = TARGET_PAGE_SIZE;
+    qemu_host_page_bits = 0;
+    while ((1 << qemu_host_page_bits) < qemu_host_page_size)
+        qemu_host_page_bits++;
+    qemu_host_page_mask = ~(qemu_host_page_size - 1);
+    l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
+    memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
+
+#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
+    {
+        long long startaddr, endaddr;
+        FILE *f;
+        int n;
+
+        mmap_lock();
+        last_brk = (unsigned long)sbrk(0);
+        f = fopen("/proc/self/maps", "r");
+        if (f) {
+            do {
+                n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
+                if (n == 2) {
+                    startaddr = MIN(startaddr,
+                                    (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
+                    endaddr = MIN(endaddr,
+                                    (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
+                    page_set_flags(startaddr & TARGET_PAGE_MASK,
+                                   TARGET_PAGE_ALIGN(endaddr),
+                                   PAGE_RESERVED); 
+                }
+            } while (!feof(f));
+            fclose(f);
+        }
+        mmap_unlock();
+    }
+#endif
+}
+
+static inline PageDesc **page_l1_map(target_ulong index)
+{
+#if TARGET_LONG_BITS > 32
+    /* Host memory outside guest VM.  For 32-bit targets we have already
+       excluded high addresses.  */
+    if (index > ((target_ulong)L2_SIZE * L1_SIZE))
+        return NULL;
+#endif
+    return &l1_map[index >> L2_BITS];
+}
+
+static inline PageDesc *page_find_alloc(target_ulong index)
+{
+    PageDesc **lp, *p;
+    lp = page_l1_map(index);
+    if (!lp)
+        return NULL;
+
+    p = *lp;
+    if (!p) {
+        /* allocate if not found */
+#if defined(CONFIG_USER_ONLY)
+        size_t len = sizeof(PageDesc) * L2_SIZE;
+        /* Don't use qemu_malloc because it may recurse.  */
+        p = mmap(0, len, PROT_READ | PROT_WRITE,
+                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+        *lp = p;
+        if (h2g_valid(p)) {
+            unsigned long addr = h2g(p);
+            page_set_flags(addr & TARGET_PAGE_MASK,
+                           TARGET_PAGE_ALIGN(addr + len),
+                           PAGE_RESERVED); 
+        }
+#else
+        p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
+        *lp = p;
+#endif
+    }
+    return p + (index & (L2_SIZE - 1));
+}
+
+static inline PageDesc *page_find(target_ulong index)
+{
+    PageDesc **lp, *p;
+    lp = page_l1_map(index);
+    if (!lp)
+        return NULL;
+
+    p = *lp;
+    if (!p)
+        return 0;
+    return p + (index & (L2_SIZE - 1));
+}
+
+static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
+{
+    void **lp, **p;
+    PhysPageDesc *pd;
+
+    p = (void **)l1_phys_map;
+#if TARGET_PHYS_ADDR_SPACE_BITS > 32
+
+#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
+#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
+#endif
+    lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
+    p = *lp;
+    if (!p) {
+        /* allocate if not found */
+        if (!alloc)
+            return NULL;
+        p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
+        memset(p, 0, sizeof(void *) * L1_SIZE);
+        *lp = p;
+    }
+#endif
+    lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
+    pd = *lp;
+    if (!pd) {
+        int i;
+        /* allocate if not found */
+        if (!alloc)
+            return NULL;
+        pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
+        *lp = pd;
+        for (i = 0; i < L2_SIZE; i++)
+          pd[i].phys_offset = IO_MEM_UNASSIGNED;
+    }
+    return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
+}
+
+static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
+{
+    return phys_page_find_alloc(index, 0);
+}
+
+#if !defined(CONFIG_USER_ONLY)
+static void tlb_protect_code(ram_addr_t ram_addr);
+static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
+                                    target_ulong vaddr);
+#define mmap_lock() do { } while(0)
+#define mmap_unlock() do { } while(0)
+#endif
+
+#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
+
+#if defined(CONFIG_USER_ONLY)
+/* Currently it is not recommanded to allocate big chunks of data in
+   user mode. It will change when a dedicated libc will be used */
+#define USE_STATIC_CODE_GEN_BUFFER
+#endif
+
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
+#endif
+
+static void code_gen_alloc(unsigned long tb_size)
+{
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+    code_gen_buffer = static_code_gen_buffer;
+    code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+    map_exec(code_gen_buffer, code_gen_buffer_size);
+#else
+    code_gen_buffer_size = tb_size;
+    if (code_gen_buffer_size == 0) {
+#if defined(CONFIG_USER_ONLY)
+        /* in user mode, phys_ram_size is not meaningful */
+        code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+#else
+        /* XXX: needs ajustments */
+        code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
+#endif
+    }
+    if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
+        code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
+    /* The code gen buffer location may have constraints depending on
+       the host cpu and OS */
+#if defined(__linux__) 
+    {
+        int flags;
+        void *start = NULL;
+
+        flags = MAP_PRIVATE | MAP_ANONYMOUS;
+#if defined(__x86_64__)
+        flags |= MAP_32BIT;
+        /* Cannot map more than that */
+        if (code_gen_buffer_size > (800 * 1024 * 1024))
+            code_gen_buffer_size = (800 * 1024 * 1024);
+#elif defined(__sparc_v9__)
+        // Map the buffer below 2G, so we can use direct calls and branches
+        flags |= MAP_FIXED;
+        start = (void *) 0x60000000UL;
+        if (code_gen_buffer_size > (512 * 1024 * 1024))
+            code_gen_buffer_size = (512 * 1024 * 1024);
+#elif defined(__arm__)
+        /* Map the buffer below 32M, so we can use direct calls and branches */
+        flags |= MAP_FIXED;
+        start = (void *) 0x01000000UL;
+        if (code_gen_buffer_size > 16 * 1024 * 1024)
+            code_gen_buffer_size = 16 * 1024 * 1024;
+#endif
+        code_gen_buffer = mmap(start, code_gen_buffer_size,
+                               PROT_WRITE | PROT_READ | PROT_EXEC,
+                               flags, -1, 0);
+        if (code_gen_buffer == MAP_FAILED) {
+            fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+            exit(1);
+        }
+    }
+#elif defined(__FreeBSD__)
+    {
+        int flags;
+        void *addr = NULL;
+        flags = MAP_PRIVATE | MAP_ANONYMOUS;
+#if defined(__x86_64__)
+        /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
+         * 0x40000000 is free */
+        flags |= MAP_FIXED;
+        addr = (void *)0x40000000;
+        /* Cannot map more than that */
+        if (code_gen_buffer_size > (800 * 1024 * 1024))
+            code_gen_buffer_size = (800 * 1024 * 1024);
+#endif
+        code_gen_buffer = mmap(addr, code_gen_buffer_size,
+                               PROT_WRITE | PROT_READ | PROT_EXEC, 
+                               flags, -1, 0);
+        if (code_gen_buffer == MAP_FAILED) {
+            fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+            exit(1);
+        }
+    }
+#else
+    code_gen_buffer = qemu_malloc(code_gen_buffer_size);
+    if (!code_gen_buffer) {
+        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+        exit(1);
+    }
+    map_exec(code_gen_buffer, code_gen_buffer_size);
+#endif
+#endif /* !USE_STATIC_CODE_GEN_BUFFER */
+    map_exec(code_gen_prologue, sizeof(code_gen_prologue));
+    code_gen_buffer_max_size = code_gen_buffer_size - 
+        code_gen_max_block_size();
+    code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
+    tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
+}
+
+/* Must be called before using the QEMU cpus. 'tb_size' is the size
+   (in bytes) allocated to the translation buffer. Zero means default
+   size. */
+void cpu_exec_init_all(unsigned long tb_size)
+{
+    cpu_gen_init();
+    code_gen_alloc(tb_size);
+    code_gen_ptr = code_gen_buffer;
+    page_init();
+#if !defined(CONFIG_USER_ONLY)
+    io_mem_init();
+#endif
+}
+
+#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+
+#define CPU_COMMON_SAVE_VERSION 1
+
+static void cpu_common_save(QEMUFile *f, void *opaque)
+{
+    CPUState *env = opaque;
+
+    qemu_put_be32s(f, &env->halted);
+    qemu_put_be32s(f, &env->interrupt_request);
+}
+
+static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
+{
+    CPUState *env = opaque;
+
+    if (version_id != CPU_COMMON_SAVE_VERSION)
+        return -EINVAL;
+
+    qemu_get_be32s(f, &env->halted);
+    qemu_get_be32s(f, &env->interrupt_request);
+    tlb_flush(env, 1);
+
+    return 0;
+}
+#endif
+
+void cpu_exec_init(CPUState *env)
+{
+    CPUState **penv;
+    int cpu_index;
+
+    env->next_cpu = NULL;
+    penv = &first_cpu;
+    cpu_index = 0;
+    while (*penv != NULL) {
+        penv = (CPUState **)&(*penv)->next_cpu;
+        cpu_index++;
+    }
+    env->cpu_index = cpu_index;
+    TAILQ_INIT(&env->breakpoints);
+    TAILQ_INIT(&env->watchpoints);
+    *penv = env;
+#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+    register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
+                    cpu_common_save, cpu_common_load, env);
+    register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
+                    cpu_save, cpu_load, env);
+#endif
+}
+
+static inline void invalidate_page_bitmap(PageDesc *p)
+{
+    if (p->code_bitmap) {
+        qemu_free(p->code_bitmap);
+        p->code_bitmap = NULL;
+    }
+    p->code_write_count = 0;
+}
+
+/* set to NULL all the 'first_tb' fields in all PageDescs */
+static void page_flush_tb(void)
+{
+    int i, j;
+    PageDesc *p;
+
+    for(i = 0; i < L1_SIZE; i++) {
+        p = l1_map[i];
+        if (p) {
+            for(j = 0; j < L2_SIZE; j++) {
+                p->first_tb = NULL;
+                invalidate_page_bitmap(p);
+                p++;
+            }
+        }
+    }
+}
+
+/* flush all the translation blocks */
+/* XXX: tb_flush is currently not thread safe */
+void tb_flush(CPUState *env1)
+{
+    CPUState *env;
+#if defined(DEBUG_FLUSH)
+    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
+           (unsigned long)(code_gen_ptr - code_gen_buffer),
+           nb_tbs, nb_tbs > 0 ?
+           ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
+#endif
+    if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
+        cpu_abort(env1, "Internal error: code buffer overflow\n");
+
+    nb_tbs = 0;
+
+    for(env = first_cpu; env != NULL; env = env->next_cpu) {
+        memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
+    }
+
+    memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
+    page_flush_tb();
+
+    code_gen_ptr = code_gen_buffer;
+    /* XXX: flush processor icache at this point if cache flush is
+       expensive */
+    tb_flush_count++;
+}
+
+#ifdef DEBUG_TB_CHECK
+
+static void tb_invalidate_check(target_ulong address)
+{
+    TranslationBlock *tb;
+    int i;
+    address &= TARGET_PAGE_MASK;
+    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
+        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
+            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
+                  address >= tb->pc + tb->size)) {
+                printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
+                       address, (long)tb->pc, tb->size);
+            }
+        }
+    }
+}
+
+/* verify that all the pages have correct rights for code */
+static void tb_page_check(void)
+{
+    TranslationBlock *tb;
+    int i, flags1, flags2;
+
+    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
+        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
+            flags1 = page_get_flags(tb->pc);
+            flags2 = page_get_flags(tb->pc + tb->size - 1);
+            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
+                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
+                       (long)tb->pc, tb->size, flags1, flags2);
+            }
+        }
+    }
+}
+
+static void tb_jmp_check(TranslationBlock *tb)
+{
+    TranslationBlock *tb1;
+    unsigned int n1;
+
+    /* suppress any remaining jumps to this TB */
+    tb1 = tb->jmp_first;
+    for(;;) {
+        n1 = (long)tb1 & 3;
+        tb1 = (TranslationBlock *)((long)tb1 & ~3);
+        if (n1 == 2)
+            break;
+        tb1 = tb1->jmp_next[n1];
+    }
+    /* check end of list */
+    if (tb1 != tb) {
+        printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
+    }
+}
+
+#endif
+
+/* invalidate one TB */
+static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
+                             int next_offset)
+{
+    TranslationBlock *tb1;
+    for(;;) {
+        tb1 = *ptb;
+        if (tb1 == tb) {
+            *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
+            break;
+        }
+        ptb = (TranslationBlock **)((char *)tb1 + next_offset);
+    }
+}
+
+static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
+{
+    TranslationBlock *tb1;
+    unsigned int n1;
+
+    for(;;) {
+        tb1 = *ptb;
+        n1 = (long)tb1 & 3;
+        tb1 = (TranslationBlock *)((long)tb1 & ~3);
+        if (tb1 == tb) {
+            *ptb = tb1->page_next[n1];
+            break;
+        }
+        ptb = &tb1->page_next[n1];
+    }
+}
+
+static inline void tb_jmp_remove(TranslationBlock *tb, int n)
+{
+    TranslationBlock *tb1, **ptb;
+    unsigned int n1;
+
+    ptb = &tb->jmp_next[n];
+    tb1 = *ptb;
+    if (tb1) {
+        /* find tb(n) in circular list */
+        for(;;) {
+            tb1 = *ptb;
+            n1 = (long)tb1 & 3;
+            tb1 = (TranslationBlock *)((long)tb1 & ~3);
+            if (n1 == n && tb1 == tb)
+                break;
+            if (n1 == 2) {
+                ptb = &tb1->jmp_first;
+            } else {
+                ptb = &tb1->jmp_next[n1];
+            }
+        }
+        /* now we can suppress tb(n) from the list */
+        *ptb = tb->jmp_next[n];
+
+        tb->jmp_next[n] = NULL;
+    }
+}
+
+/* reset the jump entry 'n' of a TB so that it is not chained to
+   another TB */
+static inline void tb_reset_jump(TranslationBlock *tb, int n)
+{
+    tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
+}
+
+void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
+{
+    CPUState *env;
+    PageDesc *p;
+    unsigned int h, n1;
+    target_phys_addr_t phys_pc;
+    TranslationBlock *tb1, *tb2;
+
+    /* remove the TB from the hash list */
+    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+    h = tb_phys_hash_func(phys_pc);
+    tb_remove(&tb_phys_hash[h], tb,
+              offsetof(TranslationBlock, phys_hash_next));
+
+    /* remove the TB from the page list */
+    if (tb->page_addr[0] != page_addr) {
+        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
+        tb_page_remove(&p->first_tb, tb);
+        invalidate_page_bitmap(p);
+    }
+    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
+        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
+        tb_page_remove(&p->first_tb, tb);
+        invalidate_page_bitmap(p);
+    }
+
+    tb_invalidated_flag = 1;
+
+    /* remove the TB from the hash list */
+    h = tb_jmp_cache_hash_func(tb->pc);
+    for(env = first_cpu; env != NULL; env = env->next_cpu) {
+        if (env->tb_jmp_cache[h] == tb)
+            env->tb_jmp_cache[h] = NULL;
+    }
+
+    /* suppress this TB from the two jump lists */
+    tb_jmp_remove(tb, 0);
+    tb_jmp_remove(tb, 1);
+
+    /* suppress any remaining jumps to this TB */
+    tb1 = tb->jmp_first;
+    for(;;) {
+        n1 = (long)tb1 & 3;
+        if (n1 == 2)
+            break;
+        tb1 = (TranslationBlock *)((long)tb1 & ~3);
+        tb2 = tb1->jmp_next[n1];
+        tb_reset_jump(tb1, n1);
+        tb1->jmp_next[n1] = NULL;
+        tb1 = tb2;
+    }
+    tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
+
+    tb_phys_invalidate_count++;
+}
+
+static inline void set_bits(uint8_t *tab, int start, int len)
+{
+    int end, mask, end1;
+
+    end = start + len;
+    tab += start >> 3;
+    mask = 0xff << (start & 7);
+    if ((start & ~7) == (end & ~7)) {
+        if (start < end) {
+            mask &= ~(0xff << (end & 7));
+            *tab |= mask;
+        }
+    } else {
+        *tab++ |= mask;
+        start = (start + 8) & ~7;
+        end1 = end & ~7;
+        while (start < end1) {
+            *tab++ = 0xff;
+            start += 8;
+        }
+        if (start < end) {
+            mask = ~(0xff << (end & 7));
+            *tab |= mask;
+        }
+    }
+}
+
+static void build_page_bitmap(PageDesc *p)
+{
+    int n, tb_start, tb_end;
+    TranslationBlock *tb;
+
+    p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
+    if (!p->code_bitmap)
+        return;
+
+    tb = p->first_tb;
+    while (tb != NULL) {
+        n = (long)tb & 3;
+        tb = (TranslationBlock *)((long)tb & ~3);
+        /* NOTE: this is subtle as a TB may span two physical pages */
+        if (n == 0) {
+            /* NOTE: tb_end may be after the end of the page, but
+               it is not a problem */
+            tb_start = tb->pc & ~TARGET_PAGE_MASK;
+            tb_end = tb_start + tb->size;
+            if (tb_end > TARGET_PAGE_SIZE)
+                tb_end = TARGET_PAGE_SIZE;
+        } else {
+            tb_start = 0;
+            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+        }
+        set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
+        tb = tb->page_next[n];
+    }
+}
+
+TranslationBlock *tb_gen_code(CPUState *env,
+                              target_ulong pc, target_ulong cs_base,
+                              int flags, int cflags)
+{
+    TranslationBlock *tb;
+    uint8_t *tc_ptr;
+    target_ulong phys_pc, phys_page2, virt_page2;
+    int code_gen_size;
+
+    phys_pc = get_phys_addr_code(env, pc);
+    tb = tb_alloc(pc);
+    if (!tb) {
+        /* flush must be done */
+        tb_flush(env);
+        /* cannot fail at this point */
+        tb = tb_alloc(pc);
+        /* Don't forget to invalidate previous TB info.  */
+        tb_invalidated_flag = 1;
+    }
+    tc_ptr = code_gen_ptr;
+    tb->tc_ptr = tc_ptr;
+    tb->cs_base = cs_base;
+    tb->flags = flags;
+    tb->cflags = cflags;
+    cpu_gen_code(env, tb, &code_gen_size);
+    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+
+    /* check next page if needed */
+    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
+    phys_page2 = -1;
+    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
+        phys_page2 = get_phys_addr_code(env, virt_page2);
+    }
+    tb_link_phys(tb, phys_pc, phys_page2);
+    return tb;
+}
+
+/* invalidate all TBs which intersect with the target physical page
+   starting in range [start;end[. NOTE: start and end must refer to
+   the same physical page. 'is_cpu_write_access' should be true if called
+   from a real cpu write access: the virtual CPU will exit the current
+   TB if code is modified inside this TB. */
+void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
+                                   int is_cpu_write_access)
+{
+    TranslationBlock *tb, *tb_next, *saved_tb;
+    CPUState *env = cpu_single_env;
+    target_ulong tb_start, tb_end;
+    PageDesc *p;
+    int n;
+#ifdef TARGET_HAS_PRECISE_SMC
+    int current_tb_not_found = is_cpu_write_access;
+    TranslationBlock *current_tb = NULL;
+    int current_tb_modified = 0;
+    target_ulong current_pc = 0;
+    target_ulong current_cs_base = 0;
+    int current_flags = 0;
+#endif /* TARGET_HAS_PRECISE_SMC */
+
+    p = page_find(start >> TARGET_PAGE_BITS);
+    if (!p)
+        return;
+    if (!p->code_bitmap &&
+        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
+        is_cpu_write_access) {
+        /* build code bitmap */
+        build_page_bitmap(p);
+    }
+
+    /* we remove all the TBs in the range [start, end[ */
+    /* XXX: see if in some cases it could be faster to invalidate all the code */
+    tb = p->first_tb;
+    while (tb != NULL) {
+        n = (long)tb & 3;
+        tb = (TranslationBlock *)((long)tb & ~3);
+        tb_next = tb->page_next[n];
+        /* NOTE: this is subtle as a TB may span two physical pages */
+        if (n == 0) {
+            /* NOTE: tb_end may be after the end of the page, but
+               it is not a problem */
+            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+            tb_end = tb_start + tb->size;
+        } else {
+            tb_start = tb->page_addr[1];
+            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+        }
+        if (!(tb_end <= start || tb_start >= end)) {
+#ifdef TARGET_HAS_PRECISE_SMC
+            if (current_tb_not_found) {
+                current_tb_not_found = 0;
+                current_tb = NULL;
+                if (env->mem_io_pc) {
+                    /* now we have a real cpu fault */
+                    current_tb = tb_find_pc(env->mem_io_pc);
+                }
+            }
+            if (current_tb == tb &&
+                (current_tb->cflags & CF_COUNT_MASK) != 1) {
+                /* If we are modifying the current TB, we must stop
+                its execution. We could be more precise by checking
+                that the modification is after the current PC, but it
+                would require a specialized function to partially
+                restore the CPU state */
+
+                current_tb_modified = 1;
+                cpu_restore_state(current_tb, env,
+                                  env->mem_io_pc, NULL);
+                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
+                                     &current_flags);
+            }
+#endif /* TARGET_HAS_PRECISE_SMC */
+            /* we need to do that to handle the case where a signal
+               occurs while doing tb_phys_invalidate() */
+            saved_tb = NULL;
+            if (env) {
+                saved_tb = env->current_tb;
+                env->current_tb = NULL;
+            }
+            tb_phys_invalidate(tb, -1);
+            if (env) {
+                env->current_tb = saved_tb;
+                if (env->interrupt_request && env->current_tb)
+                    cpu_interrupt(env, env->interrupt_request);
+            }
+        }
+        tb = tb_next;
+    }
+#if !defined(CONFIG_USER_ONLY)
+    /* if no code remaining, no need to continue to use slow writes */
+    if (!p->first_tb) {
+        invalidate_page_bitmap(p);
+        if (is_cpu_write_access) {
+            tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
+        }
+    }
+#endif
+#ifdef TARGET_HAS_PRECISE_SMC
+    if (current_tb_modified) {
+        /* we generate a block containing just the instruction
+           modifying the memory. It will ensure that it cannot modify
+           itself */
+        env->current_tb = NULL;
+        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
+        cpu_resume_from_signal(env, NULL);
+    }
+#endif
+}
+
+/* len must be <= 8 and start must be a multiple of len */
+static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
+{
+    PageDesc *p;
+    int offset, b;
+#if 0
+    if (1) {
+        if (loglevel) {
+            fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
+                   cpu_single_env->mem_io_vaddr, len,
+                   cpu_single_env->eip,
+                   cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
+        }
+    }
+#endif
+    p = page_find(start >> TARGET_PAGE_BITS);
+    if (!p)
+        return;
+    if (p->code_bitmap) {
+        offset = start & ~TARGET_PAGE_MASK;
+        b = p->code_bitmap[offset >> 3] >> (offset & 7);
+        if (b & ((1 << len) - 1))
+            goto do_invalidate;
+    } else {
+    do_invalidate:
+        tb_invalidate_phys_page_range(start, start + len, 1);
+    }
+}
+
+#if !defined(CONFIG_SOFTMMU)
+static void tb_invalidate_phys_page(target_phys_addr_t addr,
+                                    unsigned long pc, void *puc)
+{
+    TranslationBlock *tb;
+    PageDesc *p;
+    int n;
+#ifdef TARGET_HAS_PRECISE_SMC
+    TranslationBlock *current_tb = NULL;
+    CPUState *env = cpu_single_env;
+    int current_tb_modified = 0;
+    target_ulong current_pc = 0;
+    target_ulong current_cs_base = 0;
+    int current_flags = 0;
+#endif
+
+    addr &= TARGET_PAGE_MASK;
+    p = page_find(addr >> TARGET_PAGE_BITS);
+    if (!p)
+        return;
+    tb = p->first_tb;
+#ifdef TARGET_HAS_PRECISE_SMC
+    if (tb && pc != 0) {
+        current_tb = tb_find_pc(pc);
+    }
+#endif
+    while (tb != NULL) {
+        n = (long)tb & 3;
+        tb = (TranslationBlock *)((long)tb & ~3);
+#ifdef TARGET_HAS_PRECISE_SMC
+        if (current_tb == tb &&
+            (current_tb->cflags & CF_COUNT_MASK) != 1) {
+                /* If we are modifying the current TB, we must stop
+                   its execution. We could be more precise by checking
+                   that the modification is after the current PC, but it
+                   would require a specialized function to partially
+                   restore the CPU state */
+
+            current_tb_modified = 1;
+            cpu_restore_state(current_tb, env, pc, puc);
+            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
+                                 &current_flags);
+        }
+#endif /* TARGET_HAS_PRECISE_SMC */
+        tb_phys_invalidate(tb, addr);
+        tb = tb->page_next[n];
+    }
+    p->first_tb = NULL;
+#ifdef TARGET_HAS_PRECISE_SMC
+    if (current_tb_modified) {
+        /* we generate a block containing just the instruction
+           modifying the memory. It will ensure that it cannot modify
+           itself */
+        env->current_tb = NULL;
+        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
+        cpu_resume_from_signal(env, puc);
+    }
+#endif
+}
+#endif
+
+/* add the tb in the target page and protect it if necessary */
+static inline void tb_alloc_page(TranslationBlock *tb,
+                                 unsigned int n, target_ulong page_addr)
+{
+    PageDesc *p;
+    TranslationBlock *last_first_tb;
+
+    tb->page_addr[n] = page_addr;
+    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
+    tb->page_next[n] = p->first_tb;
+    last_first_tb = p->first_tb;
+    p->first_tb = (TranslationBlock *)((long)tb | n);
+    invalidate_page_bitmap(p);
+
+#if defined(TARGET_HAS_SMC) || 1
+
+#if defined(CONFIG_USER_ONLY)
+    if (p->flags & PAGE_WRITE) {
+        target_ulong addr;
+        PageDesc *p2;
+        int prot;
+
+        /* force the host page as non writable (writes will have a
+           page fault + mprotect overhead) */
+        page_addr &= qemu_host_page_mask;
+        prot = 0;
+        for(addr = page_addr; addr < page_addr + qemu_host_page_size;
+            addr += TARGET_PAGE_SIZE) {
+
+            p2 = page_find (addr >> TARGET_PAGE_BITS);
+            if (!p2)
+                continue;
+            prot |= p2->flags;
+            p2->flags &= ~PAGE_WRITE;
+            page_get_flags(addr);
+          }
+        mprotect(g2h(page_addr), qemu_host_page_size,
+                 (prot & PAGE_BITS) & ~PAGE_WRITE);
+#ifdef DEBUG_TB_INVALIDATE
+        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
+               page_addr);
+#endif
+    }
+#else
+    /* if some code is already present, then the pages are already
+       protected. So we handle the case where only the first TB is
+       allocated in a physical page */
+    if (!last_first_tb) {
+        tlb_protect_code(page_addr);
+    }
+#endif
+
+#endif /* TARGET_HAS_SMC */
+}
+
+/* Allocate a new translation block. Flush the translation buffer if
+   too many translation blocks or too much generated code. */
+TranslationBlock *tb_alloc(target_ulong pc)
+{
+    TranslationBlock *tb;
+
+    if (nb_tbs >= code_gen_max_blocks ||
+        (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
+        return NULL;
+    tb = &tbs[nb_tbs++];
+    tb->pc = pc;
+    tb->cflags = 0;
+    return tb;
+}
+
+void tb_free(TranslationBlock *tb)
+{
+    /* In practice this is mostly used for single use temporary TB
+       Ignore the hard cases and just back up if this TB happens to
+       be the last one generated.  */
+    if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
+        code_gen_ptr = tb->tc_ptr;
+        nb_tbs--;
+    }
+}
+
+/* add a new TB and link it to the physical page tables. phys_page2 is
+   (-1) to indicate that only one page contains the TB. */
+void tb_link_phys(TranslationBlock *tb,
+                  target_ulong phys_pc, target_ulong phys_page2)
+{
+    unsigned int h;
+    TranslationBlock **ptb;
+
+    /* Grab the mmap lock to stop another thread invalidating this TB
+       before we are done.  */
+    mmap_lock();
+    /* add in the physical hash table */
+    h = tb_phys_hash_func(phys_pc);
+    ptb = &tb_phys_hash[h];
+    tb->phys_hash_next = *ptb;
+    *ptb = tb;
+
+    /* add in the page list */
+    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
+    if (phys_page2 != -1)
+        tb_alloc_page(tb, 1, phys_page2);
+    else
+        tb->page_addr[1] = -1;
+
+    tb->jmp_first = (TranslationBlock *)((long)tb | 2);
+    tb->jmp_next[0] = NULL;
+    tb->jmp_next[1] = NULL;
+
+    /* init original jump addresses */
+    if (tb->tb_next_offset[0] != 0xffff)
+        tb_reset_jump(tb, 0);
+    if (tb->tb_next_offset[1] != 0xffff)
+        tb_reset_jump(tb, 1);
+
+#ifdef DEBUG_TB_CHECK
+    tb_page_check();
+#endif
+    mmap_unlock();
+}
+
+/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
+   tb[1].tc_ptr. Return NULL if not found */
+TranslationBlock *tb_find_pc(unsigned long tc_ptr)
+{
+    int m_min, m_max, m;
+    unsigned long v;
+    TranslationBlock *tb;
+
+    if (nb_tbs <= 0)
+        return NULL;
+    if (tc_ptr < (unsigned long)code_gen_buffer ||
+        tc_ptr >= (unsigned long)code_gen_ptr)
+        return NULL;
+    /* binary search (cf Knuth) */
+    m_min = 0;
+    m_max = nb_tbs - 1;
+    while (m_min <= m_max) {
+        m = (m_min + m_max) >> 1;
+        tb = &tbs[m];
+        v = (unsigned long)tb->tc_ptr;
+        if (v == tc_ptr)
+            return tb;
+        else if (tc_ptr < v) {
+            m_max = m - 1;
+        } else {
+            m_min = m + 1;
+        }
+    }
+    return &tbs[m_max];
+}
+
+static void tb_reset_jump_recursive(TranslationBlock *tb);
+
+static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
+{
+    TranslationBlock *tb1, *tb_next, **ptb;
+    unsigned int n1;
+
+    tb1 = tb->jmp_next[n];
+    if (tb1 != NULL) {
+        /* find head of list */
+        for(;;) {
+            n1 = (long)tb1 & 3;
+            tb1 = (TranslationBlock *)((long)tb1 & ~3);
+            if (n1 == 2)
+                break;
+            tb1 = tb1->jmp_next[n1];
+        }
+        /* we are now sure now that tb jumps to tb1 */
+        tb_next = tb1;
+
+        /* remove tb from the jmp_first list */
+        ptb = &tb_next->jmp_first;
+        for(;;) {
+            tb1 = *ptb;
+            n1 = (long)tb1 & 3;
+            tb1 = (TranslationBlock *)((long)tb1 & ~3);
+            if (n1 == n && tb1 == tb)
+                break;
+            ptb = &tb1->jmp_next[n1];
+        }
+        *ptb = tb->jmp_next[n];
+        tb->jmp_next[n] = NULL;
+
+        /* suppress the jump to next tb in generated code */
+        tb_reset_jump(tb, n);
+
+        /* suppress jumps in the tb on which we could have jumped */
+        tb_reset_jump_recursive(tb_next);
+    }
+}
+
+static void tb_reset_jump_recursive(TranslationBlock *tb)
+{
+    tb_reset_jump_recursive2(tb, 0);
+    tb_reset_jump_recursive2(tb, 1);
+}
+
+#if defined(TARGET_HAS_ICE)
+static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+{
+    target_phys_addr_t addr;
+    target_ulong pd;
+    ram_addr_t ram_addr;
+    PhysPageDesc *p;
+
+    addr = cpu_get_phys_page_debug(env, pc);
+    p = phys_page_find(addr >> TARGET_PAGE_BITS);
+    if (!p) {
+        pd = IO_MEM_UNASSIGNED;
+    } else {
+        pd = p->phys_offset;
+    }
+    ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
+    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
+}
+#endif
+
+/* Add a watchpoint.  */
+int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+                          int flags, CPUWatchpoint **watchpoint)
+{
+    target_ulong len_mask = ~(len - 1);
+    CPUWatchpoint *wp;
+
+    /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
+    if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
+        fprintf(stderr, "qemu: tried to set invalid watchpoint at "
+                TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
+        return -EINVAL;
+    }
+    wp = qemu_malloc(sizeof(*wp));
+    if (!wp)
+        return -ENOMEM;
+
+    wp->vaddr = addr;
+    wp->len_mask = len_mask;
+    wp->flags = flags;
+
+    /* keep all GDB-injected watchpoints in front */
+    if (flags & BP_GDB)
+        TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
+    else
+        TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
+
+    tlb_flush_page(env, addr);
+
+    if (watchpoint)
+        *watchpoint = wp;
+    return 0;
+}
+
+/* Remove a specific watchpoint.  */
+int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
+                          int flags)
+{
+    target_ulong len_mask = ~(len - 1);
+    CPUWatchpoint *wp;
+
+    TAILQ_FOREACH(wp, &env->watchpoints, entry) {
+        if (addr == wp->vaddr && len_mask == wp->len_mask
+                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
+            cpu_watchpoint_remove_by_ref(env, wp);
+            return 0;
+        }
+    }
+    return -ENOENT;
+}
+
+/* Remove a specific watchpoint by reference.  */
+void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
+{
+    TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
+
+    tlb_flush_page(env, watchpoint->vaddr);
+
+    qemu_free(watchpoint);
+}
+
+/* Remove all matching watchpoints.  */
+void cpu_watchpoint_remove_all(CPUState *env, int mask)
+{
+    CPUWatchpoint *wp, *next;
+
+    TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
+        if (wp->flags & mask)
+            cpu_watchpoint_remove_by_ref(env, wp);
+    }
+}
+
+/* Add a breakpoint.  */
+int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
+                          CPUBreakpoint **breakpoint)
+{
+#if defined(TARGET_HAS_ICE)
+    CPUBreakpoint *bp;
+
+    bp = qemu_malloc(sizeof(*bp));
+    if (!bp)
+        return -ENOMEM;
+
+    bp->pc = pc;
+    bp->flags = flags;
+
+    /* keep all GDB-injected breakpoints in front */
+    if (flags & BP_GDB)
+        TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
+    else
+        TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
+
+    breakpoint_invalidate(env, pc);
+
+    if (breakpoint)
+        *breakpoint = bp;
+    return 0;
+#else
+    return -ENOSYS;
+#endif
+}
+
+/* Remove a specific breakpoint.  */
+int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
+{
+#if defined(TARGET_HAS_ICE)
+    CPUBreakpoint *bp;
+
+    TAILQ_FOREACH(bp, &env->breakpoints, entry) {
+        if (bp->pc == pc && bp->flags == flags) {
+            cpu_breakpoint_remove_by_ref(env, bp);
+            return 0;
+        }
+    }
+    return -ENOENT;
+#else
+    return -ENOSYS;
+#endif
+}
+
+/* Remove a specific breakpoint by reference.  */
+void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
+{
+#if defined(TARGET_HAS_ICE)
+    TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
+
+    breakpoint_invalidate(env, breakpoint->pc);
+
+    qemu_free(breakpoint);
+#endif
+}
+
+/* Remove all matching breakpoints. */
+void cpu_breakpoint_remove_all(CPUState *env, int mask)
+{
+#if defined(TARGET_HAS_ICE)
+    CPUBreakpoint *bp, *next;
+
+    TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
+        if (bp->flags & mask)
+            cpu_breakpoint_remove_by_ref(env, bp);
+    }
+#endif
+}
+
+/* enable or disable single step mode. EXCP_DEBUG is returned by the
+   CPU loop after each instruction */
+void cpu_single_step(CPUState *env, int enabled)
+{
+#if defined(TARGET_HAS_ICE)
+    if (env->singlestep_enabled != enabled) {
+        env->singlestep_enabled = enabled;
+        /* must flush all the translated code to avoid inconsistancies */
+        /* XXX: only flush what is necessary */
+        tb_flush(env);
+    }
+#endif
+}
+
+/* enable or disable low levels log */
+void cpu_set_log(int log_flags)
+{
+    loglevel = log_flags;
+    if (loglevel && !logfile) {
+        logfile = fopen(logfilename, log_append ? "a" : "w");
+        if (!logfile) {
+            perror(logfilename);
+            _exit(1);
+        }
+#if !defined(CONFIG_SOFTMMU)
+        /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
+        {
+            static char logfile_buf[4096];
+            setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
+        }
+#else
+        setvbuf(logfile, NULL, _IOLBF, 0);
+#endif
+        log_append = 1;
+    }
+    if (!loglevel && logfile) {
+        fclose(logfile);
+        logfile = NULL;
+    }
+}
+
+void cpu_set_log_filename(const char *filename)
+{
+    logfilename = strdup(filename);
+    if (logfile) {
+        fclose(logfile);
+        logfile = NULL;
+    }
+    cpu_set_log(loglevel);
+}
+
+/* mask must never be zero, except for A20 change call */
+void cpu_interrupt(CPUState *env, int mask)
+{
+#if !defined(USE_NPTL)
+    TranslationBlock *tb;
+    static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
+#endif
+    int old_mask;
+
+    old_mask = env->interrupt_request;
+    /* FIXME: This is probably not threadsafe.  A different thread could
+       be in the middle of a read-modify-write operation.  */
+    env->interrupt_request |= mask;
+#if defined(USE_NPTL)
+    /* FIXME: TB unchaining isn't SMP safe.  For now just ignore the
+       problem and hope the cpu will stop of its own accord.  For userspace
+       emulation this often isn't actually as bad as it sounds.  Often
+       signals are used primarily to interrupt blocking syscalls.  */
+#else
+    if (use_icount) {
+        env->icount_decr.u16.high = 0xffff;
+#ifndef CONFIG_USER_ONLY
+        /* CPU_INTERRUPT_EXIT isn't a real interrupt.  It just means
+           an async event happened and we need to process it.  */
+        if (!can_do_io(env)
+            && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
+            cpu_abort(env, "Raised interrupt while not in I/O function");
+        }
+#endif
+    } else {
+        tb = env->current_tb;
+        /* if the cpu is currently executing code, we must unlink it and
+           all the potentially executing TB */
+        if (tb && !testandset(&interrupt_lock)) {
+            env->current_tb = NULL;
+            tb_reset_jump_recursive(tb);
+            resetlock(&interrupt_lock);
+        }
+    }
+#endif
+}
+
+void cpu_reset_interrupt(CPUState *env, int mask)
+{
+    env->interrupt_request &= ~mask;
+}
+
+const CPULogItem cpu_log_items[] = {
+    { CPU_LOG_TB_OUT_ASM, "out_asm",
+      "show generated host assembly code for each compiled TB" },
+    { CPU_LOG_TB_IN_ASM, "in_asm",
+      "show target assembly code for each compiled TB" },
+    { CPU_LOG_TB_OP, "op",
+      "show micro ops for each compiled TB" },
+    { CPU_LOG_TB_OP_OPT, "op_opt",
+      "show micro ops "
+#ifdef TARGET_I386
+      "before eflags optimization and "
+#endif
+      "after liveness analysis" },
+    { CPU_LOG_INT, "int",
+      "show interrupts/exceptions in short format" },
+    { CPU_LOG_EXEC, "exec",
+      "show trace before each executed TB (lots of logs)" },
+    { CPU_LOG_TB_CPU, "cpu",
+      "show CPU state before block translation" },
+#ifdef TARGET_I386
+    { CPU_LOG_PCALL, "pcall",
+      "show protected mode far calls/returns/exceptions" },
+#endif
+#ifdef DEBUG_IOPORT
+    { CPU_LOG_IOPORT, "ioport",
+      "show all i/o ports accesses" },
+#endif
+    { 0, NULL, NULL },
+};
+
+static int cmp1(const char *s1, int n, const char *s2)
+{
+    if (strlen(s2) != n)
+        return 0;
+    return memcmp(s1, s2, n) == 0;
+}
+
+/* takes a comma separated list of log masks. Return 0 if error. */
+int cpu_str_to_log_mask(const char *str)
+{
+    const CPULogItem *item;
+    int mask;
+    const char *p, *p1;
+
+    p = str;
+    mask = 0;
+    for(;;) {
+        p1 = strchr(p, ',');
+        if (!p1)
+            p1 = p + strlen(p);
+	if(cmp1(p,p1-p,"all")) {
+		for(item = cpu_log_items; item->mask != 0; item++) {
+			mask |= item->mask;
+		}
+	} else {
+        for(item = cpu_log_items; item->mask != 0; item++) {
+            if (cmp1(p, p1 - p, item->name))
+                goto found;
+        }
+        return 0;
+	}
+    found:
+        mask |= item->mask;
+        if (*p1 != ',')
+            break;
+        p = p1 + 1;
+    }
+    return mask;
+}
+
+void cpu_abort(CPUState *env, const char *fmt, ...)
+{
+    va_list ap;
+    va_list ap2;
+
+    va_start(ap, fmt);
+    va_copy(ap2, ap);
+    fprintf(stderr, "qemu: fatal: ");
+    vfprintf(stderr, fmt, ap);
+    fprintf(stderr, "\n");
+#ifdef TARGET_I386
+    cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
+#else
+    cpu_dump_state(env, stderr, fprintf, 0);
+#endif
+    if (logfile) {
+        fprintf(logfile, "qemu: fatal: ");
+        vfprintf(logfile, fmt, ap2);
+        fprintf(logfile, "\n");
+#ifdef TARGET_I386
+        cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
+#else
+        cpu_dump_state(env, logfile, fprintf, 0);
+#endif
+        fflush(logfile);
+        fclose(logfile);
+    }
+    va_end(ap2);
+    va_end(ap);
+    abort();
+}
+
+CPUState *cpu_copy(CPUState *env)
+{
+    CPUState *new_env = cpu_init(env->cpu_model_str);
+    /* preserve chaining and index */
+    CPUState *next_cpu = new_env->next_cpu;
+    int cpu_index = new_env->cpu_index;
+    memcpy(new_env, env, sizeof(CPUState));
+    new_env->next_cpu = next_cpu;
+    new_env->cpu_index = cpu_index;
+    return new_env;
+}
+
+#if !defined(CONFIG_USER_ONLY)
+
+static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
+{
+    unsigned int i;
+
+    /* Discard jump cache entries for any tb which might potentially
+       overlap the flushed page.  */
+    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
+    memset (&env->tb_jmp_cache[i], 0, 
+	    TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+
+    i = tb_jmp_cache_hash_page(addr);
+    memset (&env->tb_jmp_cache[i], 0, 
+	    TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+}
+
+/* NOTE: if flush_global is true, also flush global entries (not
+   implemented yet) */
+void tlb_flush(CPUState *env, int flush_global)
+{
+    int i;
+
+#if defined(DEBUG_TLB)
+    printf("tlb_flush:\n");
+#endif
+    /* must reset current TB so that interrupts cannot modify the
+       links while we are modifying them */
+    env->current_tb = NULL;
+
+    for(i = 0; i < CPU_TLB_SIZE; i++) {
+        env->tlb_table[0][i].addr_read = -1;
+        env->tlb_table[0][i].addr_write = -1;
+        env->tlb_table[0][i].addr_code = -1;
+        env->tlb_table[1][i].addr_read = -1;
+        env->tlb_table[1][i].addr_write = -1;
+        env->tlb_table[1][i].addr_code = -1;
+#if (NB_MMU_MODES >= 3)
+        env->tlb_table[2][i].addr_read = -1;
+        env->tlb_table[2][i].addr_write = -1;
+        env->tlb_table[2][i].addr_code = -1;
+#if (NB_MMU_MODES == 4)
+        env->tlb_table[3][i].addr_read = -1;
+        env->tlb_table[3][i].addr_write = -1;
+        env->tlb_table[3][i].addr_code = -1;
+#endif
+#endif
+    }
+
+    memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
+
+#ifdef USE_KQEMU
+    if (env->kqemu_enabled) {
+        kqemu_flush(env, flush_global);
+    }
+#endif
+    tlb_flush_count++;
+}
+
+static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
+{
+    if (addr == (tlb_entry->addr_read &
+                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+        addr == (tlb_entry->addr_write &
+                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+        addr == (tlb_entry->addr_code &
+                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+        tlb_entry->addr_read = -1;
+        tlb_entry->addr_write = -1;
+        tlb_entry->addr_code = -1;
+    }
+}
+
+void tlb_flush_page(CPUState *env, target_ulong addr)
+{
+    int i;
+
+#if defined(DEBUG_TLB)
+    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
+#endif
+    /* must reset current TB so that interrupts cannot modify the
+       links while we are modifying them */
+    env->current_tb = NULL;
+
+    addr &= TARGET_PAGE_MASK;
+    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+    tlb_flush_entry(&env->tlb_table[0][i], addr);
+    tlb_flush_entry(&env->tlb_table[1][i], addr);
+#if (NB_MMU_MODES >= 3)
+    tlb_flush_entry(&env->tlb_table[2][i], addr);
+#if (NB_MMU_MODES == 4)
+    tlb_flush_entry(&env->tlb_table[3][i], addr);
+#endif
+#endif
+
+    tlb_flush_jmp_cache(env, addr);
+
+#ifdef USE_KQEMU
+    if (env->kqemu_enabled) {
+        kqemu_flush_page(env, addr);
+    }
+#endif
+}
+
+/* update the TLBs so that writes to code in the virtual page 'addr'
+   can be detected */
+static void tlb_protect_code(ram_addr_t ram_addr)
+{
+    cpu_physical_memory_reset_dirty(ram_addr,
+                                    ram_addr + TARGET_PAGE_SIZE,
+                                    CODE_DIRTY_FLAG);
+}
+
+/* update the TLB so that writes in physical page 'phys_addr' are no longer
+   tested for self modifying code */
+static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
+                                    target_ulong vaddr)
+{
+    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
+}
+
+static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
+                                         unsigned long start, unsigned long length)
+{
+    unsigned long addr;
+    if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
+        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
+        if ((addr - start) < length) {
+            tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
+        }
+    }
+}
+
+void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
+                                     int dirty_flags)
+{
+    CPUState *env;
+    unsigned long length, start1;
+    int i, mask, len;
+    uint8_t *p;
+
+    start &= TARGET_PAGE_MASK;
+    end = TARGET_PAGE_ALIGN(end);
+
+    length = end - start;
+    if (length == 0)
+        return;
+    len = length >> TARGET_PAGE_BITS;
+#ifdef USE_KQEMU
+    /* XXX: should not depend on cpu context */
+    env = first_cpu;
+    if (env->kqemu_enabled) {
+        ram_addr_t addr;
+        addr = start;
+        for(i = 0; i < len; i++) {
+            kqemu_set_notdirty(env, addr);
+            addr += TARGET_PAGE_SIZE;
+        }
+    }
+#endif
+    mask = ~dirty_flags;
+    p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
+    for(i = 0; i < len; i++)
+        p[i] &= mask;
+
+    /* we modify the TLB cache so that the dirty bit will be set again
+       when accessing the range */
+    /* FIXME: This is wrong if start1 spans multiple regions.  */
+    start1 = (unsigned long)host_ram_addr(start);
+    for(env = first_cpu; env != NULL; env = env->next_cpu) {
+        for(i = 0; i < CPU_TLB_SIZE; i++)
+            tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
+        for(i = 0; i < CPU_TLB_SIZE; i++)
+            tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
+#if (NB_MMU_MODES >= 3)
+        for(i = 0; i < CPU_TLB_SIZE; i++)
+            tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
+#if (NB_MMU_MODES == 4)
+        for(i = 0; i < CPU_TLB_SIZE; i++)
+            tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
+#endif
+#endif
+    }
+}
+
+int cpu_physical_memory_set_dirty_tracking(int enable)
+{
+    in_migration = enable;
+    return 0;
+}
+
+int cpu_physical_memory_get_dirty_tracking(void)
+{
+    return in_migration;
+}
+
+void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
+{
+    if (kvm_enabled())
+        kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
+}
+
+static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
+{
+    ram_addr_t ram_addr;
+
+    if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
+        ram_addr = ram_offset_from_host((uint8_t *)(
+            (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend));
+        if (!cpu_physical_memory_is_dirty(ram_addr)) {
+            tlb_entry->addr_write |= TLB_NOTDIRTY;
+        }
+    }
+}
+
+/* update the TLB according to the current state of the dirty bits */
+void cpu_tlb_update_dirty(CPUState *env)
+{
+    int i;
+    for(i = 0; i < CPU_TLB_SIZE; i++)
+        tlb_update_dirty(&env->tlb_table[0][i]);
+    for(i = 0; i < CPU_TLB_SIZE; i++)
+        tlb_update_dirty(&env->tlb_table[1][i]);
+#if (NB_MMU_MODES >= 3)
+    for(i = 0; i < CPU_TLB_SIZE; i++)
+        tlb_update_dirty(&env->tlb_table[2][i]);
+#if (NB_MMU_MODES == 4)
+    for(i = 0; i < CPU_TLB_SIZE; i++)
+        tlb_update_dirty(&env->tlb_table[3][i]);
+#endif
+#endif
+}
+
+static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
+{
+    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
+        tlb_entry->addr_write = vaddr;
+}
+
+/* update the TLB corresponding to virtual page vaddr
+   so that it is no longer dirty */
+static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
+{
+    int i;
+
+    vaddr &= TARGET_PAGE_MASK;
+    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+    tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
+    tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
+#if (NB_MMU_MODES >= 3)
+    tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
+#if (NB_MMU_MODES == 4)
+    tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
+#endif
+#endif
+}
+
+/* add a new TLB entry. At most one entry for a given virtual address
+   is permitted. Return 0 if OK or 2 if the page could not be mapped
+   (can only happen in non SOFTMMU mode for I/O pages or pages
+   conflicting with the host address space). */
+int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
+                      target_phys_addr_t paddr, int prot,
+                      int mmu_idx, int is_softmmu)
+{
+    PhysPageDesc *p;
+    unsigned long pd;
+    unsigned int index;
+    target_ulong address;
+    target_ulong code_address;
+    target_phys_addr_t addend;
+    int ret;
+    CPUTLBEntry *te;
+    CPUWatchpoint *wp;
+    target_phys_addr_t iotlb;
+
+    p = phys_page_find(paddr >> TARGET_PAGE_BITS);
+    if (!p) {
+        pd = IO_MEM_UNASSIGNED;
+    } else {
+        pd = p->phys_offset;
+    }
+#if defined(DEBUG_TLB)
+    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
+           vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
+#endif
+
+    ret = 0;
+    address = vaddr;
+    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
+        /* IO memory case (romd handled later) */
+        address |= TLB_MMIO;
+    }
+    addend = (unsigned long)host_ram_addr(pd & TARGET_PAGE_MASK);
+    if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
+        /* Normal RAM.  */
+        iotlb = pd & TARGET_PAGE_MASK;
+        if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
+            iotlb |= IO_MEM_NOTDIRTY;
+        else
+            iotlb |= IO_MEM_ROM;
+    } else {
+        /* IO handlers are currently passed a phsical address.
+           It would be nice to pass an offset from the base address
+           of that region.  This would avoid having to special case RAM,
+           and avoid full address decoding in every device.
+           We can't use the high bits of pd for this because
+           IO_MEM_ROMD uses these as a ram address.  */
+        iotlb = (pd & ~TARGET_PAGE_MASK);
+        if (p) {
+            iotlb += p->region_offset;
+        } else {
+            iotlb += paddr;
+        }
+    }
+
+    code_address = address;
+    /* Make accesses to pages with watchpoints go via the
+       watchpoint trap routines.  */
+    TAILQ_FOREACH(wp, &env->watchpoints, entry) {
+        if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
+            iotlb = io_mem_watch + paddr;
+            /* TODO: The memory case can be optimized by not trapping
+               reads of pages with a write breakpoint.  */
+            address |= TLB_MMIO;
+        }
+    }
+
+    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+    env->iotlb[mmu_idx][index] = iotlb - vaddr;
+    te = &env->tlb_table[mmu_idx][index];
+    te->addend = addend - vaddr;
+    if (prot & PAGE_READ) {
+        te->addr_read = address;
+    } else {
+        te->addr_read = -1;
+    }
+
+    if (prot & PAGE_EXEC) {
+        te->addr_code = code_address;
+    } else {
+        te->addr_code = -1;
+    }
+    if (prot & PAGE_WRITE) {
+        if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
+            (pd & IO_MEM_ROMD)) {
+            /* Write access calls the I/O callback.  */
+            te->addr_write = address | TLB_MMIO;
+        } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
+                   !cpu_physical_memory_is_dirty(pd)) {
+            te->addr_write = address | TLB_NOTDIRTY;
+        } else {
+            te->addr_write = address;
+        }
+    } else {
+        te->addr_write = -1;
+    }
+    return ret;
+}
+
+#else
+
+void tlb_flush(CPUState *env, int flush_global)
+{
+}
+
+void tlb_flush_page(CPUState *env, target_ulong addr)
+{
+}
+
+int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
+                      target_phys_addr_t paddr, int prot,
+                      int mmu_idx, int is_softmmu)
+{
+    return 0;
+}
+
+/* dump memory mappings */
+void page_dump(FILE *f)
+{
+    unsigned long start, end;
+    int i, j, prot, prot1;
+    PageDesc *p;
+
+    fprintf(f, "%-8s %-8s %-8s %s\n",
+            "start", "end", "size", "prot");
+    start = -1;
+    end = -1;
+    prot = 0;
+    for(i = 0; i <= L1_SIZE; i++) {
+        if (i < L1_SIZE)
+            p = l1_map[i];
+        else
+            p = NULL;
+        for(j = 0;j < L2_SIZE; j++) {
+            if (!p)
+                prot1 = 0;
+            else
+                prot1 = p[j].flags;
+            if (prot1 != prot) {
+                end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
+                if (start != -1) {
+                    fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
+                            start, end, end - start,
+                            prot & PAGE_READ ? 'r' : '-',
+                            prot & PAGE_WRITE ? 'w' : '-',
+                            prot & PAGE_EXEC ? 'x' : '-');
+                }
+                if (prot1 != 0)
+                    start = end;
+                else
+                    start = -1;
+                prot = prot1;
+            }
+            if (!p)
+                break;
+        }
+    }
+}
+
+int page_get_flags(target_ulong address)
+{
+    PageDesc *p;
+
+    p = page_find(address >> TARGET_PAGE_BITS);
+    if (!p)
+        return 0;
+    return p->flags;
+}
+
+/* modify the flags of a page and invalidate the code if
+   necessary. The flag PAGE_WRITE_ORG is positionned automatically
+   depending on PAGE_WRITE */
+void page_set_flags(target_ulong start, target_ulong end, int flags)
+{
+    PageDesc *p;
+    target_ulong addr;
+
+    /* mmap_lock should already be held.  */
+    start = start & TARGET_PAGE_MASK;
+    end = TARGET_PAGE_ALIGN(end);
+    if (flags & PAGE_WRITE)
+        flags |= PAGE_WRITE_ORG;
+    for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
+        p = page_find_alloc(addr >> TARGET_PAGE_BITS);
+        /* We may be called for host regions that are outside guest
+           address space.  */
+        if (!p)
+            return;
+        /* if the write protection is set, then we invalidate the code
+           inside */
+        if (!(p->flags & PAGE_WRITE) &&
+            (flags & PAGE_WRITE) &&
+            p->first_tb) {
+            tb_invalidate_phys_page(addr, 0, NULL);
+        }
+        p->flags = flags;
+    }
+}
+
+int page_check_range(target_ulong start, target_ulong len, int flags)
+{
+    PageDesc *p;
+    target_ulong end;
+    target_ulong addr;
+
+    if (start + len < start)
+        /* we've wrapped around */
+        return -1;
+
+    end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
+    start = start & TARGET_PAGE_MASK;
+
+    for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
+        p = page_find(addr >> TARGET_PAGE_BITS);
+        if( !p )
+            return -1;
+        if( !(p->flags & PAGE_VALID) )
+            return -1;
+
+        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
+            return -1;
+        if (flags & PAGE_WRITE) {
+            if (!(p->flags & PAGE_WRITE_ORG))
+                return -1;
+            /* unprotect the page if it was put read-only because it
+               contains translated code */
+            if (!(p->flags & PAGE_WRITE)) {
+                if (!page_unprotect(addr, 0, NULL))
+                    return -1;
+            }
+            return 0;
+        }
+    }
+    return 0;
+}
+
+/* called from signal handler: invalidate the code and unprotect the
+   page. Return TRUE if the fault was succesfully handled. */
+int page_unprotect(target_ulong address, unsigned long pc, void *puc)
+{
+    unsigned int page_index, prot, pindex;
+    PageDesc *p, *p1;
+    target_ulong host_start, host_end, addr;
+
+    /* Technically this isn't safe inside a signal handler.  However we
+       know this only ever happens in a synchronous SEGV handler, so in
+       practice it seems to be ok.  */
+    mmap_lock();
+
+    host_start = address & qemu_host_page_mask;
+    page_index = host_start >> TARGET_PAGE_BITS;
+    p1 = page_find(page_index);
+    if (!p1) {
+        mmap_unlock();
+        return 0;
+    }
+    host_end = host_start + qemu_host_page_size;
+    p = p1;
+    prot = 0;
+    for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
+        prot |= p->flags;
+        p++;
+    }
+    /* if the page was really writable, then we change its
+       protection back to writable */
+    if (prot & PAGE_WRITE_ORG) {
+        pindex = (address - host_start) >> TARGET_PAGE_BITS;
+        if (!(p1[pindex].flags & PAGE_WRITE)) {
+            mprotect((void *)g2h(host_start), qemu_host_page_size,
+                     (prot & PAGE_BITS) | PAGE_WRITE);
+            p1[pindex].flags |= PAGE_WRITE;
+            /* and since the content will be modified, we must invalidate
+               the corresponding translated code. */
+            tb_invalidate_phys_page(address, pc, puc);
+#ifdef DEBUG_TB_CHECK
+            tb_invalidate_check(address);
+#endif
+            mmap_unlock();
+            return 1;
+        }
+    }
+    mmap_unlock();
+    return 0;
+}
+
+static inline void tlb_set_dirty(CPUState *env,
+                                 unsigned long addr, target_ulong vaddr)
+{
+}
+#endif /* defined(CONFIG_USER_ONLY) */
+
+#if !defined(CONFIG_USER_ONLY)
+
+static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
+                             ram_addr_t memory, ram_addr_t region_offset);
+static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
+                           ram_addr_t orig_memory, ram_addr_t region_offset);
+#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
+                      need_subpage)                                     \
+    do {                                                                \
+        if (addr > start_addr)                                          \
+            start_addr2 = 0;                                            \
+        else {                                                          \
+            start_addr2 = start_addr & ~TARGET_PAGE_MASK;               \
+            if (start_addr2 > 0)                                        \
+                need_subpage = 1;                                       \
+        }                                                               \
+                                                                        \
+        if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE)        \
+            end_addr2 = TARGET_PAGE_SIZE - 1;                           \
+        else {                                                          \
+            end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
+            if (end_addr2 < TARGET_PAGE_SIZE - 1)                       \
+                need_subpage = 1;                                       \
+        }                                                               \
+    } while (0)
+
+/* register physical memory. 'size' must be a multiple of the target
+   page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
+   io memory page.  The address used when calling the IO function is
+   the offset from the start of the region, plus region_offset.  Both
+   start_region and regon_offset are rounded down to a page boundary
+   before calculating this offset.  This should not be a problem unless
+   the low bits of start_addr and region_offset differ.  */
+void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
+                                         ram_addr_t size,
+                                         ram_addr_t phys_offset,
+                                         ram_addr_t region_offset)
+{
+    target_phys_addr_t addr, end_addr;
+    PhysPageDesc *p;
+    CPUState *env;
+    ram_addr_t orig_size = size;
+    void *subpage;
+
+#ifdef USE_KQEMU
+    /* XXX: should not depend on cpu context */
+    env = first_cpu;
+    if (env->kqemu_enabled) {
+        kqemu_set_phys_mem(start_addr, size, phys_offset);
+    }
+#endif
+    if (kvm_enabled())
+        kvm_set_phys_mem(start_addr, size, phys_offset);
+
+    region_offset &= TARGET_PAGE_MASK;
+    size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
+    end_addr = start_addr + (target_phys_addr_t)size;
+    for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
+        p = phys_page_find(addr >> TARGET_PAGE_BITS);
+        if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
+            ram_addr_t orig_memory = p->phys_offset;
+            target_phys_addr_t start_addr2, end_addr2;
+            int need_subpage = 0;
+
+            CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
+                          need_subpage);
+            if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
+                if (!(orig_memory & IO_MEM_SUBPAGE)) {
+                    subpage = subpage_init((addr & TARGET_PAGE_MASK),
+                                           &p->phys_offset, orig_memory,
+                                           p->region_offset);
+                } else {
+                    subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
+                                            >> IO_MEM_SHIFT];
+                }
+                subpage_register(subpage, start_addr2, end_addr2, phys_offset,
+                                 region_offset);
+                p->region_offset = 0;
+            } else {
+                p->phys_offset = phys_offset;
+                if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
+                    (phys_offset & IO_MEM_ROMD))
+                    phys_offset += TARGET_PAGE_SIZE;
+            }
+        } else {
+            p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
+            p->phys_offset = phys_offset;
+            p->region_offset = region_offset;
+            if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
+                (phys_offset & IO_MEM_ROMD)) {
+                phys_offset += TARGET_PAGE_SIZE;
+            } else {
+                target_phys_addr_t start_addr2, end_addr2;
+                int need_subpage = 0;
+
+                CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
+                              end_addr2, need_subpage);
+
+                if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
+                    subpage = subpage_init((addr & TARGET_PAGE_MASK),
+                                           &p->phys_offset, IO_MEM_UNASSIGNED,
+                                           0);
+                    subpage_register(subpage, start_addr2, end_addr2,
+                                     phys_offset, region_offset);
+                    p->region_offset = 0;
+                }
+            }
+        }
+        region_offset += TARGET_PAGE_SIZE;
+    }
+
+    /* since each CPU stores ram addresses in its TLB cache, we must
+       reset the modified entries */
+    /* XXX: slow ! */
+    for(env = first_cpu; env != NULL; env = env->next_cpu) {
+        tlb_flush(env, 1);
+    }
+}
+
+/* XXX: temporary until new memory mapping API */
+ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
+{
+    PhysPageDesc *p;
+
+    p = phys_page_find(addr >> TARGET_PAGE_BITS);
+    if (!p)
+        return IO_MEM_UNASSIGNED;
+    return p->phys_offset;
+}
+
+/* Get ram offset from physical ram.  */
+ram_addr_t get_ram_offset_phys(target_phys_addr_t addr)
+{
+    ram_addr_t pd;
+    pd = cpu_get_physical_page_desc(addr);
+    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
+        fprintf(stderr, "Bad ram physical address " TARGET_FMT_plx "\n", addr);
+        return 0;
+    }
+    return (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+}
+
+#ifdef USE_KQEMU
+/* FIXME: kqemu needs to be fixed and this removed.  */
+uint8_t *kqemu_phys_ram_base;
+#endif
+
+typedef struct ram_region {
+    ram_addr_t offset;
+    ram_addr_t size;
+    uint8_t *host;
+    struct ram_region *next;
+} ram_region;
+
+static ram_region *ram_regions;
+
+uint8_t *host_ram_addr(ram_addr_t offset)
+{
+    ram_region *r;
+    ram_region *prev;
+    ram_region **prev_p;
+#ifdef USE_KQEMU
+    if (kqemu_allowed) {
+        return kqemu_phys_ram_base + offset;
+    }
+#endif
+    prev = NULL;
+    prev_p = NULL;
+    r = ram_regions;
+    while (r && (r->offset > offset || r->offset + r->size <= offset)) {
+        if (prev)
+            prev_p = &prev->next;
+        else
+            prev_p = &ram_regions;
+        prev = r;
+        r = r->next;
+    }
+    if (!r) {
+        fprintf(stderr, "Bogus ram offset 0x%lx\n", (unsigned long)offset);
+        abort();
+    }
+    /* Move this region towards the start of the list.  */
+    if (prev) {
+        *prev_p = r;
+        prev->next = r->next;
+        r->next = prev;
+    }
+    return r->host + offset - r->offset;
+}
+
+ram_addr_t ram_offset_from_host(uint8_t *addr)
+{
+    ram_region *r;
+#ifdef USE_KQEMU
+    if (kqemu_allowed) {
+        return addr - kqemu_phys_ram_base;
+    }
+#endif
+    r = ram_regions;
+    while (r && (r->host > addr || r->host + r->size <= addr)) {
+        r = r->next;
+    }
+    if (!r) {
+        fprintf(stderr, "Bogus host ram address 0x%lx\n", (unsigned long)addr);
+        abort();
+    }
+    return r->offset + addr - r->host;;
+}
+
+void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
+{
+    if (kvm_enabled())
+        kvm_coalesce_mmio_region(addr, size);
+}
+
+void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
+{
+    if (kvm_enabled())
+        kvm_uncoalesce_mmio_region(addr, size);
+}
+
+/* XXX: better than nothing */
+ram_addr_t qemu_ram_alloc(ram_addr_t size)
+{
+    ram_addr_t addr;
+#ifdef USE_KQEMU
+    if (kqemu_allowed) {
+        if ((phys_ram_alloc_offset + size) > phys_ram_size) {
+            fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
+                    (uint64_t)size, (uint64_t)phys_ram_size);
+            abort();
+        }
+        addr = phys_ram_alloc_offset;
+        phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
+    } else
+#endif
+    {
+        ram_region *r = qemu_mallocz(sizeof(*r));
+        size = TARGET_PAGE_ALIGN(size);
+        addr = phys_ram_alloc_offset;
+        phys_ram_alloc_offset += size;
+        r->offset = addr;
+        r->size = size;
+        r->host = qemu_vmalloc(size);
+        r->next = ram_regions;
+        ram_regions = r;
+        phys_ram_dirty = qemu_realloc(phys_ram_dirty,
+            phys_ram_alloc_offset >> TARGET_PAGE_BITS);
+        memset(phys_ram_dirty + (addr >> TARGET_PAGE_BITS),
+               0xff, size >> TARGET_PAGE_BITS);
+    }
+    return addr;
+}
+
+void qemu_ram_free(ram_addr_t addr)
+{
+  /* TODO: Implement this.  */
+}
+
+static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
+{
+#ifdef DEBUG_UNASSIGNED
+    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+    do_unassigned_access(addr, 0, 0, 0, 1);
+#endif
+    return 0;
+}
+
+static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
+{
+#ifdef DEBUG_UNASSIGNED
+    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+    do_unassigned_access(addr, 0, 0, 0, 2);
+#endif
+    return 0;
+}
+
+static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
+{
+#ifdef DEBUG_UNASSIGNED
+    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+    do_unassigned_access(addr, 0, 0, 0, 4);
+#endif
+    return 0;
+}
+
+static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+#ifdef DEBUG_UNASSIGNED
+    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+    do_unassigned_access(addr, 1, 0, 0, 1);
+#endif
+}
+
+static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+#ifdef DEBUG_UNASSIGNED
+    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+    do_unassigned_access(addr, 1, 0, 0, 2);
+#endif
+}
+
+static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+#ifdef DEBUG_UNASSIGNED
+    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+    do_unassigned_access(addr, 1, 0, 0, 4);
+#endif
+}
+
+static CPUReadMemoryFunc *unassigned_mem_read[3] = {
+    unassigned_mem_readb,
+    unassigned_mem_readw,
+    unassigned_mem_readl,
+};
+
+static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
+    unassigned_mem_writeb,
+    unassigned_mem_writew,
+    unassigned_mem_writel,
+};
+
+static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
+                                uint32_t val)
+{
+    int dirty_flags;
+    dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+#if !defined(CONFIG_USER_ONLY)
+        tb_invalidate_phys_page_fast(ram_addr, 1);
+        dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+#endif
+    }
+    stb_p(host_ram_addr(ram_addr), val);
+#ifdef USE_KQEMU
+    if (cpu_single_env->kqemu_enabled &&
+        (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
+        kqemu_modify_page(cpu_single_env, ram_addr);
+#endif
+    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
+    /* we remove the notdirty callback only if the code has been
+       flushed */
+    if (dirty_flags == 0xff)
+        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
+}
+
+static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
+                                uint32_t val)
+{
+    int dirty_flags;
+    dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+#if !defined(CONFIG_USER_ONLY)
+        tb_invalidate_phys_page_fast(ram_addr, 2);
+        dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+#endif
+    }
+    stw_p(host_ram_addr(ram_addr), val);
+#ifdef USE_KQEMU
+    if (cpu_single_env->kqemu_enabled &&
+        (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
+        kqemu_modify_page(cpu_single_env, ram_addr);
+#endif
+    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
+    /* we remove the notdirty callback only if the code has been
+       flushed */
+    if (dirty_flags == 0xff)
+        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
+}
+
+static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
+                                uint32_t val)
+{
+    int dirty_flags;
+    dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+#if !defined(CONFIG_USER_ONLY)
+        tb_invalidate_phys_page_fast(ram_addr, 4);
+        dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+#endif
+    }
+    stl_p(host_ram_addr(ram_addr), val);
+#ifdef USE_KQEMU
+    if (cpu_single_env->kqemu_enabled &&
+        (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
+        kqemu_modify_page(cpu_single_env, ram_addr);
+#endif
+    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
+    /* we remove the notdirty callback only if the code has been
+       flushed */
+    if (dirty_flags == 0xff)
+        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
+}
+
+static CPUReadMemoryFunc *error_mem_read[3] = {
+    NULL, /* never used */
+    NULL, /* never used */
+    NULL, /* never used */
+};
+
+static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
+    notdirty_mem_writeb,
+    notdirty_mem_writew,
+    notdirty_mem_writel,
+};
+
+/* Generate a debug exception if a watchpoint has been hit.  */
+static void check_watchpoint(int offset, int len_mask, int flags)
+{
+    CPUState *env = cpu_single_env;
+    target_ulong pc, cs_base;
+    TranslationBlock *tb;
+    target_ulong vaddr;
+    CPUWatchpoint *wp;
+    int cpu_flags;
+
+    if (env->watchpoint_hit) {
+        /* We re-entered the check after replacing the TB. Now raise
+         * the debug interrupt so that is will trigger after the
+         * current instruction. */
+        cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
+        return;
+    }
+    vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
+    TAILQ_FOREACH(wp, &env->watchpoints, entry) {
+        if ((vaddr == (wp->vaddr & len_mask) ||
+             (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
+            wp->flags |= BP_WATCHPOINT_HIT;
+            if (!env->watchpoint_hit) {
+                env->watchpoint_hit = wp;
+                tb = tb_find_pc(env->mem_io_pc);
+                if (!tb) {
+                    cpu_abort(env, "check_watchpoint: could not find TB for "
+                              "pc=%p", (void *)env->mem_io_pc);
+                }
+                cpu_restore_state(tb, env, env->mem_io_pc, NULL);
+                tb_phys_invalidate(tb, -1);
+                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
+                    env->exception_index = EXCP_DEBUG;
+                } else {
+                    cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
+                    tb_gen_code(env, pc, cs_base, cpu_flags, 1);
+                }
+                cpu_resume_from_signal(env, NULL);
+            }
+        } else {
+            wp->flags &= ~BP_WATCHPOINT_HIT;
+        }
+    }
+}
+
+/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
+   so these check for a hit then pass through to the normal out-of-line
+   phys routines.  */
+static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
+{
+    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
+    return ldub_phys(addr);
+}
+
+static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
+{
+    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
+    return lduw_phys(addr);
+}
+
+static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
+{
+    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
+    return ldl_phys(addr);
+}
+
+static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
+                             uint32_t val)
+{
+    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
+    stb_phys(addr, val);
+}
+
+static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
+                             uint32_t val)
+{
+    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
+    stw_phys(addr, val);
+}
+
+static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
+                             uint32_t val)
+{
+    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
+    stl_phys(addr, val);
+}
+
+static CPUReadMemoryFunc *watch_mem_read[3] = {
+    watch_mem_readb,
+    watch_mem_readw,
+    watch_mem_readl,
+};
+
+static CPUWriteMemoryFunc *watch_mem_write[3] = {
+    watch_mem_writeb,
+    watch_mem_writew,
+    watch_mem_writel,
+};
+
+static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
+                                 unsigned int len)
+{
+    uint32_t ret;
+    unsigned int idx;
+
+    idx = SUBPAGE_IDX(addr);
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
+           mmio, len, addr, idx);
+#endif
+    ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
+                                       addr + mmio->region_offset[idx][0][len]);
+
+    return ret;
+}
+
+static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
+                              uint32_t value, unsigned int len)
+{
+    unsigned int idx;
+
+    idx = SUBPAGE_IDX(addr);
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
+           mmio, len, addr, idx, value);
+#endif
+    (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
+                                  addr + mmio->region_offset[idx][1][len],
+                                  value);
+}
+
+static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
+{
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
+#endif
+
+    return subpage_readlen(opaque, addr, 0);
+}
+
+static void subpage_writeb (void *opaque, target_phys_addr_t addr,
+                            uint32_t value)
+{
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
+#endif
+    subpage_writelen(opaque, addr, value, 0);
+}
+
+static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
+{
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
+#endif
+
+    return subpage_readlen(opaque, addr, 1);
+}
+
+static void subpage_writew (void *opaque, target_phys_addr_t addr,
+                            uint32_t value)
+{
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
+#endif
+    subpage_writelen(opaque, addr, value, 1);
+}
+
+static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
+{
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
+#endif
+
+    return subpage_readlen(opaque, addr, 2);
+}
+
+static void subpage_writel (void *opaque,
+                         target_phys_addr_t addr, uint32_t value)
+{
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
+#endif
+    subpage_writelen(opaque, addr, value, 2);
+}
+
+static CPUReadMemoryFunc *subpage_read[] = {
+    &subpage_readb,
+    &subpage_readw,
+    &subpage_readl,
+};
+
+static CPUWriteMemoryFunc *subpage_write[] = {
+    &subpage_writeb,
+    &subpage_writew,
+    &subpage_writel,
+};
+
+static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
+                             ram_addr_t memory, ram_addr_t region_offset)
+{
+    int idx, eidx;
+    unsigned int i;
+
+    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
+        return -1;
+    idx = SUBPAGE_IDX(start);
+    eidx = SUBPAGE_IDX(end);
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
+           mmio, start, end, idx, eidx, memory);
+#endif
+    memory >>= IO_MEM_SHIFT;
+    for (; idx <= eidx; idx++) {
+        for (i = 0; i < 4; i++) {
+            if (io_mem_read[memory][i]) {
+                mmio->mem_read[idx][i] = &io_mem_read[memory][i];
+                mmio->opaque[idx][0][i] = io_mem_opaque[memory];
+                mmio->region_offset[idx][0][i] = region_offset;
+            }
+            if (io_mem_write[memory][i]) {
+                mmio->mem_write[idx][i] = &io_mem_write[memory][i];
+                mmio->opaque[idx][1][i] = io_mem_opaque[memory];
+                mmio->region_offset[idx][1][i] = region_offset;
+            }
+        }
+    }
+
+    return 0;
+}
+
+static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
+                           ram_addr_t orig_memory, ram_addr_t region_offset)
+{
+    subpage_t *mmio;
+    int subpage_memory;
+
+    mmio = qemu_mallocz(sizeof(subpage_t));
+    if (mmio != NULL) {
+        mmio->base = base;
+        subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
+#if defined(DEBUG_SUBPAGE)
+        printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
+               mmio, base, TARGET_PAGE_SIZE, subpage_memory);
+#endif
+        *phys = subpage_memory | IO_MEM_SUBPAGE;
+        subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
+                         region_offset);
+    }
+
+    return mmio;
+}
+
+static void io_mem_init(void)
+{
+    cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
+    cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
+    cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
+    io_mem_nb = 5;
+
+    io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
+                                          watch_mem_write, NULL);
+#ifdef USE_KQEMU
+    if (kqemu_allowed) {
+        /* alloc dirty bits array */
+        phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
+        memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
+    }
+#endif
+}
+
+/* mem_read and mem_write are arrays of functions containing the
+   function to access byte (index 0), word (index 1) and dword (index
+   2). Functions can be omitted with a NULL function pointer. The
+   registered functions may be modified dynamically later.
+   If io_index is non zero, the corresponding io zone is
+   modified. If it is zero, a new io zone is allocated. The return
+   value can be used with cpu_register_physical_memory(). (-1) is
+   returned if error. */
+int cpu_register_io_memory(int io_index,
+                           CPUReadMemoryFunc **mem_read,
+                           CPUWriteMemoryFunc **mem_write,
+                           void *opaque)
+{
+    int i, subwidth = 0;
+
+    if (io_index <= 0) {
+        if (io_mem_nb >= IO_MEM_NB_ENTRIES)
+            return -1;
+        io_index = io_mem_nb++;
+    } else {
+        if (io_index >= IO_MEM_NB_ENTRIES)
+            return -1;
+    }
+
+    for(i = 0;i < 3; i++) {
+        if (!mem_read[i] || !mem_write[i])
+            subwidth = IO_MEM_SUBWIDTH;
+        io_mem_read[io_index][i] = mem_read[i];
+        io_mem_write[io_index][i] = mem_write[i];
+    }
+    io_mem_opaque[io_index] = opaque;
+    return (io_index << IO_MEM_SHIFT) | subwidth;
+}
+
+CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
+{
+    return io_mem_write[io_index >> IO_MEM_SHIFT];
+}
+
+CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
+{
+    return io_mem_read[io_index >> IO_MEM_SHIFT];
+}
+
+#endif /* !defined(CONFIG_USER_ONLY) */
+
+/* physical memory access (slow version, mainly for debug) */
+#if defined(CONFIG_USER_ONLY)
+void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+                            int len, int is_write)
+{
+    int l, flags;
+    target_ulong page;
+    void * p;
+
+    while (len > 0) {
+        page = addr & TARGET_PAGE_MASK;
+        l = (page + TARGET_PAGE_SIZE) - addr;
+        if (l > len)
+            l = len;
+        flags = page_get_flags(page);
+        if (!(flags & PAGE_VALID))
+            return;
+        if (is_write) {
+            if (!(flags & PAGE_WRITE))
+                return;
+            /* XXX: this code should not depend on lock_user */
+            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
+                /* FIXME - should this return an error rather than just fail? */
+                return;
+            memcpy(p, buf, l);
+            unlock_user(p, addr, l);
+        } else {
+            if (!(flags & PAGE_READ))
+                return;
+            /* XXX: this code should not depend on lock_user */
+            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
+                /* FIXME - should this return an error rather than just fail? */
+                return;
+            memcpy(buf, p, l);
+            unlock_user(p, addr, 0);
+        }
+        len -= l;
+        buf += l;
+        addr += l;
+    }
+}
+
+#else
+void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+                            int len, int is_write)
+{
+    int l, io_index;
+    uint8_t *ptr;
+    uint32_t val;
+    target_phys_addr_t page;
+    unsigned long pd;
+    PhysPageDesc *p;
+
+    while (len > 0) {
+        page = addr & TARGET_PAGE_MASK;
+        l = (page + TARGET_PAGE_SIZE) - addr;
+        if (l > len)
+            l = len;
+        p = phys_page_find(page >> TARGET_PAGE_BITS);
+        if (!p) {
+            pd = IO_MEM_UNASSIGNED;
+        } else {
+            pd = p->phys_offset;
+        }
+
+        if (is_write) {
+            if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+                io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+                if (p)
+                    addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+                /* XXX: could force cpu_single_env to NULL to avoid
+                   potential bugs */
+                if (l >= 4 && ((addr & 3) == 0)) {
+                    /* 32 bit write access */
+                    val = ldl_p(buf);
+                    io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+                    l = 4;
+                } else if (l >= 2 && ((addr & 1) == 0)) {
+                    /* 16 bit write access */
+                    val = lduw_p(buf);
+                    io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
+                    l = 2;
+                } else {
+                    /* 8 bit write access */
+                    val = ldub_p(buf);
+                    io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
+                    l = 1;
+                }
+            } else {
+                unsigned long addr1;
+                addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+                /* RAM case */
+                ptr = host_ram_addr(addr1);
+                memcpy(ptr, buf, l);
+                if (!cpu_physical_memory_is_dirty(addr1)) {
+                    /* invalidate code */
+                    tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
+                    /* set dirty bit */
+                    phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
+                        (0xff & ~CODE_DIRTY_FLAG);
+                }
+            }
+        } else {
+            if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+                !(pd & IO_MEM_ROMD)) {
+                /* I/O case */
+                io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+                if (p)
+                    addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+                if (l >= 4 && ((addr & 3) == 0)) {
+                    /* 32 bit read access */
+                    val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+                    stl_p(buf, val);
+                    l = 4;
+                } else if (l >= 2 && ((addr & 1) == 0)) {
+                    /* 16 bit read access */
+                    val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
+                    stw_p(buf, val);
+                    l = 2;
+                } else {
+                    /* 8 bit read access */
+                    val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
+                    stb_p(buf, val);
+                    l = 1;
+                }
+            } else {
+                /* RAM case */
+                ptr = host_ram_addr((pd & TARGET_PAGE_MASK)
+                                    + (addr & ~TARGET_PAGE_MASK));
+                memcpy(buf, ptr, l);
+            }
+        }
+        len -= l;
+        buf += l;
+        addr += l;
+    }
+}
+
+/* used for ROM loading : can write in RAM and ROM */
+void cpu_physical_memory_write_rom(target_phys_addr_t addr,
+                                   const uint8_t *buf, int len)
+{
+    int l;
+    uint8_t *ptr;
+    target_phys_addr_t page;
+    unsigned long pd;
+    PhysPageDesc *p;
+
+    while (len > 0) {
+        page = addr & TARGET_PAGE_MASK;
+        l = (page + TARGET_PAGE_SIZE) - addr;
+        if (l > len)
+            l = len;
+        p = phys_page_find(page >> TARGET_PAGE_BITS);
+        if (!p) {
+            pd = IO_MEM_UNASSIGNED;
+        } else {
+            pd = p->phys_offset;
+        }
+
+        if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
+            (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
+            !(pd & IO_MEM_ROMD)) {
+            /* do nothing */
+        } else {
+            unsigned long addr1;
+            addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+            /* ROM/RAM case */
+            ptr = host_ram_addr(addr1);
+            memcpy(ptr, buf, l);
+        }
+        len -= l;
+        buf += l;
+        addr += l;
+    }
+}
+
+
+/* warning: addr must be aligned */
+uint32_t ldl_phys(target_phys_addr_t addr)
+{
+    int io_index;
+    uint8_t *ptr;
+    uint32_t val;
+    unsigned long pd;
+    PhysPageDesc *p;
+
+    p = phys_page_find(addr >> TARGET_PAGE_BITS);
+    if (!p) {
+        pd = IO_MEM_UNASSIGNED;
+    } else {
+        pd = p->phys_offset;
+    }
+
+    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+        !(pd & IO_MEM_ROMD)) {
+        /* I/O case */
+        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+        if (p)
+            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+        val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+    } else {
+        /* RAM case */
+        ptr = host_ram_addr((pd & TARGET_PAGE_MASK) +
+                            (addr & ~TARGET_PAGE_MASK));
+        val = ldl_p(ptr);
+    }
+    return val;
+}
+
+/* warning: addr must be aligned */
+uint64_t ldq_phys(target_phys_addr_t addr)
+{
+    int io_index;
+    uint8_t *ptr;
+    uint64_t val;
+    unsigned long pd;
+    PhysPageDesc *p;
+
+    p = phys_page_find(addr >> TARGET_PAGE_BITS);
+    if (!p) {
+        pd = IO_MEM_UNASSIGNED;
+    } else {
+        pd = p->phys_offset;
+    }
+
+    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+        !(pd & IO_MEM_ROMD)) {
+        /* I/O case */
+        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+        if (p)
+            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+#ifdef TARGET_WORDS_BIGENDIAN
+        val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
+        val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
+#else
+        val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+        val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
+#endif
+    } else {
+        /* RAM case */
+        ptr = host_ram_addr((pd & TARGET_PAGE_MASK) +
+                            (addr & ~TARGET_PAGE_MASK));
+        val = ldq_p(ptr);
+    }
+    return val;
+}
+
+/* XXX: optimize */
+uint32_t ldub_phys(target_phys_addr_t addr)
+{
+    uint8_t val;
+    cpu_physical_memory_read(addr, &val, 1);
+    return val;
+}
+
+/* XXX: optimize */
+uint32_t lduw_phys(target_phys_addr_t addr)
+{
+    uint16_t val;
+    cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
+    return tswap16(val);
+}
+
+/* warning: addr must be aligned. The ram page is not masked as dirty
+   and the code inside is not invalidated. It is useful if the dirty
+   bits are used to track modified PTEs */
+void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
+{
+    int io_index;
+    uint8_t *ptr;
+    unsigned long pd;
+    PhysPageDesc *p;
+
+    p = phys_page_find(addr >> TARGET_PAGE_BITS);
+    if (!p) {
+        pd = IO_MEM_UNASSIGNED;
+    } else {
+        pd = p->phys_offset;
+    }
+
+    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+        if (p)
+            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+    } else {
+        unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+        ptr = host_ram_addr(addr1);
+        stl_p(ptr, val);
+
+        if (unlikely(in_migration)) {
+            if (!cpu_physical_memory_is_dirty(addr1)) {
+                /* invalidate code */
+                tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
+                /* set dirty bit */
+                phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
+                    (0xff & ~CODE_DIRTY_FLAG);
+            }
+        }
+    }
+}
+
+void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
+{
+    int io_index;
+    uint8_t *ptr;
+    unsigned long pd;
+    PhysPageDesc *p;
+
+    p = phys_page_find(addr >> TARGET_PAGE_BITS);
+    if (!p) {
+        pd = IO_MEM_UNASSIGNED;
+    } else {
+        pd = p->phys_offset;
+    }
+
+    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+        if (p)
+            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+#ifdef TARGET_WORDS_BIGENDIAN
+        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
+        io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
+#else
+        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+        io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
+#endif
+    } else {
+        ptr = host_ram_addr((pd & TARGET_PAGE_MASK) +
+                            (addr & ~TARGET_PAGE_MASK));
+        stq_p(ptr, val);
+    }
+}
+
+/* warning: addr must be aligned */
+void stl_phys(target_phys_addr_t addr, uint32_t val)
+{
+    int io_index;
+    uint8_t *ptr;
+    unsigned long pd;
+    PhysPageDesc *p;
+
+    p = phys_page_find(addr >> TARGET_PAGE_BITS);
+    if (!p) {
+        pd = IO_MEM_UNASSIGNED;
+    } else {
+        pd = p->phys_offset;
+    }
+
+    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+        if (p)
+            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+    } else {
+        unsigned long addr1;
+        addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+        /* RAM case */
+        ptr = host_ram_addr(addr1);
+        stl_p(ptr, val);
+        if (!cpu_physical_memory_is_dirty(addr1)) {
+            /* invalidate code */
+            tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
+            /* set dirty bit */
+            phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
+                (0xff & ~CODE_DIRTY_FLAG);
+        }
+    }
+}
+
+/* XXX: optimize */
+void stb_phys(target_phys_addr_t addr, uint32_t val)
+{
+    uint8_t v = val;
+    cpu_physical_memory_write(addr, &v, 1);
+}
+
+/* XXX: optimize */
+void stw_phys(target_phys_addr_t addr, uint32_t val)
+{
+    uint16_t v = tswap16(val);
+    cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
+}
+
+/* XXX: optimize */
+void stq_phys(target_phys_addr_t addr, uint64_t val)
+{
+    val = tswap64(val);
+    cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
+}
+
+#endif
+
+/* virtual memory access for debug */
+int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+                        uint8_t *buf, int len, int is_write)
+{
+    int l;
+    target_phys_addr_t phys_addr;
+    target_ulong page;
+
+    while (len > 0) {
+        page = addr & TARGET_PAGE_MASK;
+        phys_addr = cpu_get_phys_page_debug(env, page);
+        /* if no physical page mapped, return an error */
+        if (phys_addr == -1)
+            return -1;
+        l = (page + TARGET_PAGE_SIZE) - addr;
+        if (l > len)
+            l = len;
+        cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
+                               buf, l, is_write);
+        len -= l;
+        buf += l;
+        addr += l;
+    }
+    return 0;
+}
+
+/* in deterministic execution mode, instructions doing device I/Os
+   must be at the end of the TB */
+void cpu_io_recompile(CPUState *env, void *retaddr)
+{
+    TranslationBlock *tb;
+    uint32_t n, cflags;
+    target_ulong pc, cs_base;
+    uint64_t flags;
+
+    tb = tb_find_pc((unsigned long)retaddr);
+    if (!tb) {
+        cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", 
+                  retaddr);
+    }
+    n = env->icount_decr.u16.low + tb->icount;
+    cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
+    /* Calculate how many instructions had been executed before the fault
+       occurred.  */
+    n = n - env->icount_decr.u16.low;
+    /* Generate a new TB ending on the I/O insn.  */
+    n++;
+    /* On MIPS and SH, delay slot instructions can only be restarted if
+       they were already the first instruction in the TB.  If this is not
+       the first instruction in a TB then re-execute the preceding
+       branch.  */
+#if defined(TARGET_MIPS)
+    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
+        env->active_tc.PC -= 4;
+        env->icount_decr.u16.low++;
+        env->hflags &= ~MIPS_HFLAG_BMASK;
+    }
+#elif defined(TARGET_SH4)
+    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
+            && n > 1) {
+        env->pc -= 2;
+        env->icount_decr.u16.low++;
+        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
+    }
+#endif
+    /* This should never happen.  */
+    if (n > CF_COUNT_MASK)
+        cpu_abort(env, "TB too big during recompile");
+
+    cflags = n | CF_LAST_IO;
+    pc = tb->pc;
+    cs_base = tb->cs_base;
+    flags = tb->flags;
+    tb_phys_invalidate(tb, -1);
+    /* FIXME: In theory this could raise an exception.  In practice
+       we have already translated the block once so it's probably ok.  */
+    tb_gen_code(env, pc, cs_base, flags, cflags);
+    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
+       the first in the TB) then we end up generating a whole new TB and
+       repeating the fault, which is horribly inefficient.
+       Better would be to execute just this insn uncached, or generate a
+       second new TB.  */
+    cpu_resume_from_signal(env, NULL);
+}
+
+void dump_exec_info(FILE *f,
+                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
+{
+    int i, target_code_size, max_target_code_size;
+    int direct_jmp_count, direct_jmp2_count, cross_page;
+    TranslationBlock *tb;
+
+    target_code_size = 0;
+    max_target_code_size = 0;
+    cross_page = 0;
+    direct_jmp_count = 0;
+    direct_jmp2_count = 0;
+    for(i = 0; i < nb_tbs; i++) {
+        tb = &tbs[i];
+        target_code_size += tb->size;
+        if (tb->size > max_target_code_size)
+            max_target_code_size = tb->size;
+        if (tb->page_addr[1] != -1)
+            cross_page++;
+        if (tb->tb_next_offset[0] != 0xffff) {
+            direct_jmp_count++;
+            if (tb->tb_next_offset[1] != 0xffff) {
+                direct_jmp2_count++;
+            }
+        }
+    }
+    /* XXX: avoid using doubles ? */
+    cpu_fprintf(f, "Translation buffer state:\n");
+    cpu_fprintf(f, "gen code size       %ld/%ld\n",
+                code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
+    cpu_fprintf(f, "TB count            %d/%d\n", 
+                nb_tbs, code_gen_max_blocks);
+    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
+                nb_tbs ? target_code_size / nb_tbs : 0,
+                max_target_code_size);
+    cpu_fprintf(f, "TB avg host size    %d bytes (expansion ratio: %0.1f)\n",
+                nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
+                target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
+    cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
+            cross_page,
+            nb_tbs ? (cross_page * 100) / nb_tbs : 0);
+    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
+                direct_jmp_count,
+                nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
+                direct_jmp2_count,
+                nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
+    cpu_fprintf(f, "\nStatistics:\n");
+    cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
+    cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
+    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
+    tcg_dump_info(f, cpu_fprintf);
+}
+
+#if !defined(CONFIG_USER_ONLY)
+
+#define MMUSUFFIX _cmmu
+#define GETPC() NULL
+#define env cpu_single_env
+#define SOFTMMU_CODE_ACCESS
+
+#define SHIFT 0
+#include "softmmu_template.h"
+
+#define SHIFT 1
+#include "softmmu_template.h"
+
+#define SHIFT 2
+#include "softmmu_template.h"
+
+#define SHIFT 3
+#include "softmmu_template.h"
+
+#undef env
+
+#endif