javauis/eswt_qt/s60utils/java/src/com/nokia/mj/impl/uitestutils/Matrix.java
changeset 35 85266cc22c7f
parent 26 dc7c549001d5
child 40 c6043ea9b06a
child 44 0105bdca6f9c
child 47 f40128debb5d
child 49 35baca0e7a2e
equal deleted inserted replaced
26:dc7c549001d5 35:85266cc22c7f
     1 /*
       
     2 * Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
       
     3 * All rights reserved.
       
     4 * This component and the accompanying materials are made available
       
     5 * under the terms of "Eclipse Public License v1.0"
       
     6 * which accompanies this distribution, and is available
       
     7 * at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     8 *
       
     9 * Initial Contributors:
       
    10 * Nokia Corporation - initial contribution.
       
    11 *
       
    12 * Contributors:
       
    13 *
       
    14 * Description: 
       
    15 *
       
    16 */
       
    17 package com.nokia.mj.impl.uitestutils;
       
    18 
       
    19 /**
       
    20  * Matrix calculation implementation.
       
    21  * 
       
    22  */
       
    23 public class Matrix {
       
    24 
       
    25     static final int ARRAY_SIZE = 6;
       
    26     // Array index
       
    27     static private final int M00 = 0; 
       
    28     static private final int M10 = 1; 
       
    29     static private final int M01 = 2; 
       
    30     static private final int M11 = 3; 
       
    31     static private final int M02 = 4; 
       
    32     static private final int M12 = 5; 
       
    33 	
       
    34     private float iComponents[];
       
    35 
       
    36     /**
       
    37      * Construct a matrix with the following components:
       
    38      * <pre>
       
    39      * [1 0 0]
       
    40      * [0 1 0]
       
    41      * </pre>
       
    42      */
       
    43     public Matrix() {
       
    44         iComponents = new float[ARRAY_SIZE];
       
    45         identity();
       
    46     }
       
    47     
       
    48     /**
       
    49      * Construct a matrix with the following components:
       
    50      * <pre>
       
    51      * [aM00 aM01 aM02]
       
    52      * [aM10 aM11 aM12]
       
    53      * </pre>
       
    54      * @param aM00 the x scaling component
       
    55      * @param aM10 the y shearing component
       
    56      * @param aM01 the x shearing component
       
    57      * @param aM11 the y scaling component
       
    58      * @param aM02 the x translation component
       
    59      * @param aM12 the y translation component
       
    60      */
       
    61     public Matrix(float aM00, float aM10, float aM01, 
       
    62     		     float aM11, float aM02, float aM12) {
       
    63         iComponents = new float[ARRAY_SIZE];
       
    64         iComponents[M00] = aM00; iComponents[M01] = aM01; iComponents[M02] = aM02; 
       
    65         iComponents[M10] = aM10; iComponents[M11] = aM11; iComponents[M12] = aM12;	
       
    66     }
       
    67 
       
    68     /**
       
    69      * Constructor
       
    70      * Create a new matrix by coping the given one.
       
    71      * @param aMatrix the matrix to copy
       
    72      */ 
       
    73     public Matrix(Matrix aMatrix) {
       
    74         iComponents = new float[aMatrix.iComponents.length];
       
    75         for(int index = 0; index < iComponents.length; index++) {
       
    76             iComponents[index] = aMatrix.iComponents[index];
       
    77         }
       
    78     }
       
    79     
       
    80     /**
       
    81      * 
       
    82      */
       
    83     public float getComponent(int index) {
       
    84         return iComponents[index];
       
    85     }
       
    86 
       
    87     /**
       
    88      * Set matrix components:
       
    89      * <pre>
       
    90      * [1 0 0]
       
    91      * [0 1 0]
       
    92      * </pre>
       
    93      * 
       
    94      */
       
    95     public void identity()
       
    96     {
       
    97         iComponents[M00] = 1; iComponents[M01] = 0; iComponents[M02] = 0; 
       
    98         iComponents[M10] = 0; iComponents[M11] = 1; iComponents[M12] = 0; 
       
    99     }
       
   100 
       
   101     /**
       
   102      * Return transformed <code>Point</code> instance
       
   103      *
       
   104      * The transformation can be represented using matrix math on a 3x3 array.
       
   105      * Given (x,y), the transformation (x',y') can be found by:
       
   106      * [ x']   [ m00 m01 m02 ] [ x ]   [ m00*x + m01*y + m02 ]
       
   107      * [ y'] = [ m10 m11 m12 ] [ y ] = [ m10*x + m11*y + m12 ]
       
   108      * [ 1 ]   [  0   0   1  ] [ 1 ]   [          1          ]
       
   109      *
       
   110      * The bottom row of the matrix is constant, so a transform can be uniquely
       
   111      * represented by "[[m00, m01, m02], [m10, m11, m12]]".
       
   112      * @param p the source point
       
   113      * @return new point instance
       
   114      */
       
   115     public Point transform(final Point p)
       
   116     {
       
   117         return new Point(
       
   118             iComponents[M00] * p.x + iComponents[M01] * p.y + iComponents[M02],
       
   119             iComponents[M10] * p.x + iComponents[M11] * p.y + iComponents[M12]);
       
   120     }
       
   121     
       
   122     /**
       
   123      * Return the matrix of components used in this transform. The resulting
       
   124      * values are:
       
   125      * <pre>
       
   126      * [array[0] array[2] array[4]]
       
   127      * [array[1] array[3] array[5]]
       
   128      * </pre>
       
   129      * @return array that contains the matrix components.
       
   130      */
       
   131     float[] getComponents() {
       
   132 	return iComponents;
       
   133     }
       
   134 
       
   135     
       
   136     /**
       
   137      * Return the determinant of this transform matrix. If the determinant is
       
   138      * non-zero, the transform is invertible.
       
   139      * The determinant is calculated as:
       
   140      * <pre>
       
   141      * [m00 m01 m02] 
       
   142      * [m10 m11 m12] = m00 * m11 - m01 * m10
       
   143      * [ 0   0   1 ]
       
   144      * </pre>
       
   145      * @return the determinant
       
   146      */
       
   147     public float determinant() {
       
   148         return ((iComponents[M00] * iComponents[M11]) - 
       
   149 		        (iComponents[M01] * iComponents[M10]));
       
   150     }
       
   151         
       
   152     /**
       
   153      * The inverse is calculated as:
       
   154      * <pre>
       
   155      *     [m00 m01 m02]
       
   156      *  M= [m10 m11 m12]
       
   157      *     [ 0   0   1 ] 
       
   158      *
       
   159      *              1                 [ m11/det  -m01/det   (m01*m12-m02*m11)/det]     
       
   160      * inverse(M)= --- x adjoint(M) = [-m10/det   m00/det   (m10*m02-m00*m12)/det] 
       
   161      *             det                [    0         0               1           ]  
       
   162      * </pre>
       
   163      */
       
   164     public Matrix inverse() {
       
   165     	// The inversion is useful for undoing transformations.
       
   166     	float det = determinant();
       
   167         if (det == 0) 
       
   168         { 
       
   169             throw new RuntimeException("Invalid determinant");
       
   170         }
       
   171         return new Matrix(
       
   172             iComponents[M11] / det, // iMtx[M00]
       
   173             (-iComponents[M10]) / det, // iMtx[M10]
       
   174             (-iComponents[M01]) / det, // iMtx[M01]
       
   175             iComponents[M00] / det, // iMtx[M11]
       
   176             ((iComponents[M01] * iComponents[M12]) - (iComponents[M02] * iComponents[M11])) / det, 
       
   177             ((iComponents[M10] * iComponents[M02]) - (iComponents[M00] * iComponents[M12])) / det); 
       
   178     }
       
   179 
       
   180     /**
       
   181      * The multiply is calculated as:
       
   182      * <pre>
       
   183      *       [a00 a01 a02]   [b00 b01 b02]
       
   184      *  this=[a10 a11 a12] B=[b10 b11 b12] 
       
   185      *       [ 0   0   1 ]   [ 0   0   1 ]
       
   186      *
       
   187      *                       [(a00*b00+a01*b10) (a00*b01+a01*b11) (a00*b02+a01*b12+a02)]   
       
   188 	 * [this] = [this]x[B] = [(a10*b00+a11*b10) (a10*b01+a11*b11) (a10*b02+a11*b12+a12)]
       
   189      *                       [       0                   0                     1       ]
       
   190      * </pre>
       
   191      */
       
   192     public Matrix multiply(Matrix b) {
       
   193     	if(b == null) 
       
   194     	{
       
   195             throw new NullPointerException();
       
   196     	}
       
   197         float a00 = iComponents[M00]; // a
       
   198         float a10 = iComponents[M10]; // b
       
   199         float a01 = iComponents[M01]; // c
       
   200         float a11 = iComponents[M11]; // d
       
   201         float a02 = iComponents[M02]; // e
       
   202         float a12 = iComponents[M12]; // f
       
   203         iComponents[M00] = (a00 * b.iComponents[M00]) + (a01 * b.iComponents[M10]); // a
       
   204         iComponents[M10] = (a10 * b.iComponents[M00]) + (a11 * b.iComponents[M10]); // b
       
   205         iComponents[M01] = (a00 * b.iComponents[M01]) + (a01 * b.iComponents[M11]); // c
       
   206         iComponents[M11] = (a10 * b.iComponents[M01]) + (a11 * b.iComponents[M11]); // d
       
   207         iComponents[M02] = (a00 * b.iComponents[M02]) + (a01 * b.iComponents[M12]) + a02; // e
       
   208         iComponents[M12] = (a10 * b.iComponents[M02]) + (a11 * b.iComponents[M12]) + a12; // f
       
   209 	return this;
       
   210     }
       
   211     
       
   212     /**
       
   213      * The rotation is calculated as:
       
   214      * <pre>
       
   215      *          [ cos(angle) -sin(angle) 0 ]
       
   216      * [this] x [ sin(angle)  cos(angle) 0 ]
       
   217      *          [     0           0      1 ]
       
   218      * </pre>
       
   219      */
       
   220     public Matrix rotate(float angle) {
       
   221 	if (angle % 360 == 0) { 
       
   222             return this; 
       
   223 	}
       
   224 	// Must convert degrees to radians since java.lang.Math expects radians
       
   225 	angle = angle * (float)Math.PI / 180.0f;
       
   226 	float c = (float)Math.cos(angle);
       
   227 	float s = (float)Math.sin(angle);
       
   228         float m00 = iComponents[M00];
       
   229         float m10 = iComponents[M10];
       
   230         float m01 = iComponents[M01];
       
   231         float m11 = iComponents[M11];
       
   232 	iComponents[M00] = m00 * c + m01 * s;
       
   233 	iComponents[M10] = m10 * c + m11 * s;
       
   234 	iComponents[M01] = m01 * c - m00 * s;
       
   235 	iComponents[M11] = m11 * c - m10 * s;
       
   236 	return this;
       
   237     }
       
   238 
       
   239     /**
       
   240      * The multiply is calculated as:
       
   241      * <pre>
       
   242      *       [m00 m01 m02]   [scaleFactor      0      0]
       
   243      *  this=[m10 m11 m12] B=[    0       scaleFactor 0] 
       
   244      *       [ 0   0   1 ]   [    0            0      1]
       
   245      *
       
   246      *                       [(a00*scaleFactor) (a01*scaleFactor) a02]   
       
   247      * [this] = [this]x[B] = [(a10*scaleFactor) (a11*scaleFactor) a12]
       
   248      *                       [       0                   0         1 ]
       
   249      * </pre>
       
   250      * @see org.w3c.dom.svg.SVGMatrix#mScale()
       
   251      */
       
   252     public Matrix scale(float scaleFactor) {
       
   253     	if(scaleFactor == 1) { 
       
   254     		return this; 
       
   255     	}
       
   256         iComponents[M00] *= scaleFactor;  
       
   257         iComponents[M01] *= scaleFactor; 
       
   258         iComponents[M10] *= scaleFactor;  
       
   259         iComponents[M11] *= scaleFactor;
       
   260         return this;
       
   261     }
       
   262 
       
   263     /**
       
   264      * 
       
   265      */
       
   266     public Matrix translate(float x, float y) {
       
   267     	if(x == 0 && y == 0) { 
       
   268     		return this; 
       
   269     	}
       
   270 	iComponents[M02] += (iComponents[M00] * x) + (iComponents[M01] * y);
       
   271 	iComponents[M12] += (iComponents[M10] * x) + (iComponents[M11] * y); 
       
   272     	return this;
       
   273     }
       
   274 }