symbian-qemu-0.9.1-12/qemu-symbian-svp/hw/onenand.c
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/qemu-symbian-svp/hw/onenand.c	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,665 @@
+/*
+ * OneNAND flash memories emulation.
+ *
+ * Copyright (C) 2008 Nokia Corporation
+ * Written by Andrzej Zaborowski <andrew@openedhand.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 or
+ * (at your option) version 3 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include "qemu-common.h"
+#include "flash.h"
+#include "irq.h"
+#include "sysemu.h"
+#include "block.h"
+
+/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
+#define PAGE_SHIFT	11
+
+/* Fixed */
+#define BLOCK_SHIFT	(PAGE_SHIFT + 6)
+
+struct onenand_s {
+    uint32_t id;
+    int shift;
+    target_phys_addr_t base;
+    qemu_irq intr;
+    qemu_irq rdy;
+    BlockDriverState *bdrv;
+    BlockDriverState *bdrv_cur;
+    uint8_t *image;
+    uint8_t *otp;
+    uint8_t *current;
+    ram_addr_t ram;
+    uint8_t *boot[2];
+    uint8_t *data[2][2];
+    int iomemtype;
+    int cycle;
+    int otpmode;
+
+    uint16_t addr[8];
+    uint16_t unladdr[8];
+    int bufaddr;
+    int count;
+    uint16_t command;
+    uint16_t config[2];
+    uint16_t status;
+    uint16_t intstatus;
+    uint16_t wpstatus;
+
+    struct ecc_state_s ecc;
+
+    int density_mask;
+    int secs;
+    int secs_cur;
+    int blocks;
+    uint8_t *blockwp;
+};
+
+enum {
+    ONEN_BUF_BLOCK = 0,
+    ONEN_BUF_BLOCK2 = 1,
+    ONEN_BUF_DEST_BLOCK = 2,
+    ONEN_BUF_DEST_PAGE = 3,
+    ONEN_BUF_PAGE = 7,
+};
+
+enum {
+    ONEN_ERR_CMD = 1 << 10,
+    ONEN_ERR_ERASE = 1 << 11,
+    ONEN_ERR_PROG = 1 << 12,
+    ONEN_ERR_LOAD = 1 << 13,
+};
+
+enum {
+    ONEN_INT_RESET = 1 << 4,
+    ONEN_INT_ERASE = 1 << 5,
+    ONEN_INT_PROG = 1 << 6,
+    ONEN_INT_LOAD = 1 << 7,
+    ONEN_INT = 1 << 15,
+};
+
+enum {
+    ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
+    ONEN_LOCK_LOCKED = 1 << 1,
+    ONEN_LOCK_UNLOCKED = 1 << 2,
+};
+
+void onenand_base_update(void *opaque, target_phys_addr_t new)
+{
+    struct onenand_s *s = (struct onenand_s *) opaque;
+
+    s->base = new;
+
+    /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
+     * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
+     * write boot commands.  Also take note of the BWPS bit.  */
+    cpu_register_physical_memory(s->base + (0x0000 << s->shift),
+                    0x0200 << s->shift, s->iomemtype);
+    cpu_register_physical_memory(s->base + (0x0200 << s->shift),
+                    0xbe00 << s->shift,
+                    (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
+    if (s->iomemtype)
+        cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
+                    0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
+}
+
+void onenand_base_unmap(void *opaque)
+{
+    struct onenand_s *s = (struct onenand_s *) opaque;
+
+    cpu_register_physical_memory(s->base,
+                    0x10000 << s->shift, IO_MEM_UNASSIGNED);
+}
+
+static void onenand_intr_update(struct onenand_s *s)
+{
+    qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
+}
+
+/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
+static void onenand_reset(struct onenand_s *s, int cold)
+{
+    memset(&s->addr, 0, sizeof(s->addr));
+    s->command = 0;
+    s->count = 1;
+    s->bufaddr = 0;
+    s->config[0] = 0x40c0;
+    s->config[1] = 0x0000;
+    onenand_intr_update(s);
+    qemu_irq_raise(s->rdy);
+    s->status = 0x0000;
+    s->intstatus = cold ? 0x8080 : 0x8010;
+    s->unladdr[0] = 0;
+    s->unladdr[1] = 0;
+    s->wpstatus = 0x0002;
+    s->cycle = 0;
+    s->otpmode = 0;
+    s->bdrv_cur = s->bdrv;
+    s->current = s->image;
+    s->secs_cur = s->secs;
+
+    if (cold) {
+        /* Lock the whole flash */
+        memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
+
+        if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
+            cpu_abort(cpu_single_env, "%s: Loading the BootRAM failed.\n",
+                            __FUNCTION__);
+    }
+}
+
+static inline int onenand_load_main(struct onenand_s *s, int sec, int secn,
+                void *dest)
+{
+    if (s->bdrv_cur)
+        return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
+    else if (sec + secn > s->secs_cur)
+        return 1;
+
+    memcpy(dest, s->current + (sec << 9), secn << 9);
+
+    return 0;
+}
+
+static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn,
+                void *src)
+{
+    if (s->bdrv_cur)
+        return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
+    else if (sec + secn > s->secs_cur)
+        return 1;
+
+    memcpy(s->current + (sec << 9), src, secn << 9);
+
+    return 0;
+}
+
+static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn,
+                void *dest)
+{
+    uint8_t buf[512];
+
+    if (s->bdrv_cur) {
+        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
+            return 1;
+        memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
+    } else if (sec + secn > s->secs_cur)
+        return 1;
+    else
+        memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
+ 
+    return 0;
+}
+
+static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn,
+                void *src)
+{
+    uint8_t buf[512];
+
+    if (s->bdrv_cur) {
+        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
+            return 1;
+        memcpy(buf + ((sec & 31) << 4), src, secn << 4);
+        return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
+    } else if (sec + secn > s->secs_cur)
+        return 1;
+
+    memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
+ 
+    return 0;
+}
+
+static inline int onenand_erase(struct onenand_s *s, int sec, int num)
+{
+    /* TODO: optimise */
+    uint8_t buf[512];
+
+    memset(buf, 0xff, sizeof(buf));
+    for (; num > 0; num --, sec ++) {
+        if (onenand_prog_main(s, sec, 1, buf))
+            return 1;
+        if (onenand_prog_spare(s, sec, 1, buf))
+            return 1;
+    }
+
+    return 0;
+}
+
+static void onenand_command(struct onenand_s *s, int cmd)
+{
+    int b;
+    int sec;
+    void *buf;
+#define SETADDR(block, page)			\
+    sec = (s->addr[page] & 3) +			\
+            ((((s->addr[page] >> 2) & 0x3f) +	\
+              (((s->addr[block] & 0xfff) |	\
+                (s->addr[block] >> 15 ?		\
+                 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
+#define SETBUF_M()				\
+    buf = (s->bufaddr & 8) ?			\
+            s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];	\
+    buf += (s->bufaddr & 3) << 9;
+#define SETBUF_S()				\
+    buf = (s->bufaddr & 8) ?			\
+            s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];	\
+    buf += (s->bufaddr & 3) << 4;
+
+    switch (cmd) {
+    case 0x00:	/* Load single/multiple sector data unit into buffer */
+        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+
+        SETBUF_M()
+        if (onenand_load_main(s, sec, s->count, buf))
+            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
+
+#if 0
+        SETBUF_S()
+        if (onenand_load_spare(s, sec, s->count, buf))
+            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
+#endif
+
+        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
+         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
+         * then we need two split the read/write into two chunks.
+         */
+        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
+        break;
+    case 0x13:	/* Load single/multiple spare sector into buffer */
+        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+
+        SETBUF_S()
+        if (onenand_load_spare(s, sec, s->count, buf))
+            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
+
+        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
+         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
+         * then we need two split the read/write into two chunks.
+         */
+        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
+        break;
+    case 0x80:	/* Program single/multiple sector data unit from buffer */
+        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+
+        SETBUF_M()
+        if (onenand_prog_main(s, sec, s->count, buf))
+            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
+
+#if 0
+        SETBUF_S()
+        if (onenand_prog_spare(s, sec, s->count, buf))
+            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
+#endif
+
+        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
+         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
+         * then we need two split the read/write into two chunks.
+         */
+        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
+        break;
+    case 0x1a:	/* Program single/multiple spare area sector from buffer */
+        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+
+        SETBUF_S()
+        if (onenand_prog_spare(s, sec, s->count, buf))
+            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
+
+        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
+         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
+         * then we need two split the read/write into two chunks.
+         */
+        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
+        break;
+    case 0x1b:	/* Copy-back program */
+        SETBUF_S()
+
+        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+        if (onenand_load_main(s, sec, s->count, buf))
+            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
+
+        SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
+        if (onenand_prog_main(s, sec, s->count, buf))
+            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
+
+        /* TODO: spare areas */
+
+        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
+        break;
+
+    case 0x23:	/* Unlock NAND array block(s) */
+        s->intstatus |= ONEN_INT;
+
+        /* XXX the previous (?) area should be locked automatically */
+        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
+            if (b >= s->blocks) {
+                s->status |= ONEN_ERR_CMD;
+                break;
+            }
+            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
+                break;
+
+            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
+        }
+        break;
+    case 0x27:	/* Unlock All NAND array blocks */
+        s->intstatus |= ONEN_INT;
+
+        for (b = 0; b < s->blocks; b ++) {
+            if (b >= s->blocks) {
+                s->status |= ONEN_ERR_CMD;
+                break;
+            }
+            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
+                break;
+
+            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
+        }
+        break;
+
+    case 0x2a:	/* Lock NAND array block(s) */
+        s->intstatus |= ONEN_INT;
+
+        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
+            if (b >= s->blocks) {
+                s->status |= ONEN_ERR_CMD;
+                break;
+            }
+            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
+                break;
+
+            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
+        }
+        break;
+    case 0x2c:	/* Lock-tight NAND array block(s) */
+        s->intstatus |= ONEN_INT;
+
+        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
+            if (b >= s->blocks) {
+                s->status |= ONEN_ERR_CMD;
+                break;
+            }
+            if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
+                continue;
+
+            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
+        }
+        break;
+
+    case 0x71:	/* Erase-Verify-Read */
+        s->intstatus |= ONEN_INT;
+        break;
+    case 0x95:	/* Multi-block erase */
+        qemu_irq_pulse(s->intr);
+        /* Fall through.  */
+    case 0x94:	/* Block erase */
+        sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
+                        (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
+                << (BLOCK_SHIFT - 9);
+        if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
+            s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
+
+        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
+        break;
+    case 0xb0:	/* Erase suspend */
+        break;
+    case 0x30:	/* Erase resume */
+        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
+        break;
+
+    case 0xf0:	/* Reset NAND Flash core */
+        onenand_reset(s, 0);
+        break;
+    case 0xf3:	/* Reset OneNAND */
+        onenand_reset(s, 0);
+        break;
+
+    case 0x65:	/* OTP Access */
+        s->intstatus |= ONEN_INT;
+        s->bdrv_cur = 0;
+        s->current = s->otp;
+        s->secs_cur = 1 << (BLOCK_SHIFT - 9);
+        s->addr[ONEN_BUF_BLOCK] = 0;
+        s->otpmode = 1;
+        break;
+
+    default:
+        s->status |= ONEN_ERR_CMD;
+        s->intstatus |= ONEN_INT;
+        fprintf(stderr, "%s: unknown OneNAND command %x\n",
+                        __FUNCTION__, cmd);
+    }
+
+    onenand_intr_update(s);
+}
+
+static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
+{
+    struct onenand_s *s = (struct onenand_s *) opaque;
+    int offset = addr >> s->shift;
+
+    switch (offset) {
+    case 0x0000 ... 0xc000:
+        return lduw_le_p(s->boot[0] + addr);
+
+    case 0xf000:	/* Manufacturer ID */
+        return (s->id >> 16) & 0xff;
+    case 0xf001:	/* Device ID */
+        return (s->id >>  8) & 0xff;
+    /* TODO: get the following values from a real chip!  */
+    case 0xf002:	/* Version ID */
+        return (s->id >>  0) & 0xff;
+    case 0xf003:	/* Data Buffer size */
+        return 1 << PAGE_SHIFT;
+    case 0xf004:	/* Boot Buffer size */
+        return 0x200;
+    case 0xf005:	/* Amount of buffers */
+        return 1 | (2 << 8);
+    case 0xf006:	/* Technology */
+        return 0;
+
+    case 0xf100 ... 0xf107:	/* Start addresses */
+        return s->addr[offset - 0xf100];
+
+    case 0xf200:	/* Start buffer */
+        return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
+
+    case 0xf220:	/* Command */
+        return s->command;
+    case 0xf221:	/* System Configuration 1 */
+        return s->config[0] & 0xffe0;
+    case 0xf222:	/* System Configuration 2 */
+        return s->config[1];
+
+    case 0xf240:	/* Controller Status */
+        return s->status;
+    case 0xf241:	/* Interrupt */
+        return s->intstatus;
+    case 0xf24c:	/* Unlock Start Block Address */
+        return s->unladdr[0];
+    case 0xf24d:	/* Unlock End Block Address */
+        return s->unladdr[1];
+    case 0xf24e:	/* Write Protection Status */
+        return s->wpstatus;
+
+    case 0xff00:	/* ECC Status */
+        return 0x00;
+    case 0xff01:	/* ECC Result of main area data */
+    case 0xff02:	/* ECC Result of spare area data */
+    case 0xff03:	/* ECC Result of main area data */
+    case 0xff04:	/* ECC Result of spare area data */
+        cpu_abort(cpu_single_env, "%s: imeplement ECC\n", __FUNCTION__);
+        return 0x0000;
+    }
+
+    fprintf(stderr, "%s: unknown OneNAND register %x\n",
+                    __FUNCTION__, offset);
+    return 0;
+}
+
+static void onenand_write(void *opaque, target_phys_addr_t addr,
+                uint32_t value)
+{
+    struct onenand_s *s = (struct onenand_s *) opaque;
+    int offset = addr >> s->shift;
+    int sec;
+
+    switch (offset) {
+    case 0x0000 ... 0x01ff:
+    case 0x8000 ... 0x800f:
+        if (s->cycle) {
+            s->cycle = 0;
+
+            if (value == 0x0000) {
+                SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+                onenand_load_main(s, sec,
+                                1 << (PAGE_SHIFT - 9), s->data[0][0]);
+                s->addr[ONEN_BUF_PAGE] += 4;
+                s->addr[ONEN_BUF_PAGE] &= 0xff;
+            }
+            break;
+        }
+
+        switch (value) {
+        case 0x00f0:	/* Reset OneNAND */
+            onenand_reset(s, 0);
+            break;
+
+        case 0x00e0:	/* Load Data into Buffer */
+            s->cycle = 1;
+            break;
+
+        case 0x0090:	/* Read Identification Data */
+            memset(s->boot[0], 0, 3 << s->shift);
+            s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
+            s->boot[0][1 << s->shift] = (s->id >>  8) & 0xff;
+            s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
+            break;
+
+        default:
+            fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
+                            __FUNCTION__, value);
+        }
+        break;
+
+    case 0xf100 ... 0xf107:	/* Start addresses */
+        s->addr[offset - 0xf100] = value;
+        break;
+
+    case 0xf200:	/* Start buffer */
+        s->bufaddr = (value >> 8) & 0xf;
+        if (PAGE_SHIFT == 11)
+            s->count = (value & 3) ?: 4;
+        else if (PAGE_SHIFT == 10)
+            s->count = (value & 1) ?: 2;
+        break;
+
+    case 0xf220:	/* Command */
+        if (s->intstatus & (1 << 15))
+            break;
+        s->command = value;
+        onenand_command(s, s->command);
+        break;
+    case 0xf221:	/* System Configuration 1 */
+        s->config[0] = value;
+        onenand_intr_update(s);
+        qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
+        break;
+    case 0xf222:	/* System Configuration 2 */
+        s->config[1] = value;
+        break;
+
+    case 0xf241:	/* Interrupt */
+        s->intstatus &= value;
+        if ((1 << 15) & ~s->intstatus)
+            s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
+                            ONEN_ERR_PROG | ONEN_ERR_LOAD);
+        onenand_intr_update(s);
+        break;
+    case 0xf24c:	/* Unlock Start Block Address */
+        s->unladdr[0] = value & (s->blocks - 1);
+        /* For some reason we have to set the end address to by default
+         * be same as start because the software forgets to write anything
+         * in there.  */
+        s->unladdr[1] = value & (s->blocks - 1);
+        break;
+    case 0xf24d:	/* Unlock End Block Address */
+        s->unladdr[1] = value & (s->blocks - 1);
+        break;
+
+    default:
+        fprintf(stderr, "%s: unknown OneNAND register %x\n",
+                        __FUNCTION__, offset);
+    }
+}
+
+static CPUReadMemoryFunc *onenand_readfn[] = {
+    onenand_read,	/* TODO */
+    onenand_read,
+    onenand_read,
+};
+
+static CPUWriteMemoryFunc *onenand_writefn[] = {
+    onenand_write,	/* TODO */
+    onenand_write,
+    onenand_write,
+};
+
+void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
+{
+    struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s));
+    int bdrv_index = drive_get_index(IF_MTD, 0, 0);
+    uint32_t size = 1 << (24 + ((id >> 12) & 7));
+    void *ram;
+
+    s->shift = regshift;
+    s->intr = irq;
+    s->rdy = 0;
+    s->id = id;
+    s->blocks = size >> BLOCK_SHIFT;
+    s->secs = size >> 9;
+    s->blockwp = qemu_malloc(s->blocks);
+    s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
+    s->iomemtype = cpu_register_io_memory(0, onenand_readfn,
+                    onenand_writefn, s);
+    if (bdrv_index == -1)
+        s->image = memset(qemu_malloc(size + (size >> 5)),
+                        0xff, size + (size >> 5));
+    else
+        s->bdrv = drives_table[bdrv_index].bdrv;
+    s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
+                    0xff, (64 + 2) << PAGE_SHIFT);
+    s->ram = qemu_ram_alloc(0xc000 << s->shift);
+    /* FIXME: This is broken if it spans multiple RAM regions.  */
+    ram = host_ram_addr(s->ram);
+    s->boot[0] = ram + (0x0000 << s->shift);
+    s->boot[1] = ram + (0x8000 << s->shift);
+    s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
+    s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
+    s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
+    s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
+
+    onenand_reset(s, 1);
+
+    return s;
+}
+
+void *onenand_raw_otp(void *opaque)
+{
+    struct onenand_s *s = (struct onenand_s *) opaque;
+
+    return s->otp;
+}