javauis/eswt_qt/xlibutils/java/src/com/nokia/mj/impl/uitestutils/Matrix.java
author Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
Fri, 11 Jun 2010 13:33:44 +0300
changeset 35 85266cc22c7f
parent 21 2a9601315dfc
permissions -rw-r--r--
Revision: v2.2.1 Kit: 2010123

package com.nokia.mj.impl.uitestutils;

/**
 * Matrix calculation implementation.
 * 
 */
public class Matrix {

    static final int ARRAY_SIZE = 6;
    // Array index
    static private final int M00 = 0; 
    static private final int M10 = 1; 
    static private final int M01 = 2; 
    static private final int M11 = 3; 
    static private final int M02 = 4; 
    static private final int M12 = 5; 
	
    private float iComponents[];

    /**
     * Construct a matrix with the following components:
     * <pre>
     * [1 0 0]
     * [0 1 0]
     * </pre>
     */
    public Matrix() {
        iComponents = new float[ARRAY_SIZE];
        identity();
    }
    
    /**
     * Construct a matrix with the following components:
     * <pre>
     * [aM00 aM01 aM02]
     * [aM10 aM11 aM12]
     * </pre>
     * @param aM00 the x scaling component
     * @param aM10 the y shearing component
     * @param aM01 the x shearing component
     * @param aM11 the y scaling component
     * @param aM02 the x translation component
     * @param aM12 the y translation component
     */
    public Matrix(float aM00, float aM10, float aM01, 
    		     float aM11, float aM02, float aM12) {
        iComponents = new float[ARRAY_SIZE];
        iComponents[M00] = aM00; iComponents[M01] = aM01; iComponents[M02] = aM02; 
        iComponents[M10] = aM10; iComponents[M11] = aM11; iComponents[M12] = aM12;	
    }

    /**
     * Constructor
     * Create a new matrix by coping the given one.
     * @param aMatrix the matrix to copy
     */ 
    public Matrix(Matrix aMatrix) {
        iComponents = new float[aMatrix.iComponents.length];
        for(int index = 0; index < iComponents.length; index++) {
            iComponents[index] = aMatrix.iComponents[index];
        }
    }
    
    /**
     * 
     */
    public float getComponent(int index) {
        return iComponents[index];
    }

    /**
     * Set matrix components:
     * <pre>
     * [1 0 0]
     * [0 1 0]
     * </pre>
     * 
     */
    public void identity()
    {
        iComponents[M00] = 1; iComponents[M01] = 0; iComponents[M02] = 0; 
        iComponents[M10] = 0; iComponents[M11] = 1; iComponents[M12] = 0; 
    }

    /**
     * Return transformed <code>Point</code> instance
     *
     * The transformation can be represented using matrix math on a 3x3 array.
     * Given (x,y), the transformation (x',y') can be found by:
     * [ x']   [ m00 m01 m02 ] [ x ]   [ m00*x + m01*y + m02 ]
     * [ y'] = [ m10 m11 m12 ] [ y ] = [ m10*x + m11*y + m12 ]
     * [ 1 ]   [  0   0   1  ] [ 1 ]   [          1          ]
     *
     * The bottom row of the matrix is constant, so a transform can be uniquely
     * represented by "[[m00, m01, m02], [m10, m11, m12]]".
     * @param p the source point
     * @return new point instance
     */
    public Point transform(final Point p)
    {
        return new Point(
            iComponents[M00] * p.x + iComponents[M01] * p.y + iComponents[M02],
            iComponents[M10] * p.x + iComponents[M11] * p.y + iComponents[M12]);
    }
    
    /**
     * Return the matrix of components used in this transform. The resulting
     * values are:
     * <pre>
     * [array[0] array[2] array[4]]
     * [array[1] array[3] array[5]]
     * </pre>
     * @return array that contains the matrix components.
     */
    float[] getComponents() {
	return iComponents;
    }

    
    /**
     * Return the determinant of this transform matrix. If the determinant is
     * non-zero, the transform is invertible.
     * The determinant is calculated as:
     * <pre>
     * [m00 m01 m02] 
     * [m10 m11 m12] = m00 * m11 - m01 * m10
     * [ 0   0   1 ]
     * </pre>
     * @return the determinant
     */
    public float determinant() {
        return ((iComponents[M00] * iComponents[M11]) - 
		        (iComponents[M01] * iComponents[M10]));
    }
        
    /**
     * The inverse is calculated as:
     * <pre>
     *     [m00 m01 m02]
     *  M= [m10 m11 m12]
     *     [ 0   0   1 ] 
     *
     *              1                 [ m11/det  -m01/det   (m01*m12-m02*m11)/det]     
     * inverse(M)= --- x adjoint(M) = [-m10/det   m00/det   (m10*m02-m00*m12)/det] 
     *             det                [    0         0               1           ]  
     * </pre>
     */
    public Matrix inverse() {
    	// The inversion is useful for undoing transformations.
    	float det = determinant();
        if (det == 0) 
        { 
            throw new RuntimeException("Invalid determinant");
        }
        return new Matrix(
            iComponents[M11] / det, // iMtx[M00]
            (-iComponents[M10]) / det, // iMtx[M10]
            (-iComponents[M01]) / det, // iMtx[M01]
            iComponents[M00] / det, // iMtx[M11]
            ((iComponents[M01] * iComponents[M12]) - (iComponents[M02] * iComponents[M11])) / det, 
            ((iComponents[M10] * iComponents[M02]) - (iComponents[M00] * iComponents[M12])) / det); 
    }

    /**
     * The multiply is calculated as:
     * <pre>
     *       [a00 a01 a02]   [b00 b01 b02]
     *  this=[a10 a11 a12] B=[b10 b11 b12] 
     *       [ 0   0   1 ]   [ 0   0   1 ]
     *
     *                       [(a00*b00+a01*b10) (a00*b01+a01*b11) (a00*b02+a01*b12+a02)]   
	 * [this] = [this]x[B] = [(a10*b00+a11*b10) (a10*b01+a11*b11) (a10*b02+a11*b12+a12)]
     *                       [       0                   0                     1       ]
     * </pre>
     */
    public Matrix multiply(Matrix b) {
    	if(b == null) 
    	{
            throw new NullPointerException();
    	}
        float a00 = iComponents[M00]; // a
        float a10 = iComponents[M10]; // b
        float a01 = iComponents[M01]; // c
        float a11 = iComponents[M11]; // d
        float a02 = iComponents[M02]; // e
        float a12 = iComponents[M12]; // f
        iComponents[M00] = (a00 * b.iComponents[M00]) + (a01 * b.iComponents[M10]); // a
        iComponents[M10] = (a10 * b.iComponents[M00]) + (a11 * b.iComponents[M10]); // b
        iComponents[M01] = (a00 * b.iComponents[M01]) + (a01 * b.iComponents[M11]); // c
        iComponents[M11] = (a10 * b.iComponents[M01]) + (a11 * b.iComponents[M11]); // d
        iComponents[M02] = (a00 * b.iComponents[M02]) + (a01 * b.iComponents[M12]) + a02; // e
        iComponents[M12] = (a10 * b.iComponents[M02]) + (a11 * b.iComponents[M12]) + a12; // f
	return this;
    }
    
    /**
     * The rotation is calculated as:
     * <pre>
     *          [ cos(angle) -sin(angle) 0 ]
     * [this] x [ sin(angle)  cos(angle) 0 ]
     *          [     0           0      1 ]
     * </pre>
     */
    public Matrix rotate(float angle) {
	if (angle % 360 == 0) { 
            return this; 
	}
	// Must convert degrees to radians since java.lang.Math expects radians
	angle = angle * (float)Math.PI / 180.0f;
	float c = (float)Math.cos(angle);
	float s = (float)Math.sin(angle);
        float m00 = iComponents[M00];
        float m10 = iComponents[M10];
        float m01 = iComponents[M01];
        float m11 = iComponents[M11];
	iComponents[M00] = m00 * c + m01 * s;
	iComponents[M10] = m10 * c + m11 * s;
	iComponents[M01] = m01 * c - m00 * s;
	iComponents[M11] = m11 * c - m10 * s;
	return this;
    }

    /**
     * The multiply is calculated as:
     * <pre>
     *       [m00 m01 m02]   [scaleFactor      0      0]
     *  this=[m10 m11 m12] B=[    0       scaleFactor 0] 
     *       [ 0   0   1 ]   [    0            0      1]
     *
     *                       [(a00*scaleFactor) (a01*scaleFactor) a02]   
     * [this] = [this]x[B] = [(a10*scaleFactor) (a11*scaleFactor) a12]
     *                       [       0                   0         1 ]
     * </pre>
     * @see org.w3c.dom.svg.SVGMatrix#mScale()
     */
    public Matrix scale(float scaleFactor) {
    	if(scaleFactor == 1) { 
    		return this; 
    	}
        iComponents[M00] *= scaleFactor;  
        iComponents[M01] *= scaleFactor; 
        iComponents[M10] *= scaleFactor;  
        iComponents[M11] *= scaleFactor;
        return this;
    }

    /**
     * 
     */
    public Matrix translate(float x, float y) {
    	if(x == 0 && y == 0) { 
    		return this; 
    	}
	iComponents[M02] += (iComponents[M00] * x) + (iComponents[M01] * y);
	iComponents[M12] += (iComponents[M10] * x) + (iComponents[M11] * y); 
    	return this;
    }
}