symbian-qemu-0.9.1-12/qemu-symbian-svp/hw/musicpal.c
author martin.trojer@nokia.com
Fri, 31 Jul 2009 15:01:17 +0100
changeset 1 2fb8b9db1c86
permissions -rw-r--r--
Initial QEMU (symbian-qemu-0.9.1-12) import

/*
 * Marvell MV88W8618 / Freecom MusicPal emulation.
 *
 * Copyright (c) 2008 Jan Kiszka
 *
 * This code is licenced under the GNU GPL v2.
 */

#include "hw.h"
#include "arm-misc.h"
#include "devices.h"
#include "net.h"
#include "sysemu.h"
#include "boards.h"
#include "pc.h"
#include "qemu-timer.h"
#include "block.h"
#include "flash.h"
#include "gui.h"
#include "audio/audio.h"
#include "i2c.h"

#define MP_ETH_BASE             0x80008000
#define MP_ETH_SIZE             0x00001000

#define MP_UART1_BASE           0x8000C840
#define MP_UART2_BASE           0x8000C940

#define MP_FLASHCFG_BASE        0x90006000
#define MP_FLASHCFG_SIZE        0x00001000

#define MP_AUDIO_BASE           0x90007000
#define MP_AUDIO_SIZE           0x00001000

#define MP_PIC_BASE             0x90008000
#define MP_PIC_SIZE             0x00001000

#define MP_PIT_BASE             0x90009000
#define MP_PIT_SIZE             0x00001000

#define MP_LCD_BASE             0x9000c000
#define MP_LCD_SIZE             0x00001000

#define MP_SRAM_BASE            0xC0000000
#define MP_SRAM_SIZE            0x00020000

#define MP_RAM_DEFAULT_SIZE     32*1024*1024
#define MP_FLASH_SIZE_MAX       32*1024*1024

#define MP_TIMER1_IRQ           4
/* ... */
#define MP_TIMER4_IRQ           7
#define MP_EHCI_IRQ             8
#define MP_ETH_IRQ              9
#define MP_UART1_IRQ            11
#define MP_UART2_IRQ            11
#define MP_GPIO_IRQ             12
#define MP_RTC_IRQ              28
#define MP_AUDIO_IRQ            30

static uint32_t gpio_in_state = 0xffffffff;
static uint32_t gpio_isr;
static uint32_t gpio_out_state;
static ram_addr_t sram_off;

/* Address conversion helpers */
static void *target2host_addr(uint32_t addr)
{
    /* FIXME: This is broken if it spans multiple RAM regions.  */
    if (addr < MP_SRAM_BASE) {
        if (addr >= MP_RAM_DEFAULT_SIZE)
            return NULL;
        return host_ram_addr(addr);
    } else {
        if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
            return NULL;
        return host_ram_addr(sram_off + addr - MP_SRAM_BASE);
    }
}

static uint32_t host2target_addr(void *addr)
{
    /* FIXME: This is broken if it spans multiple RAM regions.  */
    ram_addr_t offset = ram_offset_from_host(addr);
    if (offset < sram_off)
        return offset;
    else
        return offset - sram_off + MP_SRAM_BASE;
}


typedef enum i2c_state {
    STOPPED = 0,
    INITIALIZING,
    SENDING_BIT7,
    SENDING_BIT6,
    SENDING_BIT5,
    SENDING_BIT4,
    SENDING_BIT3,
    SENDING_BIT2,
    SENDING_BIT1,
    SENDING_BIT0,
    WAITING_FOR_ACK,
    RECEIVING_BIT7,
    RECEIVING_BIT6,
    RECEIVING_BIT5,
    RECEIVING_BIT4,
    RECEIVING_BIT3,
    RECEIVING_BIT2,
    RECEIVING_BIT1,
    RECEIVING_BIT0,
    SENDING_ACK
} i2c_state;

typedef struct i2c_interface {
    i2c_bus *bus;
    i2c_state state;
    int last_data;
    int last_clock;
    uint8_t buffer;
    int current_addr;
} i2c_interface;

static void i2c_enter_stop(i2c_interface *i2c)
{
    if (i2c->current_addr >= 0)
        i2c_end_transfer(i2c->bus);
    i2c->current_addr = -1;
    i2c->state = STOPPED;
}

static void i2c_state_update(i2c_interface *i2c, int data, int clock)
{
    if (!i2c)
        return;

    switch (i2c->state) {
    case STOPPED:
        if (data == 0 && i2c->last_data == 1 && clock == 1)
            i2c->state = INITIALIZING;
        break;

    case INITIALIZING:
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
            i2c->state = SENDING_BIT7;
        else
            i2c_enter_stop(i2c);
        break;

    case SENDING_BIT7 ... SENDING_BIT0:
        if (clock == 0 && i2c->last_clock == 1) {
            i2c->buffer = (i2c->buffer << 1) | data;
            i2c->state++; /* will end up in WAITING_FOR_ACK */
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
            i2c_enter_stop(i2c);
        break;

    case WAITING_FOR_ACK:
        if (clock == 0 && i2c->last_clock == 1) {
            if (i2c->current_addr < 0) {
                i2c->current_addr = i2c->buffer;
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
                                   i2c->buffer & 1);
            } else
                i2c_send(i2c->bus, i2c->buffer);
            if (i2c->current_addr & 1) {
                i2c->state = RECEIVING_BIT7;
                i2c->buffer = i2c_recv(i2c->bus);
            } else
                i2c->state = SENDING_BIT7;
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
            i2c_enter_stop(i2c);
        break;

    case RECEIVING_BIT7 ... RECEIVING_BIT0:
        if (clock == 0 && i2c->last_clock == 1) {
            i2c->state++; /* will end up in SENDING_ACK */
            i2c->buffer <<= 1;
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
            i2c_enter_stop(i2c);
        break;

    case SENDING_ACK:
        if (clock == 0 && i2c->last_clock == 1) {
            i2c->state = RECEIVING_BIT7;
            if (data == 0)
                i2c->buffer = i2c_recv(i2c->bus);
            else
                i2c_nack(i2c->bus);
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
            i2c_enter_stop(i2c);
        break;
    }

    i2c->last_data = data;
    i2c->last_clock = clock;
}

static int i2c_get_data(i2c_interface *i2c)
{
    if (!i2c)
        return 0;

    switch (i2c->state) {
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
        return (i2c->buffer >> 7);

    case WAITING_FOR_ACK:
    default:
        return 0;
    }
}

static i2c_interface *mixer_i2c;

#ifdef HAS_AUDIO

/* Audio register offsets */
#define MP_AUDIO_PLAYBACK_MODE  0x00
#define MP_AUDIO_CLOCK_DIV      0x18
#define MP_AUDIO_IRQ_STATUS     0x20
#define MP_AUDIO_IRQ_ENABLE     0x24
#define MP_AUDIO_TX_START_LO    0x28
#define MP_AUDIO_TX_THRESHOLD   0x2C
#define MP_AUDIO_TX_STATUS      0x38
#define MP_AUDIO_TX_START_HI    0x40

/* Status register and IRQ enable bits */
#define MP_AUDIO_TX_HALF        (1 << 6)
#define MP_AUDIO_TX_FULL        (1 << 7)

/* Playback mode bits */
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)
#define MP_AUDIO_MONO           (1 << 14)

/* Wolfson 8750 I2C address */
#define MP_WM_ADDR              0x34

static const char audio_name[] = "mv88w8618";

typedef struct musicpal_audio_state {
    qemu_irq irq;
    uint32_t playback_mode;
    uint32_t status;
    uint32_t irq_enable;
    unsigned long phys_buf;
    int8_t *target_buffer;
    unsigned int threshold;
    unsigned int play_pos;
    unsigned int last_free;
    uint32_t clock_div;
    i2c_slave *wm;
} musicpal_audio_state;

static void audio_callback(void *opaque, int free_out, int free_in)
{
    musicpal_audio_state *s = opaque;
    int16_t *codec_buffer;
    int8_t *mem_buffer;
    int pos, block_size;

    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
        return;

    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
        free_out <<= 1;

    if (!(s->playback_mode & MP_AUDIO_MONO))
        free_out <<= 1;

    block_size = s->threshold/2;
    if (free_out - s->last_free < block_size)
        return;

    mem_buffer = s->target_buffer + s->play_pos;
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
        if (s->playback_mode & MP_AUDIO_MONO) {
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
            for (pos = 0; pos < block_size; pos += 2) {
                *codec_buffer++ = *(int16_t *)mem_buffer;
                *codec_buffer++ = *(int16_t *)mem_buffer;
                mem_buffer += 2;
            }
        } else
            memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
                   (uint32_t *)mem_buffer, block_size);
    } else {
        if (s->playback_mode & MP_AUDIO_MONO) {
            codec_buffer = wm8750_dac_buffer(s->wm, block_size);
            for (pos = 0; pos < block_size; pos++) {
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
            }
        } else {
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
            for (pos = 0; pos < block_size; pos += 2) {
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
            }
        }
    }
    wm8750_dac_commit(s->wm);

    s->last_free = free_out - block_size;

    if (s->play_pos == 0) {
        s->status |= MP_AUDIO_TX_HALF;
        s->play_pos = block_size;
    } else {
        s->status |= MP_AUDIO_TX_FULL;
        s->play_pos = 0;
    }

    if (s->status & s->irq_enable)
        qemu_irq_raise(s->irq);
}

static void musicpal_audio_clock_update(musicpal_audio_state *s)
{
    int rate;

    if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
        rate = 24576000 / 64; /* 24.576MHz */
    else
        rate = 11289600 / 64; /* 11.2896MHz */

    rate /= ((s->clock_div >> 8) & 0xff) + 1;

    wm8750_set_bclk_in(s->wm, rate);
}

static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
{
    musicpal_audio_state *s = opaque;

    switch (offset) {
    case MP_AUDIO_PLAYBACK_MODE:
        return s->playback_mode;

    case MP_AUDIO_CLOCK_DIV:
        return s->clock_div;

    case MP_AUDIO_IRQ_STATUS:
        return s->status;

    case MP_AUDIO_IRQ_ENABLE:
        return s->irq_enable;

    case MP_AUDIO_TX_STATUS:
        return s->play_pos >> 2;

    default:
        return 0;
    }
}

static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
                                 uint32_t value)
{
    musicpal_audio_state *s = opaque;

    switch (offset) {
    case MP_AUDIO_PLAYBACK_MODE:
        if (value & MP_AUDIO_PLAYBACK_EN &&
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
            s->status = 0;
            s->last_free = 0;
            s->play_pos = 0;
        }
        s->playback_mode = value;
        musicpal_audio_clock_update(s);
        break;

    case MP_AUDIO_CLOCK_DIV:
        s->clock_div = value;
        s->last_free = 0;
        s->play_pos = 0;
        musicpal_audio_clock_update(s);
        break;

    case MP_AUDIO_IRQ_STATUS:
        s->status &= ~value;
        break;

    case MP_AUDIO_IRQ_ENABLE:
        s->irq_enable = value;
        if (s->status & s->irq_enable)
            qemu_irq_raise(s->irq);
        break;

    case MP_AUDIO_TX_START_LO:
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
        s->target_buffer = target2host_addr(s->phys_buf);
        s->play_pos = 0;
        s->last_free = 0;
        break;

    case MP_AUDIO_TX_THRESHOLD:
        s->threshold = (value + 1) * 4;
        break;

    case MP_AUDIO_TX_START_HI:
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
        s->target_buffer = target2host_addr(s->phys_buf);
        s->play_pos = 0;
        s->last_free = 0;
        break;
    }
}

static void musicpal_audio_reset(void *opaque)
{
    musicpal_audio_state *s = opaque;

    s->playback_mode = 0;
    s->status = 0;
    s->irq_enable = 0;
}

static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
    musicpal_audio_read,
    musicpal_audio_read,
    musicpal_audio_read
};

static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
    musicpal_audio_write,
    musicpal_audio_write,
    musicpal_audio_write
};

static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
{
    AudioState *audio;
    musicpal_audio_state *s;
    i2c_interface *i2c;
    int iomemtype;

    audio = AUD_init();
    if (!audio) {
        AUD_log(audio_name, "No audio state\n");
        return NULL;
    }

    s = qemu_mallocz(sizeof(musicpal_audio_state));
    if (!s)
        return NULL;
    s->irq = irq;

    i2c = qemu_mallocz(sizeof(i2c_interface));
    if (!i2c)
        return NULL;
    i2c->bus = i2c_init_bus();
    i2c->current_addr = -1;

    s->wm = wm8750_init(i2c->bus, audio);
    if (!s->wm)
        return NULL;
    i2c_set_slave_address(s->wm, MP_WM_ADDR);
    wm8750_data_req_set(s->wm, audio_callback, s);

    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
                       musicpal_audio_writefn, s);
    cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);

    qemu_register_reset(musicpal_audio_reset, s);

    return i2c;
}
#else  /* !HAS_AUDIO */
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
{
    return NULL;
}
#endif /* !HAS_AUDIO */

/* Ethernet register offsets */
#define MP_ETH_SMIR             0x010
#define MP_ETH_PCXR             0x408
#define MP_ETH_SDCMR            0x448
#define MP_ETH_ICR              0x450
#define MP_ETH_IMR              0x458
#define MP_ETH_FRDP0            0x480
#define MP_ETH_FRDP1            0x484
#define MP_ETH_FRDP2            0x488
#define MP_ETH_FRDP3            0x48C
#define MP_ETH_CRDP0            0x4A0
#define MP_ETH_CRDP1            0x4A4
#define MP_ETH_CRDP2            0x4A8
#define MP_ETH_CRDP3            0x4AC
#define MP_ETH_CTDP0            0x4E0
#define MP_ETH_CTDP1            0x4E4
#define MP_ETH_CTDP2            0x4E8
#define MP_ETH_CTDP3            0x4EC

/* MII PHY access */
#define MP_ETH_SMIR_DATA        0x0000FFFF
#define MP_ETH_SMIR_ADDR        0x03FF0000
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
#define MP_ETH_SMIR_RDVALID     (1 << 27)

/* PHY registers */
#define MP_ETH_PHY1_BMSR        0x00210000
#define MP_ETH_PHY1_PHYSID1     0x00410000
#define MP_ETH_PHY1_PHYSID2     0x00610000

#define MP_PHY_BMSR_LINK        0x0004
#define MP_PHY_BMSR_AUTONEG     0x0008

#define MP_PHY_88E3015          0x01410E20

/* TX descriptor status */
#define MP_ETH_TX_OWN           (1 << 31)

/* RX descriptor status */
#define MP_ETH_RX_OWN           (1 << 31)

/* Interrupt cause/mask bits */
#define MP_ETH_IRQ_RX_BIT       0
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
#define MP_ETH_IRQ_TXHI_BIT     2
#define MP_ETH_IRQ_TXLO_BIT     3

/* Port config bits */
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */

/* SDMA command bits */
#define MP_ETH_CMD_TXHI         (1 << 23)
#define MP_ETH_CMD_TXLO         (1 << 22)

typedef struct mv88w8618_tx_desc {
    uint32_t cmdstat;
    uint16_t res;
    uint16_t bytes;
    uint32_t buffer;
    uint32_t next;
} mv88w8618_tx_desc;

typedef struct mv88w8618_rx_desc {
    uint32_t cmdstat;
    uint16_t bytes;
    uint16_t buffer_size;
    uint32_t buffer;
    uint32_t next;
} mv88w8618_rx_desc;

typedef struct mv88w8618_eth_state {
    qemu_irq irq;
    uint32_t smir;
    uint32_t icr;
    uint32_t imr;
    int vlan_header;
    mv88w8618_tx_desc *tx_queue[2];
    mv88w8618_rx_desc *rx_queue[4];
    mv88w8618_rx_desc *frx_queue[4];
    mv88w8618_rx_desc *cur_rx[4];
    VLANClientState *vc;
} mv88w8618_eth_state;

static int eth_can_receive(void *opaque)
{
    return 1;
}

static void eth_receive(void *opaque, const uint8_t *buf, int size)
{
    mv88w8618_eth_state *s = opaque;
    mv88w8618_rx_desc *desc;
    int i;

    for (i = 0; i < 4; i++) {
        desc = s->cur_rx[i];
        if (!desc)
            continue;
        do {
            if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
                le16_to_cpu(desc->buffer_size) >= size) {
                memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
                                        s->vlan_header),
                       buf, size);
                desc->bytes = cpu_to_le16(size + s->vlan_header);
                desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
                s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));

                s->icr |= MP_ETH_IRQ_RX;
                if (s->icr & s->imr)
                    qemu_irq_raise(s->irq);
                return;
            }
            desc = target2host_addr(le32_to_cpu(desc->next));
        } while (desc != s->rx_queue[i]);
    }
}

static void eth_send(mv88w8618_eth_state *s, int queue_index)
{
    mv88w8618_tx_desc *desc = s->tx_queue[queue_index];

    do {
        if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
            qemu_send_packet(s->vc,
                             target2host_addr(le32_to_cpu(desc->buffer)),
                             le16_to_cpu(desc->bytes));
            desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
        }
        desc = target2host_addr(le32_to_cpu(desc->next));
    } while (desc != s->tx_queue[queue_index]);
}

static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
{
    mv88w8618_eth_state *s = opaque;

    switch (offset) {
    case MP_ETH_SMIR:
        if (s->smir & MP_ETH_SMIR_OPCODE) {
            switch (s->smir & MP_ETH_SMIR_ADDR) {
            case MP_ETH_PHY1_BMSR:
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
                       MP_ETH_SMIR_RDVALID;
            case MP_ETH_PHY1_PHYSID1:
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
            case MP_ETH_PHY1_PHYSID2:
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
            default:
                return MP_ETH_SMIR_RDVALID;
            }
        }
        return 0;

    case MP_ETH_ICR:
        return s->icr;

    case MP_ETH_IMR:
        return s->imr;

    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
        return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);

    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
        return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);

    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
        return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);

    default:
        return 0;
    }
}

static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
                                uint32_t value)
{
    mv88w8618_eth_state *s = opaque;

    switch (offset) {
    case MP_ETH_SMIR:
        s->smir = value;
        break;

    case MP_ETH_PCXR:
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
        break;

    case MP_ETH_SDCMR:
        if (value & MP_ETH_CMD_TXHI)
            eth_send(s, 1);
        if (value & MP_ETH_CMD_TXLO)
            eth_send(s, 0);
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
            qemu_irq_raise(s->irq);
        break;

    case MP_ETH_ICR:
        s->icr &= value;
        break;

    case MP_ETH_IMR:
        s->imr = value;
        if (s->icr & s->imr)
            qemu_irq_raise(s->irq);
        break;

    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
        break;

    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
        break;

    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
        break;
    }
}

static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
    mv88w8618_eth_read,
    mv88w8618_eth_read,
    mv88w8618_eth_read
};

static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
    mv88w8618_eth_write,
    mv88w8618_eth_write,
    mv88w8618_eth_write
};

static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
{
    mv88w8618_eth_state *s;
    int iomemtype;

    s = qemu_mallocz(sizeof(mv88w8618_eth_state));
    if (!s)
        return;
    s->irq = irq;
    s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
    iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
                                       mv88w8618_eth_writefn, s);
    cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
}

/* LCD register offsets */
#define MP_LCD_IRQCTRL          0x180
#define MP_LCD_IRQSTAT          0x184
#define MP_LCD_SPICTRL          0x1ac
#define MP_LCD_INST             0x1bc
#define MP_LCD_DATA             0x1c0

/* Mode magics */
#define MP_LCD_SPI_DATA         0x00100011
#define MP_LCD_SPI_CMD          0x00104011
#define MP_LCD_SPI_INVALID      0x00000000

/* Commmands */
#define MP_LCD_INST_SETPAGE0    0xB0
/* ... */
#define MP_LCD_INST_SETPAGE7    0xB7

#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */

typedef struct musicpal_lcd_state {
    uint32_t mode;
    uint32_t irqctrl;
    int page;
    int page_off;
    DisplayState *ds;
    uint8_t video_ram[128*64/8];
} musicpal_lcd_state;

static uint32_t lcd_brightness;

static uint8_t scale_lcd_color(uint8_t col)
{
    int tmp = col;

    switch (lcd_brightness) {
    case 0x00000007: /* 0 */
        return 0;

    case 0x00020000: /* 1 */
        return (tmp * 1) / 7;

    case 0x00020001: /* 2 */
        return (tmp * 2) / 7;

    case 0x00040000: /* 3 */
        return (tmp * 3) / 7;

    case 0x00010006: /* 4 */
        return (tmp * 4) / 7;

    case 0x00020005: /* 5 */
        return (tmp * 5) / 7;

    case 0x00040003: /* 6 */
        return (tmp * 6) / 7;

    case 0x00030004: /* 7 */
    default:
        return col;
    }
}

#define SET_LCD_PIXEL(depth, type) \
static inline void glue(set_lcd_pixel, depth) \
        (musicpal_lcd_state *s, int x, int y, type col) \
{ \
    int dx, dy; \
    type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
\
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
        for (dx = 0; dx < 3; dx++, pixel++) \
            *pixel = col; \
}
SET_LCD_PIXEL(8, uint8_t)
SET_LCD_PIXEL(16, uint16_t)
SET_LCD_PIXEL(32, uint32_t)

#include "pixel_ops.h"

static void lcd_refresh(void *opaque)
{
    musicpal_lcd_state *s = opaque;
    int x, y, col;

    switch (ds_get_bits_per_pixel(s->ds)) {
    case 0:
        return;
#define LCD_REFRESH(depth, func) \
    case depth: \
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
        for (x = 0; x < 128; x++) \
            for (y = 0; y < 64; y++) \
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
                else \
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
        break;
    LCD_REFRESH(8, rgb_to_pixel8)
    LCD_REFRESH(16, rgb_to_pixel16)
    LCD_REFRESH(32, (ds_get_bgr(s->ds) ? rgb_to_pixel32bgr : rgb_to_pixel32))
    default:
        cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
                  ds_get_bits_per_pixel(s->ds));
    }

    dpy_update(s->ds, 0, 0, 128*3, 64*3);
}

static void lcd_invalidate(void *opaque)
{
}

static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
{
    musicpal_lcd_state *s = opaque;

    switch (offset) {
    case MP_LCD_IRQCTRL:
        return s->irqctrl;

    default:
        return 0;
    }
}

static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
                               uint32_t value)
{
    musicpal_lcd_state *s = opaque;

    switch (offset) {
    case MP_LCD_IRQCTRL:
        s->irqctrl = value;
        break;

    case MP_LCD_SPICTRL:
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
            s->mode = value;
        else
            s->mode = MP_LCD_SPI_INVALID;
        break;

    case MP_LCD_INST:
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
            s->page = value - MP_LCD_INST_SETPAGE0;
            s->page_off = 0;
        }
        break;

    case MP_LCD_DATA:
        if (s->mode == MP_LCD_SPI_CMD) {
            if (value >= MP_LCD_INST_SETPAGE0 &&
                value <= MP_LCD_INST_SETPAGE7) {
                s->page = value - MP_LCD_INST_SETPAGE0;
                s->page_off = 0;
            }
        } else if (s->mode == MP_LCD_SPI_DATA) {
            s->video_ram[s->page*128 + s->page_off] = value;
            s->page_off = (s->page_off + 1) & 127;
        }
        break;
    }
}

static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
    musicpal_lcd_read,
    musicpal_lcd_read,
    musicpal_lcd_read
};

static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
    musicpal_lcd_write,
    musicpal_lcd_write,
    musicpal_lcd_write
};

static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
{
    musicpal_lcd_state *s;
    int iomemtype;

    s = qemu_mallocz(sizeof(musicpal_lcd_state));
    if (!s)
        return;
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
                                       musicpal_lcd_writefn, s);
    cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);

    s->ds = gui_get_graphic_console(NULL, lcd_refresh, lcd_invalidate,
                                    NULL, s);
    gui_resize_vt(s->ds, 128*3, 64*3);
}

/* PIC register offsets */
#define MP_PIC_STATUS           0x00
#define MP_PIC_ENABLE_SET       0x08
#define MP_PIC_ENABLE_CLR       0x0C

typedef struct mv88w8618_pic_state
{
    uint32_t level;
    uint32_t enabled;
    qemu_irq parent_irq;
} mv88w8618_pic_state;

static void mv88w8618_pic_update(mv88w8618_pic_state *s)
{
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
}

static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
{
    mv88w8618_pic_state *s = opaque;

    if (level)
        s->level |= 1 << irq;
    else
        s->level &= ~(1 << irq);
    mv88w8618_pic_update(s);
}

static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
{
    mv88w8618_pic_state *s = opaque;

    switch (offset) {
    case MP_PIC_STATUS:
        return s->level & s->enabled;

    default:
        return 0;
    }
}

static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
                                uint32_t value)
{
    mv88w8618_pic_state *s = opaque;

    switch (offset) {
    case MP_PIC_ENABLE_SET:
        s->enabled |= value;
        break;

    case MP_PIC_ENABLE_CLR:
        s->enabled &= ~value;
        s->level &= ~value;
        break;
    }
    mv88w8618_pic_update(s);
}

static void mv88w8618_pic_reset(void *opaque)
{
    mv88w8618_pic_state *s = opaque;

    s->level = 0;
    s->enabled = 0;
}

static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
    mv88w8618_pic_read,
    mv88w8618_pic_read,
    mv88w8618_pic_read
};

static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
    mv88w8618_pic_write,
    mv88w8618_pic_write,
    mv88w8618_pic_write
};

static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
{
    mv88w8618_pic_state *s;
    int iomemtype;
    qemu_irq *qi;

    s = qemu_mallocz(sizeof(mv88w8618_pic_state));
    if (!s)
        return NULL;
    qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
    s->parent_irq = parent_irq;
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
                                       mv88w8618_pic_writefn, s);
    cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);

    qemu_register_reset(mv88w8618_pic_reset, s);

    return qi;
}

/* PIT register offsets */
#define MP_PIT_TIMER1_LENGTH    0x00
/* ... */
#define MP_PIT_TIMER4_LENGTH    0x0C
#define MP_PIT_CONTROL          0x10
#define MP_PIT_TIMER1_VALUE     0x14
/* ... */
#define MP_PIT_TIMER4_VALUE     0x20
#define MP_BOARD_RESET          0x34

/* Magic board reset value (probably some watchdog behind it) */
#define MP_BOARD_RESET_MAGIC    0x10000

typedef struct mv88w8618_timer_state {
    ptimer_state *timer;
    uint32_t limit;
    int freq;
    qemu_irq irq;
} mv88w8618_timer_state;

typedef struct mv88w8618_pit_state {
    void *timer[4];
    uint32_t control;
} mv88w8618_pit_state;

static void mv88w8618_timer_tick(void *opaque)
{
    mv88w8618_timer_state *s = opaque;

    qemu_irq_raise(s->irq);
}

static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
{
    mv88w8618_timer_state *s;
    QEMUBH *bh;

    s = qemu_mallocz(sizeof(mv88w8618_timer_state));
    s->irq = irq;
    s->freq = freq;

    bh = qemu_bh_new(mv88w8618_timer_tick, s);
    s->timer = ptimer_init(bh);

    return s;
}

static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
{
    mv88w8618_pit_state *s = opaque;
    mv88w8618_timer_state *t;

    switch (offset) {
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
        t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
        return ptimer_get_count(t->timer);

    default:
        return 0;
    }
}

static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
                                uint32_t value)
{
    mv88w8618_pit_state *s = opaque;
    mv88w8618_timer_state *t;
    int i;

    switch (offset) {
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
        t = s->timer[offset >> 2];
        t->limit = value;
        ptimer_set_limit(t->timer, t->limit, 1);
        break;

    case MP_PIT_CONTROL:
        for (i = 0; i < 4; i++) {
            if (value & 0xf) {
                t = s->timer[i];
                ptimer_set_limit(t->timer, t->limit, 0);
                ptimer_set_freq(t->timer, t->freq);
                ptimer_run(t->timer, 0);
            }
            value >>= 4;
        }
        break;

    case MP_BOARD_RESET:
        if (value == MP_BOARD_RESET_MAGIC)
            qemu_system_reset_request();
        break;
    }
}

static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
    mv88w8618_pit_read,
    mv88w8618_pit_read,
    mv88w8618_pit_read
};

static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
    mv88w8618_pit_write,
    mv88w8618_pit_write,
    mv88w8618_pit_write
};

static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
{
    int iomemtype;
    mv88w8618_pit_state *s;

    s = qemu_mallocz(sizeof(mv88w8618_pit_state));
    if (!s)
        return;

    /* Letting them all run at 1 MHz is likely just a pragmatic
     * simplification. */
    s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
    s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
    s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
    s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);

    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
                                       mv88w8618_pit_writefn, s);
    cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
}

/* Flash config register offsets */
#define MP_FLASHCFG_CFGR0    0x04

typedef struct mv88w8618_flashcfg_state {
    uint32_t cfgr0;
} mv88w8618_flashcfg_state;

static uint32_t mv88w8618_flashcfg_read(void *opaque,
                                        target_phys_addr_t offset)
{
    mv88w8618_flashcfg_state *s = opaque;

    switch (offset) {
    case MP_FLASHCFG_CFGR0:
        return s->cfgr0;

    default:
        return 0;
    }
}

static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
                                     uint32_t value)
{
    mv88w8618_flashcfg_state *s = opaque;

    switch (offset) {
    case MP_FLASHCFG_CFGR0:
        s->cfgr0 = value;
        break;
    }
}

static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
    mv88w8618_flashcfg_read,
    mv88w8618_flashcfg_read,
    mv88w8618_flashcfg_read
};

static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
    mv88w8618_flashcfg_write,
    mv88w8618_flashcfg_write,
    mv88w8618_flashcfg_write
};

static void mv88w8618_flashcfg_init(uint32_t base)
{
    int iomemtype;
    mv88w8618_flashcfg_state *s;

    s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
    if (!s)
        return;

    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
                       mv88w8618_flashcfg_writefn, s);
    cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
}

/* Various registers in the 0x80000000 domain */
#define MP_BOARD_REVISION       0x2018

#define MP_WLAN_MAGIC1          0xc11c
#define MP_WLAN_MAGIC2          0xc124

#define MP_GPIO_OE_LO           0xd008
#define MP_GPIO_OUT_LO          0xd00c
#define MP_GPIO_IN_LO           0xd010
#define MP_GPIO_ISR_LO          0xd020
#define MP_GPIO_OE_HI           0xd508
#define MP_GPIO_OUT_HI          0xd50c
#define MP_GPIO_IN_HI           0xd510
#define MP_GPIO_ISR_HI          0xd520

/* GPIO bits & masks */
#define MP_GPIO_WHEEL_VOL       (1 << 8)
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
#define MP_GPIO_WHEEL_NAV       (1 << 10)
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
#define MP_GPIO_BTN_MENU        (1 << 20)
#define MP_GPIO_BTN_VOLUME      (1 << 21)
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
#define MP_GPIO_I2C_DATA_BIT    29
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
#define MP_GPIO_I2C_CLOCK_BIT   30

/* LCD brightness bits in GPIO_OE_HI */
#define MP_OE_LCD_BRIGHTNESS    0x0007

static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
{
    switch (offset) {
    case MP_BOARD_REVISION:
        return 0x0031;

    case MP_GPIO_OE_HI: /* used for LCD brightness control */
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;

    case MP_GPIO_OUT_LO:
        return gpio_out_state & 0xFFFF;
    case MP_GPIO_OUT_HI:
        return gpio_out_state >> 16;

    case MP_GPIO_IN_LO:
        return gpio_in_state & 0xFFFF;
    case MP_GPIO_IN_HI:
        /* Update received I2C data */
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
        return gpio_in_state >> 16;

    case MP_GPIO_ISR_LO:
        return gpio_isr & 0xFFFF;
    case MP_GPIO_ISR_HI:
        return gpio_isr >> 16;

    /* Workaround to allow loading the binary-only wlandrv.ko crap
     * from the original Freecom firmware. */
    case MP_WLAN_MAGIC1:
        return ~3;
    case MP_WLAN_MAGIC2:
        return -1;

    default:
        return 0;
    }
}

static void musicpal_write(void *opaque, target_phys_addr_t offset,
                           uint32_t value)
{
    switch (offset) {
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
                         (value & MP_OE_LCD_BRIGHTNESS);
        break;

    case MP_GPIO_OUT_LO:
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
        break;
    case MP_GPIO_OUT_HI:
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
        lcd_brightness = (lcd_brightness & 0xFFFF) |
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
        i2c_state_update(mixer_i2c,
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
        break;

    }
}

/* Keyboard codes & masks */
#define KEY_RELEASED            0x80
#define KEY_CODE                0x7f

#define KEYCODE_TAB             0x0f
#define KEYCODE_ENTER           0x1c
#define KEYCODE_F               0x21
#define KEYCODE_M               0x32

#define KEYCODE_EXTENDED        0xe0
#define KEYCODE_UP              0x48
#define KEYCODE_DOWN            0x50
#define KEYCODE_LEFT            0x4b
#define KEYCODE_RIGHT           0x4d

static void musicpal_key_event(void *opaque, int keycode)
{
    qemu_irq irq = opaque;
    uint32_t event = 0;
    static int kbd_extended;

    if (keycode == KEYCODE_EXTENDED) {
        kbd_extended = 1;
        return;
    }

    if (kbd_extended)
        switch (keycode & KEY_CODE) {
        case KEYCODE_UP:
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
            break;

        case KEYCODE_DOWN:
            event = MP_GPIO_WHEEL_NAV;
            break;

        case KEYCODE_LEFT:
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
            break;

        case KEYCODE_RIGHT:
            event = MP_GPIO_WHEEL_VOL;
            break;
        }
    else {
        switch (keycode & KEY_CODE) {
        case KEYCODE_F:
            event = MP_GPIO_BTN_FAVORITS;
            break;

        case KEYCODE_TAB:
            event = MP_GPIO_BTN_VOLUME;
            break;

        case KEYCODE_ENTER:
            event = MP_GPIO_BTN_NAVIGATION;
            break;

        case KEYCODE_M:
            event = MP_GPIO_BTN_MENU;
            break;
        }
        /* Do not repeat already pressed buttons */
        if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
            event = 0;
    }

    if (event) {
        if (keycode & KEY_RELEASED) {
            gpio_in_state |= event;
        } else {
            gpio_in_state &= ~event;
            gpio_isr = event;
            qemu_irq_raise(irq);
        }
    }

    kbd_extended = 0;
}

static CPUReadMemoryFunc *musicpal_readfn[] = {
    musicpal_read,
    musicpal_read,
    musicpal_read,
};

static CPUWriteMemoryFunc *musicpal_writefn[] = {
    musicpal_write,
    musicpal_write,
    musicpal_write,
};

static struct arm_boot_info musicpal_binfo = {
    .loader_start = 0x0,
    .board_id = 0x20e,
};

static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
               const char *boot_device, DisplayState *ds,
               const char *kernel_filename, const char *kernel_cmdline,
               const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    qemu_irq *pic;
    int index;
    int iomemtype;
    unsigned long flash_size;

    if (!cpu_model)
        cpu_model = "arm926";

    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    pic = arm_pic_init_cpu(env);

    /* For now we use a fixed - the original - RAM size */
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));

    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);

    /* Catch various stuff not handled by separate subsystems */
    iomemtype = cpu_register_io_memory(0, musicpal_readfn,
                                       musicpal_writefn, env);
    cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);

    pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
    mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);

    if (serial_hds[0])
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
                   serial_hds[0], 1);
    if (serial_hds[1])
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
                   serial_hds[1], 1);

    /* Register flash */
    index = drive_get_index(IF_PFLASH, 0, 0);
    if (index != -1) {
        flash_size = bdrv_getlength(drives_table[index].bdrv);
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
            flash_size != 32*1024*1024) {
            fprintf(stderr, "Invalid flash image size\n");
            exit(1);
        }

        /*
         * The original U-Boot accesses the flash at 0xFE000000 instead of
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
         * image is smaller than 32 MB.
         */
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
                              drives_table[index].bdrv, 0x10000,
                              (flash_size + 0xffff) >> 16,
                              MP_FLASH_SIZE_MAX / flash_size,
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
                              0x5555, 0x2AAA);
    }
    mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);

    musicpal_lcd_init(ds, MP_LCD_BASE);

    gui_register_dev_key_callback(musicpal_key_event, pic[MP_GPIO_IRQ]);

    mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);

    mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);

    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
    musicpal_binfo.kernel_filename = kernel_filename;
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
    musicpal_binfo.initrd_filename = initrd_filename;
    arm_load_kernel(env, &musicpal_binfo);
}

QEMUMachine musicpal_machine = {
    .name = "musicpal",
    .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
    .init = musicpal_init,
    .ram_require = MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE +
            MP_FLASH_SIZE_MAX + RAMSIZE_FIXED,
};