2
|
1 |
/*
|
|
2 |
** 2001 September 15
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This file contains C code routines that are called by the SQLite parser
|
|
13 |
** when syntax rules are reduced. The routines in this file handle the
|
|
14 |
** following kinds of SQL syntax:
|
|
15 |
**
|
|
16 |
** CREATE TABLE
|
|
17 |
** DROP TABLE
|
|
18 |
** CREATE INDEX
|
|
19 |
** DROP INDEX
|
|
20 |
** creating ID lists
|
|
21 |
** BEGIN TRANSACTION
|
|
22 |
** COMMIT
|
|
23 |
** ROLLBACK
|
|
24 |
**
|
|
25 |
** $Id: build.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
26 |
*/
|
|
27 |
#include "sqliteInt.h"
|
|
28 |
#include <ctype.h>
|
|
29 |
|
|
30 |
/*
|
|
31 |
** This routine is called when a new SQL statement is beginning to
|
|
32 |
** be parsed. Initialize the pParse structure as needed.
|
|
33 |
*/
|
|
34 |
void sqlite3BeginParse(Parse *pParse, int explainFlag){
|
|
35 |
pParse->explain = explainFlag;
|
|
36 |
pParse->nVar = 0;
|
|
37 |
}
|
|
38 |
|
|
39 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
40 |
/*
|
|
41 |
** The TableLock structure is only used by the sqlite3TableLock() and
|
|
42 |
** codeTableLocks() functions.
|
|
43 |
*/
|
|
44 |
struct TableLock {
|
|
45 |
int iDb; /* The database containing the table to be locked */
|
|
46 |
int iTab; /* The root page of the table to be locked */
|
|
47 |
u8 isWriteLock; /* True for write lock. False for a read lock */
|
|
48 |
const char *zName; /* Name of the table */
|
|
49 |
};
|
|
50 |
|
|
51 |
/*
|
|
52 |
** Record the fact that we want to lock a table at run-time.
|
|
53 |
**
|
|
54 |
** The table to be locked has root page iTab and is found in database iDb.
|
|
55 |
** A read or a write lock can be taken depending on isWritelock.
|
|
56 |
**
|
|
57 |
** This routine just records the fact that the lock is desired. The
|
|
58 |
** code to make the lock occur is generated by a later call to
|
|
59 |
** codeTableLocks() which occurs during sqlite3FinishCoding().
|
|
60 |
*/
|
|
61 |
void sqlite3TableLock(
|
|
62 |
Parse *pParse, /* Parsing context */
|
|
63 |
int iDb, /* Index of the database containing the table to lock */
|
|
64 |
int iTab, /* Root page number of the table to be locked */
|
|
65 |
u8 isWriteLock, /* True for a write lock */
|
|
66 |
const char *zName /* Name of the table to be locked */
|
|
67 |
){
|
|
68 |
int i;
|
|
69 |
int nBytes;
|
|
70 |
TableLock *p;
|
|
71 |
|
|
72 |
if( iDb<0 ){
|
|
73 |
return;
|
|
74 |
}
|
|
75 |
|
|
76 |
for(i=0; i<pParse->nTableLock; i++){
|
|
77 |
p = &pParse->aTableLock[i];
|
|
78 |
if( p->iDb==iDb && p->iTab==iTab ){
|
|
79 |
p->isWriteLock = (p->isWriteLock || isWriteLock);
|
|
80 |
return;
|
|
81 |
}
|
|
82 |
}
|
|
83 |
|
|
84 |
nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
|
|
85 |
pParse->aTableLock =
|
|
86 |
(TableLock*)sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
|
|
87 |
if( pParse->aTableLock ){
|
|
88 |
p = &pParse->aTableLock[pParse->nTableLock++];
|
|
89 |
p->iDb = iDb;
|
|
90 |
p->iTab = iTab;
|
|
91 |
p->isWriteLock = isWriteLock;
|
|
92 |
p->zName = zName;
|
|
93 |
}else{
|
|
94 |
pParse->nTableLock = 0;
|
|
95 |
pParse->db->mallocFailed = 1;
|
|
96 |
}
|
|
97 |
}
|
|
98 |
|
|
99 |
/*
|
|
100 |
** Code an OP_TableLock instruction for each table locked by the
|
|
101 |
** statement (configured by calls to sqlite3TableLock()).
|
|
102 |
*/
|
|
103 |
static void codeTableLocks(Parse *pParse){
|
|
104 |
int i;
|
|
105 |
Vdbe *pVdbe;
|
|
106 |
|
|
107 |
if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
|
|
108 |
return;
|
|
109 |
}
|
|
110 |
|
|
111 |
for(i=0; i<pParse->nTableLock; i++){
|
|
112 |
TableLock *p = &pParse->aTableLock[i];
|
|
113 |
int p1 = p->iDb;
|
|
114 |
if( p->isWriteLock ){
|
|
115 |
p1 = -1*(p1+1);
|
|
116 |
}
|
|
117 |
sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC);
|
|
118 |
}
|
|
119 |
}
|
|
120 |
#else
|
|
121 |
#define codeTableLocks(x)
|
|
122 |
#endif
|
|
123 |
|
|
124 |
/*
|
|
125 |
** This routine is called after a single SQL statement has been
|
|
126 |
** parsed and a VDBE program to execute that statement has been
|
|
127 |
** prepared. This routine puts the finishing touches on the
|
|
128 |
** VDBE program and resets the pParse structure for the next
|
|
129 |
** parse.
|
|
130 |
**
|
|
131 |
** Note that if an error occurred, it might be the case that
|
|
132 |
** no VDBE code was generated.
|
|
133 |
*/
|
|
134 |
void sqlite3FinishCoding(Parse *pParse){
|
|
135 |
sqlite3 *db;
|
|
136 |
Vdbe *v;
|
|
137 |
|
|
138 |
db = pParse->db;
|
|
139 |
if( db->mallocFailed ) return;
|
|
140 |
if( pParse->nested ) return;
|
|
141 |
if( !pParse->pVdbe ){
|
|
142 |
if( pParse->rc==SQLITE_OK && pParse->nErr ){
|
|
143 |
pParse->rc = SQLITE_ERROR;
|
|
144 |
return;
|
|
145 |
}
|
|
146 |
}
|
|
147 |
|
|
148 |
/* Begin by generating some termination code at the end of the
|
|
149 |
** vdbe program
|
|
150 |
*/
|
|
151 |
v = sqlite3GetVdbe(pParse);
|
|
152 |
if( v ){
|
|
153 |
sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
|
|
154 |
|
|
155 |
/* The cookie mask contains one bit for each database file open.
|
|
156 |
** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
|
|
157 |
** set for each database that is used. Generate code to start a
|
|
158 |
** transaction on each used database and to verify the schema cookie
|
|
159 |
** on each used database.
|
|
160 |
*/
|
|
161 |
if( pParse->cookieGoto>0 ){
|
|
162 |
u32 mask;
|
|
163 |
int iDb;
|
|
164 |
sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
|
|
165 |
for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
|
|
166 |
if( (mask & pParse->cookieMask)==0 ) continue;
|
|
167 |
sqlite3VdbeUsesBtree(v, iDb);
|
|
168 |
sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
|
|
169 |
sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
|
|
170 |
}
|
|
171 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
172 |
if( pParse->pVirtualLock ){
|
|
173 |
char *vtab = (char *)pParse->pVirtualLock->pVtab;
|
|
174 |
sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB);
|
|
175 |
}
|
|
176 |
#endif
|
|
177 |
|
|
178 |
/* Once all the cookies have been verified and transactions opened,
|
|
179 |
** obtain the required table-locks. This is a no-op unless the
|
|
180 |
** shared-cache feature is enabled.
|
|
181 |
*/
|
|
182 |
codeTableLocks(pParse);
|
|
183 |
sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto);
|
|
184 |
}
|
|
185 |
|
|
186 |
#ifndef SQLITE_OMIT_TRACE
|
|
187 |
/* Add a No-op that contains the complete text of the compiled SQL
|
|
188 |
** statement as its P3 argument. This does not change the functionality
|
|
189 |
** of the program.
|
|
190 |
**
|
|
191 |
** This is used to implement sqlite3_trace().
|
|
192 |
*/
|
|
193 |
sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql);
|
|
194 |
#endif /* SQLITE_OMIT_TRACE */
|
|
195 |
}
|
|
196 |
|
|
197 |
|
|
198 |
/* Get the VDBE program ready for execution
|
|
199 |
*/
|
|
200 |
if( v && pParse->nErr==0 && !db->mallocFailed ){
|
|
201 |
#ifdef SQLITE_DEBUG
|
|
202 |
FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
|
|
203 |
sqlite3VdbeTrace(v, trace);
|
|
204 |
#endif
|
|
205 |
sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
|
|
206 |
pParse->nTab+3, pParse->explain);
|
|
207 |
pParse->rc = SQLITE_DONE;
|
|
208 |
pParse->colNamesSet = 0;
|
|
209 |
}else if( pParse->rc==SQLITE_OK ){
|
|
210 |
pParse->rc = SQLITE_ERROR;
|
|
211 |
}
|
|
212 |
pParse->nTab = 0;
|
|
213 |
pParse->nMem = 0;
|
|
214 |
pParse->nSet = 0;
|
|
215 |
pParse->nVar = 0;
|
|
216 |
pParse->cookieMask = 0;
|
|
217 |
pParse->cookieGoto = 0;
|
|
218 |
}
|
|
219 |
|
|
220 |
/*
|
|
221 |
** Run the parser and code generator recursively in order to generate
|
|
222 |
** code for the SQL statement given onto the end of the pParse context
|
|
223 |
** currently under construction. When the parser is run recursively
|
|
224 |
** this way, the final OP_Halt is not appended and other initialization
|
|
225 |
** and finalization steps are omitted because those are handling by the
|
|
226 |
** outermost parser.
|
|
227 |
**
|
|
228 |
** Not everything is nestable. This facility is designed to permit
|
|
229 |
** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
|
|
230 |
** care if you decide to try to use this routine for some other purposes.
|
|
231 |
*/
|
|
232 |
|
|
233 |
void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
|
|
234 |
va_list ap;
|
|
235 |
char *zSql;
|
|
236 |
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
|
|
237 |
# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
|
|
238 |
char saveBuf[SAVE_SZ];
|
|
239 |
|
|
240 |
if( pParse->nErr ) return;
|
|
241 |
assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
|
|
242 |
va_start(ap, zFormat);
|
|
243 |
zSql = sqlite3VMPrintf(pParse->db, zFormat, ap);
|
|
244 |
va_end(ap);
|
|
245 |
if( zSql==0 ){
|
|
246 |
pParse->db->mallocFailed = 1;
|
|
247 |
return; /* A malloc must have failed */
|
|
248 |
}
|
|
249 |
pParse->nested++;
|
|
250 |
memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
|
|
251 |
memset(&pParse->nVar, 0, SAVE_SZ);
|
|
252 |
sqlite3RunParser(pParse, zSql, 0);
|
|
253 |
sqlite3_free(zSql);
|
|
254 |
memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
|
|
255 |
pParse->nested--;
|
|
256 |
}
|
|
257 |
|
|
258 |
/*
|
|
259 |
** Locate the in-memory structure that describes a particular database
|
|
260 |
** table given the name of that table and (optionally) the name of the
|
|
261 |
** database containing the table. Return NULL if not found.
|
|
262 |
**
|
|
263 |
** If zDatabase is 0, all databases are searched for the table and the
|
|
264 |
** first matching table is returned. (No checking for duplicate table
|
|
265 |
** names is done.) The search order is TEMP first, then MAIN, then any
|
|
266 |
** auxiliary databases added using the ATTACH command.
|
|
267 |
**
|
|
268 |
** See also sqlite3LocateTable().
|
|
269 |
*/
|
|
270 |
Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
|
|
271 |
Table *p = 0;
|
|
272 |
int i;
|
|
273 |
assert( zName!=0 );
|
|
274 |
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
|
275 |
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
276 |
if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
|
|
277 |
p = (Table*)sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
|
|
278 |
if( p ) break;
|
|
279 |
}
|
|
280 |
return p;
|
|
281 |
}
|
|
282 |
|
|
283 |
/*
|
|
284 |
** Locate the in-memory structure that describes a particular database
|
|
285 |
** table given the name of that table and (optionally) the name of the
|
|
286 |
** database containing the table. Return NULL if not found. Also leave an
|
|
287 |
** error message in pParse->zErrMsg.
|
|
288 |
**
|
|
289 |
** The difference between this routine and sqlite3FindTable() is that this
|
|
290 |
** routine leaves an error message in pParse->zErrMsg where
|
|
291 |
** sqlite3FindTable() does not.
|
|
292 |
*/
|
|
293 |
Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
|
|
294 |
Table *p;
|
|
295 |
|
|
296 |
/* Read the database schema. If an error occurs, leave an error message
|
|
297 |
** and code in pParse and return NULL. */
|
|
298 |
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
299 |
return 0;
|
|
300 |
}
|
|
301 |
|
|
302 |
p = sqlite3FindTable(pParse->db, zName, zDbase);
|
|
303 |
if( p==0 ){
|
|
304 |
if( zDbase ){
|
|
305 |
sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
|
|
306 |
}else{
|
|
307 |
sqlite3ErrorMsg(pParse, "no such table: %s", zName);
|
|
308 |
}
|
|
309 |
pParse->checkSchema = 1;
|
|
310 |
}
|
|
311 |
return p;
|
|
312 |
}
|
|
313 |
|
|
314 |
/*
|
|
315 |
** Locate the in-memory structure that describes
|
|
316 |
** a particular index given the name of that index
|
|
317 |
** and the name of the database that contains the index.
|
|
318 |
** Return NULL if not found.
|
|
319 |
**
|
|
320 |
** If zDatabase is 0, all databases are searched for the
|
|
321 |
** table and the first matching index is returned. (No checking
|
|
322 |
** for duplicate index names is done.) The search order is
|
|
323 |
** TEMP first, then MAIN, then any auxiliary databases added
|
|
324 |
** using the ATTACH command.
|
|
325 |
*/
|
|
326 |
Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
|
|
327 |
Index *p = 0;
|
|
328 |
int i;
|
|
329 |
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
|
330 |
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
331 |
Schema *pSchema = db->aDb[j].pSchema;
|
|
332 |
if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
|
|
333 |
assert( pSchema || (j==1 && !db->aDb[1].pBt) );
|
|
334 |
if( pSchema ){
|
|
335 |
p = (Index*)sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
|
|
336 |
}
|
|
337 |
if( p ) break;
|
|
338 |
}
|
|
339 |
return p;
|
|
340 |
}
|
|
341 |
|
|
342 |
/*
|
|
343 |
** Reclaim the memory used by an index
|
|
344 |
*/
|
|
345 |
static void freeIndex(Index *p){
|
|
346 |
sqlite3_free(p->zColAff);
|
|
347 |
sqlite3_free(p);
|
|
348 |
}
|
|
349 |
|
|
350 |
/*
|
|
351 |
** Remove the given index from the index hash table, and free
|
|
352 |
** its memory structures.
|
|
353 |
**
|
|
354 |
** The index is removed from the database hash tables but
|
|
355 |
** it is not unlinked from the Table that it indexes.
|
|
356 |
** Unlinking from the Table must be done by the calling function.
|
|
357 |
*/
|
|
358 |
static void sqliteDeleteIndex(Index *p){
|
|
359 |
Index *pOld;
|
|
360 |
const char *zName = p->zName;
|
|
361 |
|
|
362 |
pOld = (Index*)sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
|
|
363 |
assert( pOld==0 || pOld==p );
|
|
364 |
freeIndex(p);
|
|
365 |
}
|
|
366 |
|
|
367 |
/*
|
|
368 |
** For the index called zIdxName which is found in the database iDb,
|
|
369 |
** unlike that index from its Table then remove the index from
|
|
370 |
** the index hash table and free all memory structures associated
|
|
371 |
** with the index.
|
|
372 |
*/
|
|
373 |
void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
|
|
374 |
Index *pIndex;
|
|
375 |
int len;
|
|
376 |
Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
|
|
377 |
|
|
378 |
len = strlen(zIdxName);
|
|
379 |
pIndex = (Index*)sqlite3HashInsert(pHash, zIdxName, len+1, 0);
|
|
380 |
if( pIndex ){
|
|
381 |
if( pIndex->pTable->pIndex==pIndex ){
|
|
382 |
pIndex->pTable->pIndex = pIndex->pNext;
|
|
383 |
}else{
|
|
384 |
Index *p;
|
|
385 |
for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
|
|
386 |
if( p && p->pNext==pIndex ){
|
|
387 |
p->pNext = pIndex->pNext;
|
|
388 |
}
|
|
389 |
}
|
|
390 |
freeIndex(pIndex);
|
|
391 |
}
|
|
392 |
db->flags |= SQLITE_InternChanges;
|
|
393 |
}
|
|
394 |
|
|
395 |
/*
|
|
396 |
** Erase all schema information from the in-memory hash tables of
|
|
397 |
** a single database. This routine is called to reclaim memory
|
|
398 |
** before the database closes. It is also called during a rollback
|
|
399 |
** if there were schema changes during the transaction or if a
|
|
400 |
** schema-cookie mismatch occurs.
|
|
401 |
**
|
|
402 |
** If iDb<=0 then reset the internal schema tables for all database
|
|
403 |
** files. If iDb>=2 then reset the internal schema for only the
|
|
404 |
** single file indicated.
|
|
405 |
*/
|
|
406 |
void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
|
|
407 |
int i, j;
|
|
408 |
|
|
409 |
assert( iDb>=0 && iDb<db->nDb );
|
|
410 |
for(i=iDb; i<db->nDb; i++){
|
|
411 |
Db *pDb = &db->aDb[i];
|
|
412 |
if( pDb->pSchema ){
|
|
413 |
sqlite3SchemaFree(pDb->pSchema);
|
|
414 |
}
|
|
415 |
if( iDb>0 ) return;
|
|
416 |
}
|
|
417 |
assert( iDb==0 );
|
|
418 |
db->flags &= ~SQLITE_InternChanges;
|
|
419 |
|
|
420 |
/* If one or more of the auxiliary database files has been closed,
|
|
421 |
** then remove them from the auxiliary database list. We take the
|
|
422 |
** opportunity to do this here since we have just deleted all of the
|
|
423 |
** schema hash tables and therefore do not have to make any changes
|
|
424 |
** to any of those tables.
|
|
425 |
*/
|
|
426 |
for(i=0; i<db->nDb; i++){
|
|
427 |
struct Db *pDb = &db->aDb[i];
|
|
428 |
if( pDb->pBt==0 ){
|
|
429 |
if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
|
|
430 |
pDb->pAux = 0;
|
|
431 |
}
|
|
432 |
}
|
|
433 |
for(i=j=2; i<db->nDb; i++){
|
|
434 |
struct Db *pDb = &db->aDb[i];
|
|
435 |
if( pDb->pBt==0 ){
|
|
436 |
sqlite3_free(pDb->zName);
|
|
437 |
pDb->zName = 0;
|
|
438 |
continue;
|
|
439 |
}
|
|
440 |
if( j<i ){
|
|
441 |
db->aDb[j] = db->aDb[i];
|
|
442 |
}
|
|
443 |
j++;
|
|
444 |
}
|
|
445 |
memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
|
|
446 |
db->nDb = j;
|
|
447 |
if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
|
448 |
memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
|
449 |
sqlite3_free(db->aDb);
|
|
450 |
db->aDb = db->aDbStatic;
|
|
451 |
}
|
|
452 |
}
|
|
453 |
|
|
454 |
/*
|
|
455 |
** This routine is called when a commit occurs.
|
|
456 |
*/
|
|
457 |
void sqlite3CommitInternalChanges(sqlite3 *db){
|
|
458 |
db->flags &= ~SQLITE_InternChanges;
|
|
459 |
}
|
|
460 |
|
|
461 |
/*
|
|
462 |
** Clear the column names from a table or view.
|
|
463 |
*/
|
|
464 |
static void sqliteResetColumnNames(Table *pTable){
|
|
465 |
int i;
|
|
466 |
Column *pCol;
|
|
467 |
assert( pTable!=0 );
|
|
468 |
if( (pCol = pTable->aCol)!=0 ){
|
|
469 |
for(i=0; i<pTable->nCol; i++, pCol++){
|
|
470 |
sqlite3_free(pCol->zName);
|
|
471 |
sqlite3ExprDelete(pCol->pDflt);
|
|
472 |
sqlite3_free(pCol->zType);
|
|
473 |
sqlite3_free(pCol->zColl);
|
|
474 |
}
|
|
475 |
sqlite3_free(pTable->aCol);
|
|
476 |
}
|
|
477 |
pTable->aCol = 0;
|
|
478 |
pTable->nCol = 0;
|
|
479 |
}
|
|
480 |
|
|
481 |
/*
|
|
482 |
** Remove the memory data structures associated with the given
|
|
483 |
** Table. No changes are made to disk by this routine.
|
|
484 |
**
|
|
485 |
** This routine just deletes the data structure. It does not unlink
|
|
486 |
** the table data structure from the hash table. Nor does it remove
|
|
487 |
** foreign keys from the sqlite.aFKey hash table. But it does destroy
|
|
488 |
** memory structures of the indices and foreign keys associated with
|
|
489 |
** the table.
|
|
490 |
*/
|
|
491 |
void sqlite3DeleteTable(Table *pTable){
|
|
492 |
Index *pIndex, *pNext;
|
|
493 |
FKey *pFKey, *pNextFKey;
|
|
494 |
|
|
495 |
if( pTable==0 ) return;
|
|
496 |
|
|
497 |
/* Do not delete the table until the reference count reaches zero. */
|
|
498 |
pTable->nRef--;
|
|
499 |
if( pTable->nRef>0 ){
|
|
500 |
return;
|
|
501 |
}
|
|
502 |
assert( pTable->nRef==0 );
|
|
503 |
|
|
504 |
/* Delete all indices associated with this table
|
|
505 |
*/
|
|
506 |
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
|
507 |
pNext = pIndex->pNext;
|
|
508 |
assert( pIndex->pSchema==pTable->pSchema );
|
|
509 |
sqliteDeleteIndex(pIndex);
|
|
510 |
}
|
|
511 |
|
|
512 |
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
513 |
/* Delete all foreign keys associated with this table. The keys
|
|
514 |
** should have already been unlinked from the pSchema->aFKey hash table
|
|
515 |
*/
|
|
516 |
for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
|
|
517 |
pNextFKey = pFKey->pNextFrom;
|
|
518 |
assert( sqlite3HashFind(&pTable->pSchema->aFKey,
|
|
519 |
pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
|
|
520 |
sqlite3_free(pFKey);
|
|
521 |
}
|
|
522 |
#endif
|
|
523 |
|
|
524 |
/* Delete the Table structure itself.
|
|
525 |
*/
|
|
526 |
sqliteResetColumnNames(pTable);
|
|
527 |
sqlite3_free(pTable->zName);
|
|
528 |
sqlite3_free(pTable->zColAff);
|
|
529 |
sqlite3SelectDelete(pTable->pSelect);
|
|
530 |
#ifndef SQLITE_OMIT_CHECK
|
|
531 |
sqlite3ExprDelete(pTable->pCheck);
|
|
532 |
#endif
|
|
533 |
sqlite3VtabClear(pTable);
|
|
534 |
sqlite3_free(pTable);
|
|
535 |
}
|
|
536 |
|
|
537 |
/*
|
|
538 |
** Unlink the given table from the hash tables and the delete the
|
|
539 |
** table structure with all its indices and foreign keys.
|
|
540 |
*/
|
|
541 |
void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
|
|
542 |
Table *p;
|
|
543 |
FKey *pF1, *pF2;
|
|
544 |
Db *pDb;
|
|
545 |
|
|
546 |
assert( db!=0 );
|
|
547 |
assert( iDb>=0 && iDb<db->nDb );
|
|
548 |
assert( zTabName && zTabName[0] );
|
|
549 |
pDb = &db->aDb[iDb];
|
|
550 |
p = (Table*)sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
|
|
551 |
if( p ){
|
|
552 |
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
553 |
for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
|
|
554 |
int nTo = strlen(pF1->zTo) + 1;
|
|
555 |
pF2 = (FKey*)sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
|
|
556 |
if( pF2==pF1 ){
|
|
557 |
sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
|
|
558 |
}else{
|
|
559 |
while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
|
|
560 |
if( pF2 ){
|
|
561 |
pF2->pNextTo = pF1->pNextTo;
|
|
562 |
}
|
|
563 |
}
|
|
564 |
}
|
|
565 |
#endif
|
|
566 |
sqlite3DeleteTable(p);
|
|
567 |
}
|
|
568 |
db->flags |= SQLITE_InternChanges;
|
|
569 |
}
|
|
570 |
|
|
571 |
/*
|
|
572 |
** Given a token, return a string that consists of the text of that
|
|
573 |
** token with any quotations removed. Space to hold the returned string
|
|
574 |
** is obtained from sqliteMalloc() and must be freed by the calling
|
|
575 |
** function.
|
|
576 |
**
|
|
577 |
** Tokens are often just pointers into the original SQL text and so
|
|
578 |
** are not \000 terminated and are not persistent. The returned string
|
|
579 |
** is \000 terminated and is persistent.
|
|
580 |
*/
|
|
581 |
char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
|
|
582 |
char *zName;
|
|
583 |
if( pName ){
|
|
584 |
zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
|
|
585 |
sqlite3Dequote(zName);
|
|
586 |
}else{
|
|
587 |
zName = 0;
|
|
588 |
}
|
|
589 |
return zName;
|
|
590 |
}
|
|
591 |
|
|
592 |
/*
|
|
593 |
** Open the sqlite_master table stored in database number iDb for
|
|
594 |
** writing. The table is opened using cursor 0.
|
|
595 |
*/
|
|
596 |
void sqlite3OpenMasterTable(Parse *p, int iDb){
|
|
597 |
Vdbe *v = sqlite3GetVdbe(p);
|
|
598 |
sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
|
|
599 |
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
600 |
sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
|
|
601 |
sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
|
|
602 |
}
|
|
603 |
|
|
604 |
/*
|
|
605 |
** The token *pName contains the name of a database (either "main" or
|
|
606 |
** "temp" or the name of an attached db). This routine returns the
|
|
607 |
** index of the named database in db->aDb[], or -1 if the named db
|
|
608 |
** does not exist.
|
|
609 |
*/
|
|
610 |
int sqlite3FindDb(sqlite3 *db, Token *pName){
|
|
611 |
int i = -1; /* Database number */
|
|
612 |
int n; /* Number of characters in the name */
|
|
613 |
Db *pDb; /* A database whose name space is being searched */
|
|
614 |
char *zName; /* Name we are searching for */
|
|
615 |
|
|
616 |
zName = sqlite3NameFromToken(db, pName);
|
|
617 |
if( zName ){
|
|
618 |
n = strlen(zName);
|
|
619 |
for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
|
|
620 |
if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
|
|
621 |
0==sqlite3StrICmp(pDb->zName, zName) ){
|
|
622 |
break;
|
|
623 |
}
|
|
624 |
}
|
|
625 |
sqlite3_free(zName);
|
|
626 |
}
|
|
627 |
return i;
|
|
628 |
}
|
|
629 |
|
|
630 |
/* The table or view or trigger name is passed to this routine via tokens
|
|
631 |
** pName1 and pName2. If the table name was fully qualified, for example:
|
|
632 |
**
|
|
633 |
** CREATE TABLE xxx.yyy (...);
|
|
634 |
**
|
|
635 |
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
|
636 |
** the table name is not fully qualified, i.e.:
|
|
637 |
**
|
|
638 |
** CREATE TABLE yyy(...);
|
|
639 |
**
|
|
640 |
** Then pName1 is set to "yyy" and pName2 is "".
|
|
641 |
**
|
|
642 |
** This routine sets the *ppUnqual pointer to point at the token (pName1 or
|
|
643 |
** pName2) that stores the unqualified table name. The index of the
|
|
644 |
** database "xxx" is returned.
|
|
645 |
*/
|
|
646 |
int sqlite3TwoPartName(
|
|
647 |
Parse *pParse, /* Parsing and code generating context */
|
|
648 |
Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
|
|
649 |
Token *pName2, /* The "yyy" in the name "xxx.yyy" */
|
|
650 |
Token **pUnqual /* Write the unqualified object name here */
|
|
651 |
){
|
|
652 |
int iDb; /* Database holding the object */
|
|
653 |
sqlite3 *db = pParse->db;
|
|
654 |
|
|
655 |
if( pName2 && pName2->n>0 ){
|
|
656 |
assert( !db->init.busy );
|
|
657 |
*pUnqual = pName2;
|
|
658 |
iDb = sqlite3FindDb(db, pName1);
|
|
659 |
if( iDb<0 ){
|
|
660 |
sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
|
|
661 |
pParse->nErr++;
|
|
662 |
return -1;
|
|
663 |
}
|
|
664 |
}else{
|
|
665 |
assert( db->init.iDb==0 || db->init.busy );
|
|
666 |
iDb = db->init.iDb;
|
|
667 |
*pUnqual = pName1;
|
|
668 |
}
|
|
669 |
return iDb;
|
|
670 |
}
|
|
671 |
|
|
672 |
/*
|
|
673 |
** This routine is used to check if the UTF-8 string zName is a legal
|
|
674 |
** unqualified name for a new schema object (table, index, view or
|
|
675 |
** trigger). All names are legal except those that begin with the string
|
|
676 |
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
|
|
677 |
** is reserved for internal use.
|
|
678 |
*/
|
|
679 |
int sqlite3CheckObjectName(Parse *pParse, const char *zName){
|
|
680 |
if( !pParse->db->init.busy && pParse->nested==0
|
|
681 |
&& (pParse->db->flags & SQLITE_WriteSchema)==0
|
|
682 |
&& 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
|
|
683 |
sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
|
|
684 |
return SQLITE_ERROR;
|
|
685 |
}
|
|
686 |
return SQLITE_OK;
|
|
687 |
}
|
|
688 |
|
|
689 |
/*
|
|
690 |
** Begin constructing a new table representation in memory. This is
|
|
691 |
** the first of several action routines that get called in response
|
|
692 |
** to a CREATE TABLE statement. In particular, this routine is called
|
|
693 |
** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
|
|
694 |
** flag is true if the table should be stored in the auxiliary database
|
|
695 |
** file instead of in the main database file. This is normally the case
|
|
696 |
** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
|
697 |
** CREATE and TABLE.
|
|
698 |
**
|
|
699 |
** The new table record is initialized and put in pParse->pNewTable.
|
|
700 |
** As more of the CREATE TABLE statement is parsed, additional action
|
|
701 |
** routines will be called to add more information to this record.
|
|
702 |
** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
|
|
703 |
** is called to complete the construction of the new table record.
|
|
704 |
*/
|
|
705 |
void sqlite3StartTable(
|
|
706 |
Parse *pParse, /* Parser context */
|
|
707 |
Token *pName1, /* First part of the name of the table or view */
|
|
708 |
Token *pName2, /* Second part of the name of the table or view */
|
|
709 |
int isTemp, /* True if this is a TEMP table */
|
|
710 |
int isView, /* True if this is a VIEW */
|
|
711 |
int isVirtual, /* True if this is a VIRTUAL table */
|
|
712 |
int noErr /* Do nothing if table already exists */
|
|
713 |
){
|
|
714 |
Table *pTable;
|
|
715 |
char *zName = 0; /* The name of the new table */
|
|
716 |
sqlite3 *db = pParse->db;
|
|
717 |
Vdbe *v;
|
|
718 |
int iDb; /* Database number to create the table in */
|
|
719 |
Token *pName; /* Unqualified name of the table to create */
|
|
720 |
|
|
721 |
/* The table or view name to create is passed to this routine via tokens
|
|
722 |
** pName1 and pName2. If the table name was fully qualified, for example:
|
|
723 |
**
|
|
724 |
** CREATE TABLE xxx.yyy (...);
|
|
725 |
**
|
|
726 |
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
|
727 |
** the table name is not fully qualified, i.e.:
|
|
728 |
**
|
|
729 |
** CREATE TABLE yyy(...);
|
|
730 |
**
|
|
731 |
** Then pName1 is set to "yyy" and pName2 is "".
|
|
732 |
**
|
|
733 |
** The call below sets the pName pointer to point at the token (pName1 or
|
|
734 |
** pName2) that stores the unqualified table name. The variable iDb is
|
|
735 |
** set to the index of the database that the table or view is to be
|
|
736 |
** created in.
|
|
737 |
*/
|
|
738 |
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
739 |
if( iDb<0 ) return;
|
|
740 |
if( !OMIT_TEMPDB && isTemp && iDb>1 ){
|
|
741 |
/* If creating a temp table, the name may not be qualified */
|
|
742 |
sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
|
|
743 |
return;
|
|
744 |
}
|
|
745 |
if( !OMIT_TEMPDB && isTemp ) iDb = 1;
|
|
746 |
|
|
747 |
pParse->sNameToken = *pName;
|
|
748 |
zName = sqlite3NameFromToken(db, pName);
|
|
749 |
if( zName==0 ) return;
|
|
750 |
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
|
751 |
goto begin_table_error;
|
|
752 |
}
|
|
753 |
if( db->init.iDb==1 ) isTemp = 1;
|
|
754 |
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
755 |
assert( (isTemp & 1)==isTemp );
|
|
756 |
{
|
|
757 |
int code;
|
|
758 |
char *zDb = db->aDb[iDb].zName;
|
|
759 |
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
|
760 |
goto begin_table_error;
|
|
761 |
}
|
|
762 |
if( isView ){
|
|
763 |
if( !OMIT_TEMPDB && isTemp ){
|
|
764 |
code = SQLITE_CREATE_TEMP_VIEW;
|
|
765 |
}else{
|
|
766 |
code = SQLITE_CREATE_VIEW;
|
|
767 |
}
|
|
768 |
}else{
|
|
769 |
if( !OMIT_TEMPDB && isTemp ){
|
|
770 |
code = SQLITE_CREATE_TEMP_TABLE;
|
|
771 |
}else{
|
|
772 |
code = SQLITE_CREATE_TABLE;
|
|
773 |
}
|
|
774 |
}
|
|
775 |
if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
|
|
776 |
goto begin_table_error;
|
|
777 |
}
|
|
778 |
}
|
|
779 |
#endif
|
|
780 |
|
|
781 |
/* Make sure the new table name does not collide with an existing
|
|
782 |
** index or table name in the same database. Issue an error message if
|
|
783 |
** it does. The exception is if the statement being parsed was passed
|
|
784 |
** to an sqlite3_declare_vtab() call. In that case only the column names
|
|
785 |
** and types will be used, so there is no need to test for namespace
|
|
786 |
** collisions.
|
|
787 |
*/
|
|
788 |
if( !IN_DECLARE_VTAB ){
|
|
789 |
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
790 |
goto begin_table_error;
|
|
791 |
}
|
|
792 |
pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
|
|
793 |
if( pTable ){
|
|
794 |
if( !noErr ){
|
|
795 |
sqlite3ErrorMsg(pParse, "table %T already exists", pName);
|
|
796 |
}
|
|
797 |
goto begin_table_error;
|
|
798 |
}
|
|
799 |
if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
|
|
800 |
sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
|
|
801 |
goto begin_table_error;
|
|
802 |
}
|
|
803 |
}
|
|
804 |
|
|
805 |
pTable = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
|
|
806 |
if( pTable==0 ){
|
|
807 |
db->mallocFailed = 1;
|
|
808 |
pParse->rc = SQLITE_NOMEM;
|
|
809 |
pParse->nErr++;
|
|
810 |
goto begin_table_error;
|
|
811 |
}
|
|
812 |
pTable->zName = zName;
|
|
813 |
pTable->iPKey = -1;
|
|
814 |
pTable->pSchema = db->aDb[iDb].pSchema;
|
|
815 |
pTable->nRef = 1;
|
|
816 |
if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
|
|
817 |
pParse->pNewTable = pTable;
|
|
818 |
|
|
819 |
/* If this is the magic sqlite_sequence table used by autoincrement,
|
|
820 |
** then record a pointer to this table in the main database structure
|
|
821 |
** so that INSERT can find the table easily.
|
|
822 |
*/
|
|
823 |
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
824 |
if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
|
|
825 |
pTable->pSchema->pSeqTab = pTable;
|
|
826 |
}
|
|
827 |
#endif
|
|
828 |
|
|
829 |
/* Begin generating the code that will insert the table record into
|
|
830 |
** the SQLITE_MASTER table. Note in particular that we must go ahead
|
|
831 |
** and allocate the record number for the table entry now. Before any
|
|
832 |
** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
|
833 |
** indices to be created and the table record must come before the
|
|
834 |
** indices. Hence, the record number for the table must be allocated
|
|
835 |
** now.
|
|
836 |
*/
|
|
837 |
if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
|
|
838 |
int lbl;
|
|
839 |
int fileFormat;
|
|
840 |
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
841 |
|
|
842 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
843 |
if( isVirtual ){
|
|
844 |
sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
|
|
845 |
}
|
|
846 |
#endif
|
|
847 |
|
|
848 |
/* If the file format and encoding in the database have not been set,
|
|
849 |
** set them now.
|
|
850 |
*/
|
|
851 |
sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); /* file_format */
|
|
852 |
sqlite3VdbeUsesBtree(v, iDb);
|
|
853 |
lbl = sqlite3VdbeMakeLabel(v);
|
|
854 |
sqlite3VdbeAddOp(v, OP_If, 0, lbl);
|
|
855 |
fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
|
|
856 |
1 : SQLITE_MAX_FILE_FORMAT;
|
|
857 |
sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0);
|
|
858 |
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
|
|
859 |
sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0);
|
|
860 |
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
|
|
861 |
sqlite3VdbeResolveLabel(v, lbl);
|
|
862 |
|
|
863 |
/* This just creates a place-holder record in the sqlite_master table.
|
|
864 |
** The record created does not contain anything yet. It will be replaced
|
|
865 |
** by the real entry in code generated at sqlite3EndTable().
|
|
866 |
**
|
|
867 |
** The rowid for the new entry is left on the top of the stack.
|
|
868 |
** The rowid value is needed by the code that sqlite3EndTable will
|
|
869 |
** generate.
|
|
870 |
*/
|
|
871 |
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
872 |
if( isView || isVirtual ){
|
|
873 |
sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
|
|
874 |
}else
|
|
875 |
#endif
|
|
876 |
{
|
|
877 |
sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0);
|
|
878 |
}
|
|
879 |
sqlite3OpenMasterTable(pParse, iDb);
|
|
880 |
sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0);
|
|
881 |
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
|
882 |
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
|
883 |
sqlite3VdbeAddOp(v, OP_Insert, 0, OPFLAG_APPEND);
|
|
884 |
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
|
885 |
sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
|
|
886 |
}
|
|
887 |
|
|
888 |
/* Normal (non-error) return. */
|
|
889 |
return;
|
|
890 |
|
|
891 |
/* If an error occurs, we jump here */
|
|
892 |
begin_table_error:
|
|
893 |
sqlite3_free(zName);
|
|
894 |
return;
|
|
895 |
}
|
|
896 |
|
|
897 |
/*
|
|
898 |
** This macro is used to compare two strings in a case-insensitive manner.
|
|
899 |
** It is slightly faster than calling sqlite3StrICmp() directly, but
|
|
900 |
** produces larger code.
|
|
901 |
**
|
|
902 |
** WARNING: This macro is not compatible with the strcmp() family. It
|
|
903 |
** returns true if the two strings are equal, otherwise false.
|
|
904 |
*/
|
|
905 |
#define STRICMP(x, y) (\
|
|
906 |
sqlite3UpperToLower[*(unsigned char *)(x)]== \
|
|
907 |
sqlite3UpperToLower[*(unsigned char *)(y)] \
|
|
908 |
&& sqlite3StrICmp((x)+1,(y)+1)==0 )
|
|
909 |
|
|
910 |
/*
|
|
911 |
** Add a new column to the table currently being constructed.
|
|
912 |
**
|
|
913 |
** The parser calls this routine once for each column declaration
|
|
914 |
** in a CREATE TABLE statement. sqlite3StartTable() gets called
|
|
915 |
** first to get things going. Then this routine is called for each
|
|
916 |
** column.
|
|
917 |
*/
|
|
918 |
void sqlite3AddColumn(Parse *pParse, Token *pName){
|
|
919 |
Table *p;
|
|
920 |
int i;
|
|
921 |
char *z;
|
|
922 |
Column *pCol;
|
|
923 |
if( (p = pParse->pNewTable)==0 ) return;
|
|
924 |
if( p->nCol+1>SQLITE_MAX_COLUMN ){
|
|
925 |
sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
|
|
926 |
return;
|
|
927 |
}
|
|
928 |
z = sqlite3NameFromToken(pParse->db, pName);
|
|
929 |
if( z==0 ) return;
|
|
930 |
for(i=0; i<p->nCol; i++){
|
|
931 |
if( STRICMP(z, p->aCol[i].zName) ){
|
|
932 |
sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
|
|
933 |
sqlite3_free(z);
|
|
934 |
return;
|
|
935 |
}
|
|
936 |
}
|
|
937 |
if( (p->nCol & 0x7)==0 ){
|
|
938 |
Column *aNew;
|
|
939 |
aNew = (Column*)sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
|
|
940 |
if( aNew==0 ){
|
|
941 |
sqlite3_free(z);
|
|
942 |
return;
|
|
943 |
}
|
|
944 |
p->aCol = aNew;
|
|
945 |
}
|
|
946 |
pCol = &p->aCol[p->nCol];
|
|
947 |
memset(pCol, 0, sizeof(p->aCol[0]));
|
|
948 |
pCol->zName = z;
|
|
949 |
|
|
950 |
/* If there is no type specified, columns have the default affinity
|
|
951 |
** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
|
|
952 |
** be called next to set pCol->affinity correctly.
|
|
953 |
*/
|
|
954 |
pCol->affinity = SQLITE_AFF_NONE;
|
|
955 |
p->nCol++;
|
|
956 |
}
|
|
957 |
|
|
958 |
/*
|
|
959 |
** This routine is called by the parser while in the middle of
|
|
960 |
** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
|
961 |
** been seen on a column. This routine sets the notNull flag on
|
|
962 |
** the column currently under construction.
|
|
963 |
*/
|
|
964 |
void sqlite3AddNotNull(Parse *pParse, int onError){
|
|
965 |
Table *p;
|
|
966 |
int i;
|
|
967 |
if( (p = pParse->pNewTable)==0 ) return;
|
|
968 |
i = p->nCol-1;
|
|
969 |
if( i>=0 ) p->aCol[i].notNull = onError;
|
|
970 |
}
|
|
971 |
|
|
972 |
/*
|
|
973 |
** Scan the column type name zType (length nType) and return the
|
|
974 |
** associated affinity type.
|
|
975 |
**
|
|
976 |
** This routine does a case-independent search of zType for the
|
|
977 |
** substrings in the following table. If one of the substrings is
|
|
978 |
** found, the corresponding affinity is returned. If zType contains
|
|
979 |
** more than one of the substrings, entries toward the top of
|
|
980 |
** the table take priority. For example, if zType is 'BLOBINT',
|
|
981 |
** SQLITE_AFF_INTEGER is returned.
|
|
982 |
**
|
|
983 |
** Substring | Affinity
|
|
984 |
** --------------------------------
|
|
985 |
** 'INT' | SQLITE_AFF_INTEGER
|
|
986 |
** 'CHAR' | SQLITE_AFF_TEXT
|
|
987 |
** 'CLOB' | SQLITE_AFF_TEXT
|
|
988 |
** 'TEXT' | SQLITE_AFF_TEXT
|
|
989 |
** 'BLOB' | SQLITE_AFF_NONE
|
|
990 |
** 'REAL' | SQLITE_AFF_REAL
|
|
991 |
** 'FLOA' | SQLITE_AFF_REAL
|
|
992 |
** 'DOUB' | SQLITE_AFF_REAL
|
|
993 |
**
|
|
994 |
** If none of the substrings in the above table are found,
|
|
995 |
** SQLITE_AFF_NUMERIC is returned.
|
|
996 |
*/
|
|
997 |
char sqlite3AffinityType(const Token *pType){
|
|
998 |
u32 h = 0;
|
|
999 |
char aff = SQLITE_AFF_NUMERIC;
|
|
1000 |
const unsigned char *zIn = pType->z;
|
|
1001 |
const unsigned char *zEnd = &pType->z[pType->n];
|
|
1002 |
|
|
1003 |
while( zIn!=zEnd ){
|
|
1004 |
h = (h<<8) + sqlite3UpperToLower[*zIn];
|
|
1005 |
zIn++;
|
|
1006 |
if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
|
|
1007 |
aff = SQLITE_AFF_TEXT;
|
|
1008 |
}else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
|
|
1009 |
aff = SQLITE_AFF_TEXT;
|
|
1010 |
}else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
|
|
1011 |
aff = SQLITE_AFF_TEXT;
|
|
1012 |
}else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
|
|
1013 |
&& (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
|
|
1014 |
aff = SQLITE_AFF_NONE;
|
|
1015 |
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
1016 |
}else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
|
|
1017 |
&& aff==SQLITE_AFF_NUMERIC ){
|
|
1018 |
aff = SQLITE_AFF_REAL;
|
|
1019 |
}else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
|
|
1020 |
&& aff==SQLITE_AFF_NUMERIC ){
|
|
1021 |
aff = SQLITE_AFF_REAL;
|
|
1022 |
}else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
|
|
1023 |
&& aff==SQLITE_AFF_NUMERIC ){
|
|
1024 |
aff = SQLITE_AFF_REAL;
|
|
1025 |
#endif
|
|
1026 |
}else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
|
|
1027 |
aff = SQLITE_AFF_INTEGER;
|
|
1028 |
break;
|
|
1029 |
}
|
|
1030 |
}
|
|
1031 |
|
|
1032 |
return aff;
|
|
1033 |
}
|
|
1034 |
|
|
1035 |
/*
|
|
1036 |
** This routine is called by the parser while in the middle of
|
|
1037 |
** parsing a CREATE TABLE statement. The pFirst token is the first
|
|
1038 |
** token in the sequence of tokens that describe the type of the
|
|
1039 |
** column currently under construction. pLast is the last token
|
|
1040 |
** in the sequence. Use this information to construct a string
|
|
1041 |
** that contains the typename of the column and store that string
|
|
1042 |
** in zType.
|
|
1043 |
*/
|
|
1044 |
void sqlite3AddColumnType(Parse *pParse, Token *pType){
|
|
1045 |
Table *p;
|
|
1046 |
int i;
|
|
1047 |
Column *pCol;
|
|
1048 |
|
|
1049 |
if( (p = pParse->pNewTable)==0 ) return;
|
|
1050 |
i = p->nCol-1;
|
|
1051 |
if( i<0 ) return;
|
|
1052 |
pCol = &p->aCol[i];
|
|
1053 |
sqlite3_free(pCol->zType);
|
|
1054 |
pCol->zType = sqlite3NameFromToken(pParse->db, pType);
|
|
1055 |
pCol->affinity = sqlite3AffinityType(pType);
|
|
1056 |
}
|
|
1057 |
|
|
1058 |
/*
|
|
1059 |
** The expression is the default value for the most recently added column
|
|
1060 |
** of the table currently under construction.
|
|
1061 |
**
|
|
1062 |
** Default value expressions must be constant. Raise an exception if this
|
|
1063 |
** is not the case.
|
|
1064 |
**
|
|
1065 |
** This routine is called by the parser while in the middle of
|
|
1066 |
** parsing a CREATE TABLE statement.
|
|
1067 |
*/
|
|
1068 |
void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
|
|
1069 |
Table *p;
|
|
1070 |
Column *pCol;
|
|
1071 |
if( (p = pParse->pNewTable)!=0 ){
|
|
1072 |
pCol = &(p->aCol[p->nCol-1]);
|
|
1073 |
if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
|
|
1074 |
sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
|
|
1075 |
pCol->zName);
|
|
1076 |
}else{
|
|
1077 |
Expr *pCopy;
|
|
1078 |
sqlite3 *db = pParse->db;
|
|
1079 |
sqlite3ExprDelete(pCol->pDflt);
|
|
1080 |
pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
|
|
1081 |
if( pCopy ){
|
|
1082 |
sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
|
|
1083 |
}
|
|
1084 |
}
|
|
1085 |
}
|
|
1086 |
sqlite3ExprDelete(pExpr);
|
|
1087 |
}
|
|
1088 |
|
|
1089 |
/*
|
|
1090 |
** Designate the PRIMARY KEY for the table. pList is a list of names
|
|
1091 |
** of columns that form the primary key. If pList is NULL, then the
|
|
1092 |
** most recently added column of the table is the primary key.
|
|
1093 |
**
|
|
1094 |
** A table can have at most one primary key. If the table already has
|
|
1095 |
** a primary key (and this is the second primary key) then create an
|
|
1096 |
** error.
|
|
1097 |
**
|
|
1098 |
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
|
1099 |
** then we will try to use that column as the rowid. Set the Table.iPKey
|
|
1100 |
** field of the table under construction to be the index of the
|
|
1101 |
** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
|
1102 |
** no INTEGER PRIMARY KEY.
|
|
1103 |
**
|
|
1104 |
** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
|
1105 |
** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
|
1106 |
*/
|
|
1107 |
void sqlite3AddPrimaryKey(
|
|
1108 |
Parse *pParse, /* Parsing context */
|
|
1109 |
ExprList *pList, /* List of field names to be indexed */
|
|
1110 |
int onError, /* What to do with a uniqueness conflict */
|
|
1111 |
int autoInc, /* True if the AUTOINCREMENT keyword is present */
|
|
1112 |
int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
|
|
1113 |
){
|
|
1114 |
Table *pTab = pParse->pNewTable;
|
|
1115 |
char *zType = 0;
|
|
1116 |
int iCol = -1, i;
|
|
1117 |
if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
|
|
1118 |
if( pTab->hasPrimKey ){
|
|
1119 |
sqlite3ErrorMsg(pParse,
|
|
1120 |
"table \"%s\" has more than one primary key", pTab->zName);
|
|
1121 |
goto primary_key_exit;
|
|
1122 |
}
|
|
1123 |
pTab->hasPrimKey = 1;
|
|
1124 |
if( pList==0 ){
|
|
1125 |
iCol = pTab->nCol - 1;
|
|
1126 |
pTab->aCol[iCol].isPrimKey = 1;
|
|
1127 |
}else{
|
|
1128 |
for(i=0; i<pList->nExpr; i++){
|
|
1129 |
for(iCol=0; iCol<pTab->nCol; iCol++){
|
|
1130 |
if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
|
|
1131 |
break;
|
|
1132 |
}
|
|
1133 |
}
|
|
1134 |
if( iCol<pTab->nCol ){
|
|
1135 |
pTab->aCol[iCol].isPrimKey = 1;
|
|
1136 |
}
|
|
1137 |
}
|
|
1138 |
if( pList->nExpr>1 ) iCol = -1;
|
|
1139 |
}
|
|
1140 |
if( iCol>=0 && iCol<pTab->nCol ){
|
|
1141 |
zType = pTab->aCol[iCol].zType;
|
|
1142 |
}
|
|
1143 |
if( zType && sqlite3StrICmp(zType, "INTEGER")==0
|
|
1144 |
&& sortOrder==SQLITE_SO_ASC ){
|
|
1145 |
pTab->iPKey = iCol;
|
|
1146 |
pTab->keyConf = onError;
|
|
1147 |
pTab->autoInc = autoInc;
|
|
1148 |
}else if( autoInc ){
|
|
1149 |
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
1150 |
sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
|
|
1151 |
"INTEGER PRIMARY KEY");
|
|
1152 |
#endif
|
|
1153 |
}else{
|
|
1154 |
sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
|
|
1155 |
pList = 0;
|
|
1156 |
}
|
|
1157 |
|
|
1158 |
primary_key_exit:
|
|
1159 |
sqlite3ExprListDelete(pList);
|
|
1160 |
return;
|
|
1161 |
}
|
|
1162 |
|
|
1163 |
/*
|
|
1164 |
** Add a new CHECK constraint to the table currently under construction.
|
|
1165 |
*/
|
|
1166 |
void sqlite3AddCheckConstraint(
|
|
1167 |
Parse *pParse, /* Parsing context */
|
|
1168 |
Expr *pCheckExpr /* The check expression */
|
|
1169 |
){
|
|
1170 |
#ifndef SQLITE_OMIT_CHECK
|
|
1171 |
Table *pTab = pParse->pNewTable;
|
|
1172 |
sqlite3 *db = pParse->db;
|
|
1173 |
if( pTab && !IN_DECLARE_VTAB ){
|
|
1174 |
/* The CHECK expression must be duplicated so that tokens refer
|
|
1175 |
** to malloced space and not the (ephemeral) text of the CREATE TABLE
|
|
1176 |
** statement */
|
|
1177 |
pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck,
|
|
1178 |
sqlite3ExprDup(db, pCheckExpr));
|
|
1179 |
}
|
|
1180 |
#endif
|
|
1181 |
sqlite3ExprDelete(pCheckExpr);
|
|
1182 |
}
|
|
1183 |
|
|
1184 |
/*
|
|
1185 |
** Set the collation function of the most recently parsed table column
|
|
1186 |
** to the CollSeq given.
|
|
1187 |
*/
|
|
1188 |
void sqlite3AddCollateType(Parse *pParse, Token *pToken){
|
|
1189 |
Table *p;
|
|
1190 |
int i;
|
|
1191 |
char *zColl; /* Dequoted name of collation sequence */
|
|
1192 |
|
|
1193 |
if( (p = pParse->pNewTable)==0 ) return;
|
|
1194 |
i = p->nCol-1;
|
|
1195 |
|
|
1196 |
zColl = sqlite3NameFromToken(pParse->db, pToken);
|
|
1197 |
if( !zColl ) return;
|
|
1198 |
|
|
1199 |
if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
|
|
1200 |
Index *pIdx;
|
|
1201 |
p->aCol[i].zColl = zColl;
|
|
1202 |
|
|
1203 |
/* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
|
|
1204 |
** then an index may have been created on this column before the
|
|
1205 |
** collation type was added. Correct this if it is the case.
|
|
1206 |
*/
|
|
1207 |
for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
1208 |
assert( pIdx->nColumn==1 );
|
|
1209 |
if( pIdx->aiColumn[0]==i ){
|
|
1210 |
pIdx->azColl[0] = p->aCol[i].zColl;
|
|
1211 |
}
|
|
1212 |
}
|
|
1213 |
}else{
|
|
1214 |
sqlite3_free(zColl);
|
|
1215 |
}
|
|
1216 |
}
|
|
1217 |
|
|
1218 |
/*
|
|
1219 |
** This function returns the collation sequence for database native text
|
|
1220 |
** encoding identified by the string zName, length nName.
|
|
1221 |
**
|
|
1222 |
** If the requested collation sequence is not available, or not available
|
|
1223 |
** in the database native encoding, the collation factory is invoked to
|
|
1224 |
** request it. If the collation factory does not supply such a sequence,
|
|
1225 |
** and the sequence is available in another text encoding, then that is
|
|
1226 |
** returned instead.
|
|
1227 |
**
|
|
1228 |
** If no versions of the requested collations sequence are available, or
|
|
1229 |
** another error occurs, NULL is returned and an error message written into
|
|
1230 |
** pParse.
|
|
1231 |
**
|
|
1232 |
** This routine is a wrapper around sqlite3FindCollSeq(). This routine
|
|
1233 |
** invokes the collation factory if the named collation cannot be found
|
|
1234 |
** and generates an error message.
|
|
1235 |
*/
|
|
1236 |
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
|
|
1237 |
sqlite3 *db = pParse->db;
|
|
1238 |
u8 enc = ENC(db);
|
|
1239 |
u8 initbusy = db->init.busy;
|
|
1240 |
CollSeq *pColl;
|
|
1241 |
|
|
1242 |
pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
|
|
1243 |
if( !initbusy && (!pColl || !pColl->xCmp) ){
|
|
1244 |
pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
|
|
1245 |
if( !pColl ){
|
|
1246 |
if( nName<0 ){
|
|
1247 |
nName = strlen(zName);
|
|
1248 |
}
|
|
1249 |
sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
|
|
1250 |
pColl = 0;
|
|
1251 |
}
|
|
1252 |
}
|
|
1253 |
|
|
1254 |
return pColl;
|
|
1255 |
}
|
|
1256 |
|
|
1257 |
|
|
1258 |
/*
|
|
1259 |
** Generate code that will increment the schema cookie.
|
|
1260 |
**
|
|
1261 |
** The schema cookie is used to determine when the schema for the
|
|
1262 |
** database changes. After each schema change, the cookie value
|
|
1263 |
** changes. When a process first reads the schema it records the
|
|
1264 |
** cookie. Thereafter, whenever it goes to access the database,
|
|
1265 |
** it checks the cookie to make sure the schema has not changed
|
|
1266 |
** since it was last read.
|
|
1267 |
**
|
|
1268 |
** This plan is not completely bullet-proof. It is possible for
|
|
1269 |
** the schema to change multiple times and for the cookie to be
|
|
1270 |
** set back to prior value. But schema changes are infrequent
|
|
1271 |
** and the probability of hitting the same cookie value is only
|
|
1272 |
** 1 chance in 2^32. So we're safe enough.
|
|
1273 |
*/
|
|
1274 |
void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
|
|
1275 |
sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0);
|
|
1276 |
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
|
|
1277 |
}
|
|
1278 |
|
|
1279 |
/*
|
|
1280 |
** Measure the number of characters needed to output the given
|
|
1281 |
** identifier. The number returned includes any quotes used
|
|
1282 |
** but does not include the null terminator.
|
|
1283 |
**
|
|
1284 |
** The estimate is conservative. It might be larger that what is
|
|
1285 |
** really needed.
|
|
1286 |
*/
|
|
1287 |
static int identLength(const char *z){
|
|
1288 |
int n;
|
|
1289 |
for(n=0; *z; n++, z++){
|
|
1290 |
if( *z=='"' ){ n++; }
|
|
1291 |
}
|
|
1292 |
return n + 2;
|
|
1293 |
}
|
|
1294 |
|
|
1295 |
/*
|
|
1296 |
** Write an identifier onto the end of the given string. Add
|
|
1297 |
** quote characters as needed.
|
|
1298 |
*/
|
|
1299 |
static void identPut(char *z, int *pIdx, char *zSignedIdent){
|
|
1300 |
unsigned char *zIdent = (unsigned char*)zSignedIdent;
|
|
1301 |
int i, j, needQuote;
|
|
1302 |
i = *pIdx;
|
|
1303 |
for(j=0; zIdent[j]; j++){
|
|
1304 |
if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
|
1305 |
}
|
|
1306 |
needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|
|
1307 |
|| sqlite3KeywordCode(zIdent, j)!=TK_ID;
|
|
1308 |
if( needQuote ) z[i++] = '"';
|
|
1309 |
for(j=0; zIdent[j]; j++){
|
|
1310 |
z[i++] = zIdent[j];
|
|
1311 |
if( zIdent[j]=='"' ) z[i++] = '"';
|
|
1312 |
}
|
|
1313 |
if( needQuote ) z[i++] = '"';
|
|
1314 |
z[i] = 0;
|
|
1315 |
*pIdx = i;
|
|
1316 |
}
|
|
1317 |
|
|
1318 |
/*
|
|
1319 |
** Generate a CREATE TABLE statement appropriate for the given
|
|
1320 |
** table. Memory to hold the text of the statement is obtained
|
|
1321 |
** from sqliteMalloc() and must be freed by the calling function.
|
|
1322 |
*/
|
|
1323 |
static char *createTableStmt(Table *p, int isTemp){
|
|
1324 |
int i, k, n;
|
|
1325 |
char *zStmt;
|
|
1326 |
char *zSep, *zSep2, *zEnd, *z;
|
|
1327 |
Column *pCol;
|
|
1328 |
n = 0;
|
|
1329 |
for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
|
|
1330 |
n += identLength(pCol->zName);
|
|
1331 |
z = pCol->zType;
|
|
1332 |
if( z ){
|
|
1333 |
n += (strlen(z) + 1);
|
|
1334 |
}
|
|
1335 |
}
|
|
1336 |
n += identLength(p->zName);
|
|
1337 |
if( n<50 ){
|
|
1338 |
zSep = "";
|
|
1339 |
zSep2 = ",";
|
|
1340 |
zEnd = ")";
|
|
1341 |
}else{
|
|
1342 |
zSep = "\n ";
|
|
1343 |
zSep2 = ",\n ";
|
|
1344 |
zEnd = "\n)";
|
|
1345 |
}
|
|
1346 |
n += 35 + 6*p->nCol;
|
|
1347 |
zStmt = (char*)sqlite3_malloc( n );
|
|
1348 |
if( zStmt==0 ) return 0;
|
|
1349 |
sqlite3_snprintf(n, zStmt,
|
|
1350 |
!OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
|
|
1351 |
k = strlen(zStmt);
|
|
1352 |
identPut(zStmt, &k, p->zName);
|
|
1353 |
zStmt[k++] = '(';
|
|
1354 |
for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
|
|
1355 |
sqlite3_snprintf(n-k, &zStmt[k], zSep);
|
|
1356 |
k += strlen(&zStmt[k]);
|
|
1357 |
zSep = zSep2;
|
|
1358 |
identPut(zStmt, &k, pCol->zName);
|
|
1359 |
if( (z = pCol->zType)!=0 ){
|
|
1360 |
zStmt[k++] = ' ';
|
|
1361 |
assert( strlen(z)+k+1<=n );
|
|
1362 |
sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
|
|
1363 |
k += strlen(z);
|
|
1364 |
}
|
|
1365 |
}
|
|
1366 |
sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
|
|
1367 |
return zStmt;
|
|
1368 |
}
|
|
1369 |
|
|
1370 |
/*
|
|
1371 |
** This routine is called to report the final ")" that terminates
|
|
1372 |
** a CREATE TABLE statement.
|
|
1373 |
**
|
|
1374 |
** The table structure that other action routines have been building
|
|
1375 |
** is added to the internal hash tables, assuming no errors have
|
|
1376 |
** occurred.
|
|
1377 |
**
|
|
1378 |
** An entry for the table is made in the master table on disk, unless
|
|
1379 |
** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
|
1380 |
** it means we are reading the sqlite_master table because we just
|
|
1381 |
** connected to the database or because the sqlite_master table has
|
|
1382 |
** recently changed, so the entry for this table already exists in
|
|
1383 |
** the sqlite_master table. We do not want to create it again.
|
|
1384 |
**
|
|
1385 |
** If the pSelect argument is not NULL, it means that this routine
|
|
1386 |
** was called to create a table generated from a
|
|
1387 |
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
|
1388 |
** the new table will match the result set of the SELECT.
|
|
1389 |
*/
|
|
1390 |
void sqlite3EndTable(
|
|
1391 |
Parse *pParse, /* Parse context */
|
|
1392 |
Token *pCons, /* The ',' token after the last column defn. */
|
|
1393 |
Token *pEnd, /* The final ')' token in the CREATE TABLE */
|
|
1394 |
Select *pSelect /* Select from a "CREATE ... AS SELECT" */
|
|
1395 |
){
|
|
1396 |
Table *p;
|
|
1397 |
sqlite3 *db = pParse->db;
|
|
1398 |
int iDb;
|
|
1399 |
|
|
1400 |
if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
|
|
1401 |
return;
|
|
1402 |
}
|
|
1403 |
p = pParse->pNewTable;
|
|
1404 |
if( p==0 ) return;
|
|
1405 |
|
|
1406 |
assert( !db->init.busy || !pSelect );
|
|
1407 |
|
|
1408 |
iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
|
1409 |
|
|
1410 |
#ifndef SQLITE_OMIT_CHECK
|
|
1411 |
/* Resolve names in all CHECK constraint expressions.
|
|
1412 |
*/
|
|
1413 |
if( p->pCheck ){
|
|
1414 |
SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
|
|
1415 |
NameContext sNC; /* Name context for pParse->pNewTable */
|
|
1416 |
|
|
1417 |
memset(&sNC, 0, sizeof(sNC));
|
|
1418 |
memset(&sSrc, 0, sizeof(sSrc));
|
|
1419 |
sSrc.nSrc = 1;
|
|
1420 |
sSrc.a[0].zName = p->zName;
|
|
1421 |
sSrc.a[0].pTab = p;
|
|
1422 |
sSrc.a[0].iCursor = -1;
|
|
1423 |
sNC.pParse = pParse;
|
|
1424 |
sNC.pSrcList = &sSrc;
|
|
1425 |
sNC.isCheck = 1;
|
|
1426 |
if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
|
|
1427 |
return;
|
|
1428 |
}
|
|
1429 |
}
|
|
1430 |
#endif /* !defined(SQLITE_OMIT_CHECK) */
|
|
1431 |
|
|
1432 |
/* If the db->init.busy is 1 it means we are reading the SQL off the
|
|
1433 |
** "sqlite_master" or "sqlite_temp_master" table on the disk.
|
|
1434 |
** So do not write to the disk again. Extract the root page number
|
|
1435 |
** for the table from the db->init.newTnum field. (The page number
|
|
1436 |
** should have been put there by the sqliteOpenCb routine.)
|
|
1437 |
*/
|
|
1438 |
if( db->init.busy ){
|
|
1439 |
p->tnum = db->init.newTnum;
|
|
1440 |
}
|
|
1441 |
|
|
1442 |
/* If not initializing, then create a record for the new table
|
|
1443 |
** in the SQLITE_MASTER table of the database. The record number
|
|
1444 |
** for the new table entry should already be on the stack.
|
|
1445 |
**
|
|
1446 |
** If this is a TEMPORARY table, write the entry into the auxiliary
|
|
1447 |
** file instead of into the main database file.
|
|
1448 |
*/
|
|
1449 |
if( !db->init.busy ){
|
|
1450 |
int n;
|
|
1451 |
Vdbe *v;
|
|
1452 |
char *zType; /* "view" or "table" */
|
|
1453 |
char *zType2; /* "VIEW" or "TABLE" */
|
|
1454 |
char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
|
|
1455 |
|
|
1456 |
v = sqlite3GetVdbe(pParse);
|
|
1457 |
if( v==0 ) return;
|
|
1458 |
|
|
1459 |
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
|
1460 |
|
|
1461 |
/* Create the rootpage for the new table and push it onto the stack.
|
|
1462 |
** A view has no rootpage, so just push a zero onto the stack for
|
|
1463 |
** views. Initialize zType at the same time.
|
|
1464 |
*/
|
|
1465 |
if( p->pSelect==0 ){
|
|
1466 |
/* A regular table */
|
|
1467 |
zType = "table";
|
|
1468 |
zType2 = "TABLE";
|
|
1469 |
#ifndef SQLITE_OMIT_VIEW
|
|
1470 |
}else{
|
|
1471 |
/* A view */
|
|
1472 |
zType = "view";
|
|
1473 |
zType2 = "VIEW";
|
|
1474 |
#endif
|
|
1475 |
}
|
|
1476 |
|
|
1477 |
/* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
|
|
1478 |
** statement to populate the new table. The root-page number for the
|
|
1479 |
** new table is on the top of the vdbe stack.
|
|
1480 |
**
|
|
1481 |
** Once the SELECT has been coded by sqlite3Select(), it is in a
|
|
1482 |
** suitable state to query for the column names and types to be used
|
|
1483 |
** by the new table.
|
|
1484 |
**
|
|
1485 |
** A shared-cache write-lock is not required to write to the new table,
|
|
1486 |
** as a schema-lock must have already been obtained to create it. Since
|
|
1487 |
** a schema-lock excludes all other database users, the write-lock would
|
|
1488 |
** be redundant.
|
|
1489 |
*/
|
|
1490 |
if( pSelect ){
|
|
1491 |
Table *pSelTab;
|
|
1492 |
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
|
1493 |
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
1494 |
sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
|
|
1495 |
pParse->nTab = 2;
|
|
1496 |
sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
|
|
1497 |
sqlite3VdbeAddOp(v, OP_Close, 1, 0);
|
|
1498 |
if( pParse->nErr==0 ){
|
|
1499 |
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
|
|
1500 |
if( pSelTab==0 ) return;
|
|
1501 |
assert( p->aCol==0 );
|
|
1502 |
p->nCol = pSelTab->nCol;
|
|
1503 |
p->aCol = pSelTab->aCol;
|
|
1504 |
pSelTab->nCol = 0;
|
|
1505 |
pSelTab->aCol = 0;
|
|
1506 |
sqlite3DeleteTable(pSelTab);
|
|
1507 |
}
|
|
1508 |
}
|
|
1509 |
|
|
1510 |
/* Compute the complete text of the CREATE statement */
|
|
1511 |
if( pSelect ){
|
|
1512 |
zStmt = createTableStmt(p, p->pSchema==db->aDb[1].pSchema);
|
|
1513 |
}else{
|
|
1514 |
n = pEnd->z - pParse->sNameToken.z + 1;
|
|
1515 |
zStmt = sqlite3MPrintf(db,
|
|
1516 |
"CREATE %s %.*s", zType2, n, pParse->sNameToken.z
|
|
1517 |
);
|
|
1518 |
}
|
|
1519 |
|
|
1520 |
/* A slot for the record has already been allocated in the
|
|
1521 |
** SQLITE_MASTER table. We just need to update that slot with all
|
|
1522 |
** the information we've collected. The rowid for the preallocated
|
|
1523 |
** slot is the 2nd item on the stack. The top of the stack is the
|
|
1524 |
** root page for the new table (or a 0 if this is a view).
|
|
1525 |
*/
|
|
1526 |
sqlite3NestedParse(pParse,
|
|
1527 |
"UPDATE %Q.%s "
|
|
1528 |
"SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
|
|
1529 |
"WHERE rowid=#1",
|
|
1530 |
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
1531 |
zType,
|
|
1532 |
p->zName,
|
|
1533 |
p->zName,
|
|
1534 |
zStmt
|
|
1535 |
);
|
|
1536 |
sqlite3_free(zStmt);
|
|
1537 |
sqlite3ChangeCookie(db, v, iDb);
|
|
1538 |
|
|
1539 |
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
1540 |
/* Check to see if we need to create an sqlite_sequence table for
|
|
1541 |
** keeping track of autoincrement keys.
|
|
1542 |
*/
|
|
1543 |
if( p->autoInc ){
|
|
1544 |
Db *pDb = &db->aDb[iDb];
|
|
1545 |
if( pDb->pSchema->pSeqTab==0 ){
|
|
1546 |
sqlite3NestedParse(pParse,
|
|
1547 |
"CREATE TABLE %Q.sqlite_sequence(name,seq)",
|
|
1548 |
pDb->zName
|
|
1549 |
);
|
|
1550 |
}
|
|
1551 |
}
|
|
1552 |
#endif
|
|
1553 |
|
|
1554 |
/* Reparse everything to update our internal data structures */
|
|
1555 |
sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
|
|
1556 |
sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P3_DYNAMIC);
|
|
1557 |
}
|
|
1558 |
|
|
1559 |
|
|
1560 |
/* Add the table to the in-memory representation of the database.
|
|
1561 |
*/
|
|
1562 |
if( db->init.busy && pParse->nErr==0 ){
|
|
1563 |
Table *pOld;
|
|
1564 |
FKey *pFKey;
|
|
1565 |
Schema *pSchema = p->pSchema;
|
|
1566 |
pOld = (Table*)sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
|
|
1567 |
if( pOld ){
|
|
1568 |
assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
|
1569 |
db->mallocFailed = 1;
|
|
1570 |
return;
|
|
1571 |
}
|
|
1572 |
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
1573 |
for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
|
|
1574 |
void *data;
|
|
1575 |
int nTo = strlen(pFKey->zTo) + 1;
|
|
1576 |
pFKey->pNextTo = (FKey*)sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
|
|
1577 |
data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
|
|
1578 |
if( data==(void *)pFKey ){
|
|
1579 |
db->mallocFailed = 1;
|
|
1580 |
}
|
|
1581 |
}
|
|
1582 |
#endif
|
|
1583 |
pParse->pNewTable = 0;
|
|
1584 |
db->nTable++;
|
|
1585 |
db->flags |= SQLITE_InternChanges;
|
|
1586 |
|
|
1587 |
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
1588 |
if( !p->pSelect ){
|
|
1589 |
const char *zName = (const char *)pParse->sNameToken.z;
|
|
1590 |
int nName;
|
|
1591 |
assert( !pSelect && pCons && pEnd );
|
|
1592 |
if( pCons->z==0 ){
|
|
1593 |
pCons = pEnd;
|
|
1594 |
}
|
|
1595 |
nName = (const char *)pCons->z - zName;
|
|
1596 |
p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
|
|
1597 |
}
|
|
1598 |
#endif
|
|
1599 |
}
|
|
1600 |
}
|
|
1601 |
|
|
1602 |
#ifndef SQLITE_OMIT_VIEW
|
|
1603 |
/*
|
|
1604 |
** The parser calls this routine in order to create a new VIEW
|
|
1605 |
*/
|
|
1606 |
void sqlite3CreateView(
|
|
1607 |
Parse *pParse, /* The parsing context */
|
|
1608 |
Token *pBegin, /* The CREATE token that begins the statement */
|
|
1609 |
Token *pName1, /* The token that holds the name of the view */
|
|
1610 |
Token *pName2, /* The token that holds the name of the view */
|
|
1611 |
Select *pSelect, /* A SELECT statement that will become the new view */
|
|
1612 |
int isTemp, /* TRUE for a TEMPORARY view */
|
|
1613 |
int noErr /* Suppress error messages if VIEW already exists */
|
|
1614 |
){
|
|
1615 |
Table *p;
|
|
1616 |
int n;
|
|
1617 |
const unsigned char *z;
|
|
1618 |
Token sEnd;
|
|
1619 |
DbFixer sFix;
|
|
1620 |
Token *pName;
|
|
1621 |
int iDb;
|
|
1622 |
sqlite3 *db = pParse->db;
|
|
1623 |
|
|
1624 |
if( pParse->nVar>0 ){
|
|
1625 |
sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
|
|
1626 |
sqlite3SelectDelete(pSelect);
|
|
1627 |
return;
|
|
1628 |
}
|
|
1629 |
sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
|
|
1630 |
p = pParse->pNewTable;
|
|
1631 |
if( p==0 || pParse->nErr ){
|
|
1632 |
sqlite3SelectDelete(pSelect);
|
|
1633 |
return;
|
|
1634 |
}
|
|
1635 |
sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
1636 |
iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
|
1637 |
if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
|
|
1638 |
&& sqlite3FixSelect(&sFix, pSelect)
|
|
1639 |
){
|
|
1640 |
sqlite3SelectDelete(pSelect);
|
|
1641 |
return;
|
|
1642 |
}
|
|
1643 |
|
|
1644 |
/* Make a copy of the entire SELECT statement that defines the view.
|
|
1645 |
** This will force all the Expr.token.z values to be dynamically
|
|
1646 |
** allocated rather than point to the input string - which means that
|
|
1647 |
** they will persist after the current sqlite3_exec() call returns.
|
|
1648 |
*/
|
|
1649 |
p->pSelect = sqlite3SelectDup(db, pSelect);
|
|
1650 |
sqlite3SelectDelete(pSelect);
|
|
1651 |
if( db->mallocFailed ){
|
|
1652 |
return;
|
|
1653 |
}
|
|
1654 |
if( !db->init.busy ){
|
|
1655 |
sqlite3ViewGetColumnNames(pParse, p);
|
|
1656 |
}
|
|
1657 |
|
|
1658 |
/* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
|
1659 |
** the end.
|
|
1660 |
*/
|
|
1661 |
sEnd = pParse->sLastToken;
|
|
1662 |
if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
|
|
1663 |
sEnd.z += sEnd.n;
|
|
1664 |
}
|
|
1665 |
sEnd.n = 0;
|
|
1666 |
n = sEnd.z - pBegin->z;
|
|
1667 |
z = (const unsigned char*)pBegin->z;
|
|
1668 |
while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
|
|
1669 |
sEnd.z = &z[n-1];
|
|
1670 |
sEnd.n = 1;
|
|
1671 |
|
|
1672 |
/* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
|
|
1673 |
sqlite3EndTable(pParse, 0, &sEnd, 0);
|
|
1674 |
return;
|
|
1675 |
}
|
|
1676 |
#endif /* SQLITE_OMIT_VIEW */
|
|
1677 |
|
|
1678 |
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
1679 |
/*
|
|
1680 |
** The Table structure pTable is really a VIEW. Fill in the names of
|
|
1681 |
** the columns of the view in the pTable structure. Return the number
|
|
1682 |
** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
|
1683 |
*/
|
|
1684 |
int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
|
|
1685 |
Table *pSelTab; /* A fake table from which we get the result set */
|
|
1686 |
Select *pSel; /* Copy of the SELECT that implements the view */
|
|
1687 |
int nErr = 0; /* Number of errors encountered */
|
|
1688 |
int n; /* Temporarily holds the number of cursors assigned */
|
|
1689 |
sqlite3 *db = pParse->db; /* Database connection for malloc errors */
|
|
1690 |
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
|
|
1691 |
|
|
1692 |
assert( pTable );
|
|
1693 |
|
|
1694 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
1695 |
if( sqlite3VtabCallConnect(pParse, pTable) ){
|
|
1696 |
return SQLITE_ERROR;
|
|
1697 |
}
|
|
1698 |
if( IsVirtual(pTable) ) return 0;
|
|
1699 |
#endif
|
|
1700 |
|
|
1701 |
#ifndef SQLITE_OMIT_VIEW
|
|
1702 |
/* A positive nCol means the columns names for this view are
|
|
1703 |
** already known.
|
|
1704 |
*/
|
|
1705 |
if( pTable->nCol>0 ) return 0;
|
|
1706 |
|
|
1707 |
/* A negative nCol is a special marker meaning that we are currently
|
|
1708 |
** trying to compute the column names. If we enter this routine with
|
|
1709 |
** a negative nCol, it means two or more views form a loop, like this:
|
|
1710 |
**
|
|
1711 |
** CREATE VIEW one AS SELECT * FROM two;
|
|
1712 |
** CREATE VIEW two AS SELECT * FROM one;
|
|
1713 |
**
|
|
1714 |
** Actually, this error is caught previously and so the following test
|
|
1715 |
** should always fail. But we will leave it in place just to be safe.
|
|
1716 |
*/
|
|
1717 |
if( pTable->nCol<0 ){
|
|
1718 |
sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
|
1719 |
return 1;
|
|
1720 |
}
|
|
1721 |
assert( pTable->nCol>=0 );
|
|
1722 |
|
|
1723 |
/* If we get this far, it means we need to compute the table names.
|
|
1724 |
** Note that the call to sqlite3ResultSetOfSelect() will expand any
|
|
1725 |
** "*" elements in the results set of the view and will assign cursors
|
|
1726 |
** to the elements of the FROM clause. But we do not want these changes
|
|
1727 |
** to be permanent. So the computation is done on a copy of the SELECT
|
|
1728 |
** statement that defines the view.
|
|
1729 |
*/
|
|
1730 |
assert( pTable->pSelect );
|
|
1731 |
pSel = sqlite3SelectDup(db, pTable->pSelect);
|
|
1732 |
if( pSel ){
|
|
1733 |
n = pParse->nTab;
|
|
1734 |
sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
|
|
1735 |
pTable->nCol = -1;
|
|
1736 |
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
1737 |
xAuth = db->xAuth;
|
|
1738 |
db->xAuth = 0;
|
|
1739 |
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
|
|
1740 |
db->xAuth = xAuth;
|
|
1741 |
#else
|
|
1742 |
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
|
|
1743 |
#endif
|
|
1744 |
pParse->nTab = n;
|
|
1745 |
if( pSelTab ){
|
|
1746 |
assert( pTable->aCol==0 );
|
|
1747 |
pTable->nCol = pSelTab->nCol;
|
|
1748 |
pTable->aCol = pSelTab->aCol;
|
|
1749 |
pSelTab->nCol = 0;
|
|
1750 |
pSelTab->aCol = 0;
|
|
1751 |
sqlite3DeleteTable(pSelTab);
|
|
1752 |
pTable->pSchema->flags |= DB_UnresetViews;
|
|
1753 |
}else{
|
|
1754 |
pTable->nCol = 0;
|
|
1755 |
nErr++;
|
|
1756 |
}
|
|
1757 |
sqlite3SelectDelete(pSel);
|
|
1758 |
} else {
|
|
1759 |
nErr++;
|
|
1760 |
}
|
|
1761 |
#endif /* SQLITE_OMIT_VIEW */
|
|
1762 |
return nErr;
|
|
1763 |
}
|
|
1764 |
#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
|
|
1765 |
|
|
1766 |
#ifndef SQLITE_OMIT_VIEW
|
|
1767 |
/*
|
|
1768 |
** Clear the column names from every VIEW in database idx.
|
|
1769 |
*/
|
|
1770 |
static void sqliteViewResetAll(sqlite3 *db, int idx){
|
|
1771 |
HashElem *i;
|
|
1772 |
if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
|
1773 |
for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
|
|
1774 |
Table *pTab = (Table*)sqliteHashData(i);
|
|
1775 |
if( pTab->pSelect ){
|
|
1776 |
sqliteResetColumnNames(pTab);
|
|
1777 |
}
|
|
1778 |
}
|
|
1779 |
DbClearProperty(db, idx, DB_UnresetViews);
|
|
1780 |
}
|
|
1781 |
#else
|
|
1782 |
# define sqliteViewResetAll(A,B)
|
|
1783 |
#endif /* SQLITE_OMIT_VIEW */
|
|
1784 |
|
|
1785 |
/*
|
|
1786 |
** This function is called by the VDBE to adjust the internal schema
|
|
1787 |
** used by SQLite when the btree layer moves a table root page. The
|
|
1788 |
** root-page of a table or index in database iDb has changed from iFrom
|
|
1789 |
** to iTo.
|
|
1790 |
**
|
|
1791 |
** Ticket #1728: The symbol table might still contain information
|
|
1792 |
** on tables and/or indices that are the process of being deleted.
|
|
1793 |
** If you are unlucky, one of those deleted indices or tables might
|
|
1794 |
** have the same rootpage number as the real table or index that is
|
|
1795 |
** being moved. So we cannot stop searching after the first match
|
|
1796 |
** because the first match might be for one of the deleted indices
|
|
1797 |
** or tables and not the table/index that is actually being moved.
|
|
1798 |
** We must continue looping until all tables and indices with
|
|
1799 |
** rootpage==iFrom have been converted to have a rootpage of iTo
|
|
1800 |
** in order to be certain that we got the right one.
|
|
1801 |
*/
|
|
1802 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
1803 |
void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
|
|
1804 |
HashElem *pElem;
|
|
1805 |
Hash *pHash;
|
|
1806 |
|
|
1807 |
pHash = &pDb->pSchema->tblHash;
|
|
1808 |
for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
|
1809 |
Table *pTab = (Table*)sqliteHashData(pElem);
|
|
1810 |
if( pTab->tnum==iFrom ){
|
|
1811 |
pTab->tnum = iTo;
|
|
1812 |
}
|
|
1813 |
}
|
|
1814 |
pHash = &pDb->pSchema->idxHash;
|
|
1815 |
for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
|
1816 |
Index *pIdx = (Index*)sqliteHashData(pElem);
|
|
1817 |
if( pIdx->tnum==iFrom ){
|
|
1818 |
pIdx->tnum = iTo;
|
|
1819 |
}
|
|
1820 |
}
|
|
1821 |
}
|
|
1822 |
#endif
|
|
1823 |
|
|
1824 |
/*
|
|
1825 |
** Write code to erase the table with root-page iTable from database iDb.
|
|
1826 |
** Also write code to modify the sqlite_master table and internal schema
|
|
1827 |
** if a root-page of another table is moved by the btree-layer whilst
|
|
1828 |
** erasing iTable (this can happen with an auto-vacuum database).
|
|
1829 |
*/
|
|
1830 |
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
|
|
1831 |
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
1832 |
sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb);
|
|
1833 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
1834 |
/* OP_Destroy pushes an integer onto the stack. If this integer
|
|
1835 |
** is non-zero, then it is the root page number of a table moved to
|
|
1836 |
** location iTable. The following code modifies the sqlite_master table to
|
|
1837 |
** reflect this.
|
|
1838 |
**
|
|
1839 |
** The "#0" in the SQL is a special constant that means whatever value
|
|
1840 |
** is on the top of the stack. See sqlite3RegisterExpr().
|
|
1841 |
*/
|
|
1842 |
sqlite3NestedParse(pParse,
|
|
1843 |
"UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0",
|
|
1844 |
pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable);
|
|
1845 |
#endif
|
|
1846 |
}
|
|
1847 |
|
|
1848 |
/*
|
|
1849 |
** Write VDBE code to erase table pTab and all associated indices on disk.
|
|
1850 |
** Code to update the sqlite_master tables and internal schema definitions
|
|
1851 |
** in case a root-page belonging to another table is moved by the btree layer
|
|
1852 |
** is also added (this can happen with an auto-vacuum database).
|
|
1853 |
*/
|
|
1854 |
static void destroyTable(Parse *pParse, Table *pTab){
|
|
1855 |
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
1856 |
Index *pIdx;
|
|
1857 |
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
1858 |
destroyRootPage(pParse, pTab->tnum, iDb);
|
|
1859 |
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
1860 |
destroyRootPage(pParse, pIdx->tnum, iDb);
|
|
1861 |
}
|
|
1862 |
#else
|
|
1863 |
/* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
|
|
1864 |
** is not defined), then it is important to call OP_Destroy on the
|
|
1865 |
** table and index root-pages in order, starting with the numerically
|
|
1866 |
** largest root-page number. This guarantees that none of the root-pages
|
|
1867 |
** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
|
|
1868 |
** following were coded:
|
|
1869 |
**
|
|
1870 |
** OP_Destroy 4 0
|
|
1871 |
** ...
|
|
1872 |
** OP_Destroy 5 0
|
|
1873 |
**
|
|
1874 |
** and root page 5 happened to be the largest root-page number in the
|
|
1875 |
** database, then root page 5 would be moved to page 4 by the
|
|
1876 |
** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
|
|
1877 |
** a free-list page.
|
|
1878 |
*/
|
|
1879 |
int iTab = pTab->tnum;
|
|
1880 |
int iDestroyed = 0;
|
|
1881 |
|
|
1882 |
while( 1 ){
|
|
1883 |
Index *pIdx;
|
|
1884 |
int iLargest = 0;
|
|
1885 |
|
|
1886 |
if( iDestroyed==0 || iTab<iDestroyed ){
|
|
1887 |
iLargest = iTab;
|
|
1888 |
}
|
|
1889 |
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
1890 |
int iIdx = pIdx->tnum;
|
|
1891 |
assert( pIdx->pSchema==pTab->pSchema );
|
|
1892 |
if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
|
|
1893 |
iLargest = iIdx;
|
|
1894 |
}
|
|
1895 |
}
|
|
1896 |
if( iLargest==0 ){
|
|
1897 |
return;
|
|
1898 |
}else{
|
|
1899 |
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
1900 |
destroyRootPage(pParse, iLargest, iDb);
|
|
1901 |
iDestroyed = iLargest;
|
|
1902 |
}
|
|
1903 |
}
|
|
1904 |
#endif
|
|
1905 |
}
|
|
1906 |
|
|
1907 |
/*
|
|
1908 |
** This routine is called to do the work of a DROP TABLE statement.
|
|
1909 |
** pName is the name of the table to be dropped.
|
|
1910 |
*/
|
|
1911 |
void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
|
|
1912 |
Table *pTab;
|
|
1913 |
Vdbe *v;
|
|
1914 |
sqlite3 *db = pParse->db;
|
|
1915 |
int iDb;
|
|
1916 |
|
|
1917 |
if( pParse->nErr || db->mallocFailed ){
|
|
1918 |
goto exit_drop_table;
|
|
1919 |
}
|
|
1920 |
assert( pName->nSrc==1 );
|
|
1921 |
pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase);
|
|
1922 |
|
|
1923 |
if( pTab==0 ){
|
|
1924 |
if( noErr ){
|
|
1925 |
sqlite3ErrorClear(pParse);
|
|
1926 |
}
|
|
1927 |
goto exit_drop_table;
|
|
1928 |
}
|
|
1929 |
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
1930 |
assert( iDb>=0 && iDb<db->nDb );
|
|
1931 |
|
|
1932 |
/* If pTab is a virtual table, call ViewGetColumnNames() to ensure
|
|
1933 |
** it is initialized.
|
|
1934 |
*/
|
|
1935 |
if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
1936 |
goto exit_drop_table;
|
|
1937 |
}
|
|
1938 |
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
1939 |
{
|
|
1940 |
int code;
|
|
1941 |
const char *zTab = SCHEMA_TABLE(iDb);
|
|
1942 |
const char *zDb = db->aDb[iDb].zName;
|
|
1943 |
const char *zArg2 = 0;
|
|
1944 |
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
|
1945 |
goto exit_drop_table;
|
|
1946 |
}
|
|
1947 |
if( isView ){
|
|
1948 |
if( !OMIT_TEMPDB && iDb==1 ){
|
|
1949 |
code = SQLITE_DROP_TEMP_VIEW;
|
|
1950 |
}else{
|
|
1951 |
code = SQLITE_DROP_VIEW;
|
|
1952 |
}
|
|
1953 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
1954 |
}else if( IsVirtual(pTab) ){
|
|
1955 |
code = SQLITE_DROP_VTABLE;
|
|
1956 |
zArg2 = pTab->pMod->zName;
|
|
1957 |
#endif
|
|
1958 |
}else{
|
|
1959 |
if( !OMIT_TEMPDB && iDb==1 ){
|
|
1960 |
code = SQLITE_DROP_TEMP_TABLE;
|
|
1961 |
}else{
|
|
1962 |
code = SQLITE_DROP_TABLE;
|
|
1963 |
}
|
|
1964 |
}
|
|
1965 |
if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
|
|
1966 |
goto exit_drop_table;
|
|
1967 |
}
|
|
1968 |
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
|
1969 |
goto exit_drop_table;
|
|
1970 |
}
|
|
1971 |
}
|
|
1972 |
#endif
|
|
1973 |
if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
|
|
1974 |
sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
|
|
1975 |
goto exit_drop_table;
|
|
1976 |
}
|
|
1977 |
|
|
1978 |
#ifndef SQLITE_OMIT_VIEW
|
|
1979 |
/* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
|
|
1980 |
** on a table.
|
|
1981 |
*/
|
|
1982 |
if( isView && pTab->pSelect==0 ){
|
|
1983 |
sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
|
|
1984 |
goto exit_drop_table;
|
|
1985 |
}
|
|
1986 |
if( !isView && pTab->pSelect ){
|
|
1987 |
sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
|
|
1988 |
goto exit_drop_table;
|
|
1989 |
}
|
|
1990 |
#endif
|
|
1991 |
|
|
1992 |
/* Generate code to remove the table from the master table
|
|
1993 |
** on disk.
|
|
1994 |
*/
|
|
1995 |
v = sqlite3GetVdbe(pParse);
|
|
1996 |
if( v ){
|
|
1997 |
Trigger *pTrigger;
|
|
1998 |
Db *pDb = &db->aDb[iDb];
|
|
1999 |
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
2000 |
|
|
2001 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
2002 |
if( IsVirtual(pTab) ){
|
|
2003 |
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
2004 |
if( v ){
|
|
2005 |
sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
|
|
2006 |
}
|
|
2007 |
}
|
|
2008 |
#endif
|
|
2009 |
|
|
2010 |
/* Drop all triggers associated with the table being dropped. Code
|
|
2011 |
** is generated to remove entries from sqlite_master and/or
|
|
2012 |
** sqlite_temp_master if required.
|
|
2013 |
*/
|
|
2014 |
pTrigger = pTab->pTrigger;
|
|
2015 |
while( pTrigger ){
|
|
2016 |
assert( pTrigger->pSchema==pTab->pSchema ||
|
|
2017 |
pTrigger->pSchema==db->aDb[1].pSchema );
|
|
2018 |
sqlite3DropTriggerPtr(pParse, pTrigger);
|
|
2019 |
pTrigger = pTrigger->pNext;
|
|
2020 |
}
|
|
2021 |
|
|
2022 |
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
2023 |
/* Remove any entries of the sqlite_sequence table associated with
|
|
2024 |
** the table being dropped. This is done before the table is dropped
|
|
2025 |
** at the btree level, in case the sqlite_sequence table needs to
|
|
2026 |
** move as a result of the drop (can happen in auto-vacuum mode).
|
|
2027 |
*/
|
|
2028 |
if( pTab->autoInc ){
|
|
2029 |
sqlite3NestedParse(pParse,
|
|
2030 |
"DELETE FROM %s.sqlite_sequence WHERE name=%Q",
|
|
2031 |
pDb->zName, pTab->zName
|
|
2032 |
);
|
|
2033 |
}
|
|
2034 |
#endif
|
|
2035 |
|
|
2036 |
/* Drop all SQLITE_MASTER table and index entries that refer to the
|
|
2037 |
** table. The program name loops through the master table and deletes
|
|
2038 |
** every row that refers to a table of the same name as the one being
|
|
2039 |
** dropped. Triggers are handled seperately because a trigger can be
|
|
2040 |
** created in the temp database that refers to a table in another
|
|
2041 |
** database.
|
|
2042 |
*/
|
|
2043 |
sqlite3NestedParse(pParse,
|
|
2044 |
"DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
|
|
2045 |
pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
|
|
2046 |
if( !isView && !IsVirtual(pTab) ){
|
|
2047 |
destroyTable(pParse, pTab);
|
|
2048 |
}
|
|
2049 |
|
|
2050 |
/* Remove the table entry from SQLite's internal schema and modify
|
|
2051 |
** the schema cookie.
|
|
2052 |
*/
|
|
2053 |
if( IsVirtual(pTab) ){
|
|
2054 |
sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0);
|
|
2055 |
}
|
|
2056 |
sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
|
|
2057 |
sqlite3ChangeCookie(db, v, iDb);
|
|
2058 |
}
|
|
2059 |
sqliteViewResetAll(db, iDb);
|
|
2060 |
|
|
2061 |
exit_drop_table:
|
|
2062 |
sqlite3SrcListDelete(pName);
|
|
2063 |
}
|
|
2064 |
|
|
2065 |
/*
|
|
2066 |
** This routine is called to create a new foreign key on the table
|
|
2067 |
** currently under construction. pFromCol determines which columns
|
|
2068 |
** in the current table point to the foreign key. If pFromCol==0 then
|
|
2069 |
** connect the key to the last column inserted. pTo is the name of
|
|
2070 |
** the table referred to. pToCol is a list of tables in the other
|
|
2071 |
** pTo table that the foreign key points to. flags contains all
|
|
2072 |
** information about the conflict resolution algorithms specified
|
|
2073 |
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
|
2074 |
**
|
|
2075 |
** An FKey structure is created and added to the table currently
|
|
2076 |
** under construction in the pParse->pNewTable field. The new FKey
|
|
2077 |
** is not linked into db->aFKey at this point - that does not happen
|
|
2078 |
** until sqlite3EndTable().
|
|
2079 |
**
|
|
2080 |
** The foreign key is set for IMMEDIATE processing. A subsequent call
|
|
2081 |
** to sqlite3DeferForeignKey() might change this to DEFERRED.
|
|
2082 |
*/
|
|
2083 |
void sqlite3CreateForeignKey(
|
|
2084 |
Parse *pParse, /* Parsing context */
|
|
2085 |
ExprList *pFromCol, /* Columns in this table that point to other table */
|
|
2086 |
Token *pTo, /* Name of the other table */
|
|
2087 |
ExprList *pToCol, /* Columns in the other table */
|
|
2088 |
int flags /* Conflict resolution algorithms. */
|
|
2089 |
){
|
|
2090 |
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
2091 |
FKey *pFKey = 0;
|
|
2092 |
Table *p = pParse->pNewTable;
|
|
2093 |
int nByte;
|
|
2094 |
int i;
|
|
2095 |
int nCol;
|
|
2096 |
char *z;
|
|
2097 |
|
|
2098 |
assert( pTo!=0 );
|
|
2099 |
if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
|
|
2100 |
if( pFromCol==0 ){
|
|
2101 |
int iCol = p->nCol-1;
|
|
2102 |
if( iCol<0 ) goto fk_end;
|
|
2103 |
if( pToCol && pToCol->nExpr!=1 ){
|
|
2104 |
sqlite3ErrorMsg(pParse, "foreign key on %s"
|
|
2105 |
" should reference only one column of table %T",
|
|
2106 |
p->aCol[iCol].zName, pTo);
|
|
2107 |
goto fk_end;
|
|
2108 |
}
|
|
2109 |
nCol = 1;
|
|
2110 |
}else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
|
|
2111 |
sqlite3ErrorMsg(pParse,
|
|
2112 |
"number of columns in foreign key does not match the number of "
|
|
2113 |
"columns in the referenced table");
|
|
2114 |
goto fk_end;
|
|
2115 |
}else{
|
|
2116 |
nCol = pFromCol->nExpr;
|
|
2117 |
}
|
|
2118 |
nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
|
2119 |
if( pToCol ){
|
|
2120 |
for(i=0; i<pToCol->nExpr; i++){
|
|
2121 |
nByte += strlen(pToCol->a[i].zName) + 1;
|
|
2122 |
}
|
|
2123 |
}
|
|
2124 |
pFKey = (FKey*)sqlite3DbMallocZero(pParse->db, nByte );
|
|
2125 |
if( pFKey==0 ){
|
|
2126 |
goto fk_end;
|
|
2127 |
}
|
|
2128 |
pFKey->pFrom = p;
|
|
2129 |
pFKey->pNextFrom = p->pFKey;
|
|
2130 |
z = (char*)&pFKey[1];
|
|
2131 |
pFKey->aCol = (FKey::sColMap*)z;
|
|
2132 |
z += sizeof(FKey::sColMap)*nCol;
|
|
2133 |
pFKey->zTo = z;
|
|
2134 |
memcpy(z, pTo->z, pTo->n);
|
|
2135 |
z[pTo->n] = 0;
|
|
2136 |
z += pTo->n+1;
|
|
2137 |
pFKey->pNextTo = 0;
|
|
2138 |
pFKey->nCol = nCol;
|
|
2139 |
if( pFromCol==0 ){
|
|
2140 |
pFKey->aCol[0].iFrom = p->nCol-1;
|
|
2141 |
}else{
|
|
2142 |
for(i=0; i<nCol; i++){
|
|
2143 |
int j;
|
|
2144 |
for(j=0; j<p->nCol; j++){
|
|
2145 |
if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
|
|
2146 |
pFKey->aCol[i].iFrom = j;
|
|
2147 |
break;
|
|
2148 |
}
|
|
2149 |
}
|
|
2150 |
if( j>=p->nCol ){
|
|
2151 |
sqlite3ErrorMsg(pParse,
|
|
2152 |
"unknown column \"%s\" in foreign key definition",
|
|
2153 |
pFromCol->a[i].zName);
|
|
2154 |
goto fk_end;
|
|
2155 |
}
|
|
2156 |
}
|
|
2157 |
}
|
|
2158 |
if( pToCol ){
|
|
2159 |
for(i=0; i<nCol; i++){
|
|
2160 |
int n = strlen(pToCol->a[i].zName);
|
|
2161 |
pFKey->aCol[i].zCol = z;
|
|
2162 |
memcpy(z, pToCol->a[i].zName, n);
|
|
2163 |
z[n] = 0;
|
|
2164 |
z += n+1;
|
|
2165 |
}
|
|
2166 |
}
|
|
2167 |
pFKey->isDeferred = 0;
|
|
2168 |
pFKey->deleteConf = flags & 0xff;
|
|
2169 |
pFKey->updateConf = (flags >> 8 ) & 0xff;
|
|
2170 |
pFKey->insertConf = (flags >> 16 ) & 0xff;
|
|
2171 |
|
|
2172 |
/* Link the foreign key to the table as the last step.
|
|
2173 |
*/
|
|
2174 |
p->pFKey = pFKey;
|
|
2175 |
pFKey = 0;
|
|
2176 |
|
|
2177 |
fk_end:
|
|
2178 |
sqlite3_free(pFKey);
|
|
2179 |
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
|
2180 |
sqlite3ExprListDelete(pFromCol);
|
|
2181 |
sqlite3ExprListDelete(pToCol);
|
|
2182 |
}
|
|
2183 |
|
|
2184 |
/*
|
|
2185 |
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
|
2186 |
** clause is seen as part of a foreign key definition. The isDeferred
|
|
2187 |
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
|
2188 |
** The behavior of the most recently created foreign key is adjusted
|
|
2189 |
** accordingly.
|
|
2190 |
*/
|
|
2191 |
void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
|
|
2192 |
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
2193 |
Table *pTab;
|
|
2194 |
FKey *pFKey;
|
|
2195 |
if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
|
|
2196 |
pFKey->isDeferred = isDeferred;
|
|
2197 |
#endif
|
|
2198 |
}
|
|
2199 |
|
|
2200 |
/*
|
|
2201 |
** Generate code that will erase and refill index *pIdx. This is
|
|
2202 |
** used to initialize a newly created index or to recompute the
|
|
2203 |
** content of an index in response to a REINDEX command.
|
|
2204 |
**
|
|
2205 |
** if memRootPage is not negative, it means that the index is newly
|
|
2206 |
** created. The memory cell specified by memRootPage contains the
|
|
2207 |
** root page number of the index. If memRootPage is negative, then
|
|
2208 |
** the index already exists and must be cleared before being refilled and
|
|
2209 |
** the root page number of the index is taken from pIndex->tnum.
|
|
2210 |
*/
|
|
2211 |
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
|
|
2212 |
Table *pTab = pIndex->pTable; /* The table that is indexed */
|
|
2213 |
int iTab = pParse->nTab; /* Btree cursor used for pTab */
|
|
2214 |
int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */
|
|
2215 |
int addr1; /* Address of top of loop */
|
|
2216 |
int tnum; /* Root page of index */
|
|
2217 |
Vdbe *v; /* Generate code into this virtual machine */
|
|
2218 |
KeyInfo *pKey; /* KeyInfo for index */
|
|
2219 |
sqlite3 *db = pParse->db; /* The database connection */
|
|
2220 |
int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
|
2221 |
|
|
2222 |
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
2223 |
if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
|
|
2224 |
db->aDb[iDb].zName ) ){
|
|
2225 |
return;
|
|
2226 |
}
|
|
2227 |
#endif
|
|
2228 |
|
|
2229 |
/* Require a write-lock on the table to perform this operation */
|
|
2230 |
sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
|
|
2231 |
|
|
2232 |
v = sqlite3GetVdbe(pParse);
|
|
2233 |
if( v==0 ) return;
|
|
2234 |
if( memRootPage>=0 ){
|
|
2235 |
sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
|
|
2236 |
tnum = 0;
|
|
2237 |
}else{
|
|
2238 |
tnum = pIndex->tnum;
|
|
2239 |
sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb);
|
|
2240 |
}
|
|
2241 |
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
2242 |
pKey = sqlite3IndexKeyinfo(pParse, pIndex);
|
|
2243 |
sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF);
|
|
2244 |
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
|
2245 |
addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
|
|
2246 |
sqlite3GenerateIndexKey(v, pIndex, iTab);
|
|
2247 |
if( pIndex->onError!=OE_None ){
|
|
2248 |
int curaddr = sqlite3VdbeCurrentAddr(v);
|
|
2249 |
int addr2 = curaddr+4;
|
|
2250 |
sqlite3VdbeChangeP2(v, curaddr-1, addr2);
|
|
2251 |
sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
|
|
2252 |
sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
|
|
2253 |
sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2);
|
|
2254 |
sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort,
|
|
2255 |
"indexed columns are not unique", P3_STATIC);
|
|
2256 |
assert( db->mallocFailed || addr2==sqlite3VdbeCurrentAddr(v) );
|
|
2257 |
}
|
|
2258 |
sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0);
|
|
2259 |
sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1);
|
|
2260 |
sqlite3VdbeJumpHere(v, addr1);
|
|
2261 |
sqlite3VdbeAddOp(v, OP_Close, iTab, 0);
|
|
2262 |
sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
|
|
2263 |
}
|
|
2264 |
|
|
2265 |
/*
|
|
2266 |
** Create a new index for an SQL table. pName1.pName2 is the name of the index
|
|
2267 |
** and pTblList is the name of the table that is to be indexed. Both will
|
|
2268 |
** be NULL for a primary key or an index that is created to satisfy a
|
|
2269 |
** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
|
2270 |
** as the table to be indexed. pParse->pNewTable is a table that is
|
|
2271 |
** currently being constructed by a CREATE TABLE statement.
|
|
2272 |
**
|
|
2273 |
** pList is a list of columns to be indexed. pList will be NULL if this
|
|
2274 |
** is a primary key or unique-constraint on the most recent column added
|
|
2275 |
** to the table currently under construction.
|
|
2276 |
*/
|
|
2277 |
void sqlite3CreateIndex(
|
|
2278 |
Parse *pParse, /* All information about this parse */
|
|
2279 |
Token *pName1, /* First part of index name. May be NULL */
|
|
2280 |
Token *pName2, /* Second part of index name. May be NULL */
|
|
2281 |
SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
|
|
2282 |
ExprList *pList, /* A list of columns to be indexed */
|
|
2283 |
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
|
2284 |
Token *pStart, /* The CREATE token that begins this statement */
|
|
2285 |
Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
|
|
2286 |
int sortOrder, /* Sort order of primary key when pList==NULL */
|
|
2287 |
int ifNotExist /* Omit error if index already exists */
|
|
2288 |
){
|
|
2289 |
Table *pTab = 0; /* Table to be indexed */
|
|
2290 |
Index *pIndex = 0; /* The index to be created */
|
|
2291 |
char *zName = 0; /* Name of the index */
|
|
2292 |
int nName; /* Number of characters in zName */
|
|
2293 |
int i, j;
|
|
2294 |
Token nullId; /* Fake token for an empty ID list */
|
|
2295 |
DbFixer sFix; /* For assigning database names to pTable */
|
|
2296 |
int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
|
|
2297 |
sqlite3 *db = pParse->db;
|
|
2298 |
Db *pDb; /* The specific table containing the indexed database */
|
|
2299 |
int iDb; /* Index of the database that is being written */
|
|
2300 |
Token *pName = 0; /* Unqualified name of the index to create */
|
|
2301 |
ExprList::ExprList_item *pListItem; /* For looping over pList */
|
|
2302 |
int nCol;
|
|
2303 |
int nExtra = 0;
|
|
2304 |
char *zExtra;
|
|
2305 |
|
|
2306 |
if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
|
|
2307 |
goto exit_create_index;
|
|
2308 |
}
|
|
2309 |
|
|
2310 |
/*
|
|
2311 |
** Find the table that is to be indexed. Return early if not found.
|
|
2312 |
*/
|
|
2313 |
if( pTblName!=0 ){
|
|
2314 |
|
|
2315 |
/* Use the two-part index name to determine the database
|
|
2316 |
** to search for the table. 'Fix' the table name to this db
|
|
2317 |
** before looking up the table.
|
|
2318 |
*/
|
|
2319 |
assert( pName1 && pName2 );
|
|
2320 |
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
2321 |
if( iDb<0 ) goto exit_create_index;
|
|
2322 |
|
|
2323 |
#ifndef SQLITE_OMIT_TEMPDB
|
|
2324 |
/* If the index name was unqualified, check if the the table
|
|
2325 |
** is a temp table. If so, set the database to 1. Do not do this
|
|
2326 |
** if initialising a database schema.
|
|
2327 |
*/
|
|
2328 |
if( !db->init.busy ){
|
|
2329 |
pTab = sqlite3SrcListLookup(pParse, pTblName);
|
|
2330 |
if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
|
|
2331 |
iDb = 1;
|
|
2332 |
}
|
|
2333 |
}
|
|
2334 |
#endif
|
|
2335 |
|
|
2336 |
if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
|
|
2337 |
sqlite3FixSrcList(&sFix, pTblName)
|
|
2338 |
){
|
|
2339 |
/* Because the parser constructs pTblName from a single identifier,
|
|
2340 |
** sqlite3FixSrcList can never fail. */
|
|
2341 |
assert(0);
|
|
2342 |
}
|
|
2343 |
pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName,
|
|
2344 |
pTblName->a[0].zDatabase);
|
|
2345 |
if( !pTab ) goto exit_create_index;
|
|
2346 |
assert( db->aDb[iDb].pSchema==pTab->pSchema );
|
|
2347 |
}else{
|
|
2348 |
assert( pName==0 );
|
|
2349 |
pTab = pParse->pNewTable;
|
|
2350 |
if( !pTab ) goto exit_create_index;
|
|
2351 |
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
2352 |
}
|
|
2353 |
pDb = &db->aDb[iDb];
|
|
2354 |
|
|
2355 |
if( pTab==0 || pParse->nErr ) goto exit_create_index;
|
|
2356 |
if( pTab->readOnly ){
|
|
2357 |
sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
|
2358 |
goto exit_create_index;
|
|
2359 |
}
|
|
2360 |
#ifndef SQLITE_OMIT_VIEW
|
|
2361 |
if( pTab->pSelect ){
|
|
2362 |
sqlite3ErrorMsg(pParse, "views may not be indexed");
|
|
2363 |
goto exit_create_index;
|
|
2364 |
}
|
|
2365 |
#endif
|
|
2366 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
2367 |
if( IsVirtual(pTab) ){
|
|
2368 |
sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
|
|
2369 |
goto exit_create_index;
|
|
2370 |
}
|
|
2371 |
#endif
|
|
2372 |
|
|
2373 |
/*
|
|
2374 |
** Find the name of the index. Make sure there is not already another
|
|
2375 |
** index or table with the same name.
|
|
2376 |
**
|
|
2377 |
** Exception: If we are reading the names of permanent indices from the
|
|
2378 |
** sqlite_master table (because some other process changed the schema) and
|
|
2379 |
** one of the index names collides with the name of a temporary table or
|
|
2380 |
** index, then we will continue to process this index.
|
|
2381 |
**
|
|
2382 |
** If pName==0 it means that we are
|
|
2383 |
** dealing with a primary key or UNIQUE constraint. We have to invent our
|
|
2384 |
** own name.
|
|
2385 |
*/
|
|
2386 |
if( pName ){
|
|
2387 |
zName = sqlite3NameFromToken(db, pName);
|
|
2388 |
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
|
|
2389 |
if( zName==0 ) goto exit_create_index;
|
|
2390 |
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
|
2391 |
goto exit_create_index;
|
|
2392 |
}
|
|
2393 |
if( !db->init.busy ){
|
|
2394 |
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
|
|
2395 |
if( sqlite3FindTable(db, zName, 0)!=0 ){
|
|
2396 |
sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
|
|
2397 |
goto exit_create_index;
|
|
2398 |
}
|
|
2399 |
}
|
|
2400 |
if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
|
|
2401 |
if( !ifNotExist ){
|
|
2402 |
sqlite3ErrorMsg(pParse, "index %s already exists", zName);
|
|
2403 |
}
|
|
2404 |
goto exit_create_index;
|
|
2405 |
}
|
|
2406 |
}else{
|
|
2407 |
char zBuf[30];
|
|
2408 |
int n;
|
|
2409 |
Index *pLoop;
|
|
2410 |
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
|
2411 |
sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n);
|
|
2412 |
zName = 0;
|
|
2413 |
sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
|
|
2414 |
if( zName==0 ){
|
|
2415 |
db->mallocFailed = 1;
|
|
2416 |
goto exit_create_index;
|
|
2417 |
}
|
|
2418 |
}
|
|
2419 |
|
|
2420 |
/* Check for authorization to create an index.
|
|
2421 |
*/
|
|
2422 |
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
2423 |
{
|
|
2424 |
const char *zDb = pDb->zName;
|
|
2425 |
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
|
|
2426 |
goto exit_create_index;
|
|
2427 |
}
|
|
2428 |
i = SQLITE_CREATE_INDEX;
|
|
2429 |
if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
|
|
2430 |
if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
|
2431 |
goto exit_create_index;
|
|
2432 |
}
|
|
2433 |
}
|
|
2434 |
#endif
|
|
2435 |
|
|
2436 |
/* If pList==0, it means this routine was called to make a primary
|
|
2437 |
** key out of the last column added to the table under construction.
|
|
2438 |
** So create a fake list to simulate this.
|
|
2439 |
*/
|
|
2440 |
if( pList==0 ){
|
|
2441 |
nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
|
|
2442 |
nullId.n = strlen((char*)nullId.z);
|
|
2443 |
pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
|
|
2444 |
if( pList==0 ) goto exit_create_index;
|
|
2445 |
pList->a[0].sortOrder = sortOrder;
|
|
2446 |
}
|
|
2447 |
|
|
2448 |
/* Figure out how many bytes of space are required to store explicitly
|
|
2449 |
** specified collation sequence names.
|
|
2450 |
*/
|
|
2451 |
for(i=0; i<pList->nExpr; i++){
|
|
2452 |
Expr *pExpr = pList->a[i].pExpr;
|
|
2453 |
if( pExpr ){
|
|
2454 |
nExtra += (1 + strlen(pExpr->pColl->zName));
|
|
2455 |
}
|
|
2456 |
}
|
|
2457 |
|
|
2458 |
/*
|
|
2459 |
** Allocate the index structure.
|
|
2460 |
*/
|
|
2461 |
nName = strlen(zName);
|
|
2462 |
nCol = pList->nExpr;
|
|
2463 |
pIndex = (Index*)sqlite3DbMallocZero(db,
|
|
2464 |
sizeof(Index) + /* Index structure */
|
|
2465 |
sizeof(int)*nCol + /* Index.aiColumn */
|
|
2466 |
sizeof(int)*(nCol+1) + /* Index.aiRowEst */
|
|
2467 |
sizeof(char *)*nCol + /* Index.azColl */
|
|
2468 |
sizeof(u8)*nCol + /* Index.aSortOrder */
|
|
2469 |
nName + 1 + /* Index.zName */
|
|
2470 |
nExtra /* Collation sequence names */
|
|
2471 |
);
|
|
2472 |
if( db->mallocFailed ){
|
|
2473 |
goto exit_create_index;
|
|
2474 |
}
|
|
2475 |
pIndex->azColl = (char**)(&pIndex[1]);
|
|
2476 |
pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
|
|
2477 |
pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
|
|
2478 |
pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
|
|
2479 |
pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
|
|
2480 |
zExtra = (char *)(&pIndex->zName[nName+1]);
|
|
2481 |
memcpy(pIndex->zName, zName, nName+1);
|
|
2482 |
pIndex->pTable = pTab;
|
|
2483 |
pIndex->nColumn = pList->nExpr;
|
|
2484 |
pIndex->onError = onError;
|
|
2485 |
pIndex->autoIndex = pName==0;
|
|
2486 |
pIndex->pSchema = db->aDb[iDb].pSchema;
|
|
2487 |
|
|
2488 |
/* Check to see if we should honor DESC requests on index columns
|
|
2489 |
*/
|
|
2490 |
if( pDb->pSchema->file_format>=4 ){
|
|
2491 |
sortOrderMask = -1; /* Honor DESC */
|
|
2492 |
}else{
|
|
2493 |
sortOrderMask = 0; /* Ignore DESC */
|
|
2494 |
}
|
|
2495 |
|
|
2496 |
/* Scan the names of the columns of the table to be indexed and
|
|
2497 |
** load the column indices into the Index structure. Report an error
|
|
2498 |
** if any column is not found.
|
|
2499 |
*/
|
|
2500 |
for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
|
|
2501 |
const char *zColName = pListItem->zName;
|
|
2502 |
Column *pTabCol;
|
|
2503 |
int requestedSortOrder;
|
|
2504 |
char *zColl; /* Collation sequence name */
|
|
2505 |
|
|
2506 |
for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
|
|
2507 |
if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
|
|
2508 |
}
|
|
2509 |
if( j>=pTab->nCol ){
|
|
2510 |
sqlite3ErrorMsg(pParse, "table %s has no column named %s",
|
|
2511 |
pTab->zName, zColName);
|
|
2512 |
goto exit_create_index;
|
|
2513 |
}
|
|
2514 |
/* TODO: Add a test to make sure that the same column is not named
|
|
2515 |
** more than once within the same index. Only the first instance of
|
|
2516 |
** the column will ever be used by the optimizer. Note that using the
|
|
2517 |
** same column more than once cannot be an error because that would
|
|
2518 |
** break backwards compatibility - it needs to be a warning.
|
|
2519 |
*/
|
|
2520 |
pIndex->aiColumn[i] = j;
|
|
2521 |
if( pListItem->pExpr ){
|
|
2522 |
assert( pListItem->pExpr->pColl );
|
|
2523 |
zColl = zExtra;
|
|
2524 |
sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
|
|
2525 |
zExtra += (strlen(zColl) + 1);
|
|
2526 |
}else{
|
|
2527 |
zColl = pTab->aCol[j].zColl;
|
|
2528 |
if( !zColl ){
|
|
2529 |
zColl = db->pDfltColl->zName;
|
|
2530 |
}
|
|
2531 |
}
|
|
2532 |
if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
|
|
2533 |
goto exit_create_index;
|
|
2534 |
}
|
|
2535 |
pIndex->azColl[i] = zColl;
|
|
2536 |
requestedSortOrder = pListItem->sortOrder & sortOrderMask;
|
|
2537 |
pIndex->aSortOrder[i] = requestedSortOrder;
|
|
2538 |
}
|
|
2539 |
sqlite3DefaultRowEst(pIndex);
|
|
2540 |
|
|
2541 |
if( pTab==pParse->pNewTable ){
|
|
2542 |
/* This routine has been called to create an automatic index as a
|
|
2543 |
** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
|
|
2544 |
** a PRIMARY KEY or UNIQUE clause following the column definitions.
|
|
2545 |
** i.e. one of:
|
|
2546 |
**
|
|
2547 |
** CREATE TABLE t(x PRIMARY KEY, y);
|
|
2548 |
** CREATE TABLE t(x, y, UNIQUE(x, y));
|
|
2549 |
**
|
|
2550 |
** Either way, check to see if the table already has such an index. If
|
|
2551 |
** so, don't bother creating this one. This only applies to
|
|
2552 |
** automatically created indices. Users can do as they wish with
|
|
2553 |
** explicit indices.
|
|
2554 |
*/
|
|
2555 |
Index *pIdx;
|
|
2556 |
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
2557 |
int k;
|
|
2558 |
assert( pIdx->onError!=OE_None );
|
|
2559 |
assert( pIdx->autoIndex );
|
|
2560 |
assert( pIndex->onError!=OE_None );
|
|
2561 |
|
|
2562 |
if( pIdx->nColumn!=pIndex->nColumn ) continue;
|
|
2563 |
for(k=0; k<pIdx->nColumn; k++){
|
|
2564 |
const char *z1 = pIdx->azColl[k];
|
|
2565 |
const char *z2 = pIndex->azColl[k];
|
|
2566 |
if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
|
|
2567 |
if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
|
|
2568 |
if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
|
|
2569 |
}
|
|
2570 |
if( k==pIdx->nColumn ){
|
|
2571 |
if( pIdx->onError!=pIndex->onError ){
|
|
2572 |
/* This constraint creates the same index as a previous
|
|
2573 |
** constraint specified somewhere in the CREATE TABLE statement.
|
|
2574 |
** However the ON CONFLICT clauses are different. If both this
|
|
2575 |
** constraint and the previous equivalent constraint have explicit
|
|
2576 |
** ON CONFLICT clauses this is an error. Otherwise, use the
|
|
2577 |
** explicitly specified behaviour for the index.
|
|
2578 |
*/
|
|
2579 |
if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
|
|
2580 |
sqlite3ErrorMsg(pParse,
|
|
2581 |
"conflicting ON CONFLICT clauses specified", 0);
|
|
2582 |
}
|
|
2583 |
if( pIdx->onError==OE_Default ){
|
|
2584 |
pIdx->onError = pIndex->onError;
|
|
2585 |
}
|
|
2586 |
}
|
|
2587 |
goto exit_create_index;
|
|
2588 |
}
|
|
2589 |
}
|
|
2590 |
}
|
|
2591 |
|
|
2592 |
/* Link the new Index structure to its table and to the other
|
|
2593 |
** in-memory database structures.
|
|
2594 |
*/
|
|
2595 |
if( db->init.busy ){
|
|
2596 |
Index *p;
|
|
2597 |
p = (Index*)sqlite3HashInsert(&pIndex->pSchema->idxHash,
|
|
2598 |
pIndex->zName, strlen(pIndex->zName)+1, pIndex);
|
|
2599 |
if( p ){
|
|
2600 |
assert( p==pIndex ); /* Malloc must have failed */
|
|
2601 |
db->mallocFailed = 1;
|
|
2602 |
goto exit_create_index;
|
|
2603 |
}
|
|
2604 |
db->flags |= SQLITE_InternChanges;
|
|
2605 |
if( pTblName!=0 ){
|
|
2606 |
pIndex->tnum = db->init.newTnum;
|
|
2607 |
}
|
|
2608 |
}
|
|
2609 |
|
|
2610 |
/* If the db->init.busy is 0 then create the index on disk. This
|
|
2611 |
** involves writing the index into the master table and filling in the
|
|
2612 |
** index with the current table contents.
|
|
2613 |
**
|
|
2614 |
** The db->init.busy is 0 when the user first enters a CREATE INDEX
|
|
2615 |
** command. db->init.busy is 1 when a database is opened and
|
|
2616 |
** CREATE INDEX statements are read out of the master table. In
|
|
2617 |
** the latter case the index already exists on disk, which is why
|
|
2618 |
** we don't want to recreate it.
|
|
2619 |
**
|
|
2620 |
** If pTblName==0 it means this index is generated as a primary key
|
|
2621 |
** or UNIQUE constraint of a CREATE TABLE statement. Since the table
|
|
2622 |
** has just been created, it contains no data and the index initialization
|
|
2623 |
** step can be skipped.
|
|
2624 |
*/
|
|
2625 |
else if( db->init.busy==0 ){
|
|
2626 |
Vdbe *v;
|
|
2627 |
char *zStmt;
|
|
2628 |
int iMem = pParse->nMem++;
|
|
2629 |
|
|
2630 |
v = sqlite3GetVdbe(pParse);
|
|
2631 |
if( v==0 ) goto exit_create_index;
|
|
2632 |
|
|
2633 |
|
|
2634 |
/* Create the rootpage for the index
|
|
2635 |
*/
|
|
2636 |
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
2637 |
sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0);
|
|
2638 |
sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
|
|
2639 |
|
|
2640 |
/* Gather the complete text of the CREATE INDEX statement into
|
|
2641 |
** the zStmt variable
|
|
2642 |
*/
|
|
2643 |
if( pStart && pEnd ){
|
|
2644 |
/* A named index with an explicit CREATE INDEX statement */
|
|
2645 |
zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
|
|
2646 |
onError==OE_None ? "" : " UNIQUE",
|
|
2647 |
pEnd->z - pName->z + 1,
|
|
2648 |
pName->z);
|
|
2649 |
}else{
|
|
2650 |
/* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
|
|
2651 |
/* zStmt = sqlite3MPrintf(""); */
|
|
2652 |
zStmt = 0;
|
|
2653 |
}
|
|
2654 |
|
|
2655 |
/* Add an entry in sqlite_master for this index
|
|
2656 |
*/
|
|
2657 |
sqlite3NestedParse(pParse,
|
|
2658 |
"INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
|
|
2659 |
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
2660 |
pIndex->zName,
|
|
2661 |
pTab->zName,
|
|
2662 |
zStmt
|
|
2663 |
);
|
|
2664 |
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
|
|
2665 |
sqlite3_free(zStmt);
|
|
2666 |
|
|
2667 |
/* Fill the index with data and reparse the schema. Code an OP_Expire
|
|
2668 |
** to invalidate all pre-compiled statements.
|
|
2669 |
*/
|
|
2670 |
if( pTblName ){
|
|
2671 |
sqlite3RefillIndex(pParse, pIndex, iMem);
|
|
2672 |
sqlite3ChangeCookie(db, v, iDb);
|
|
2673 |
sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
|
|
2674 |
sqlite3MPrintf(db, "name='%q'", pIndex->zName), P3_DYNAMIC);
|
|
2675 |
sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
|
|
2676 |
}
|
|
2677 |
}
|
|
2678 |
|
|
2679 |
/* When adding an index to the list of indices for a table, make
|
|
2680 |
** sure all indices labeled OE_Replace come after all those labeled
|
|
2681 |
** OE_Ignore. This is necessary for the correct operation of UPDATE
|
|
2682 |
** and INSERT.
|
|
2683 |
*/
|
|
2684 |
if( db->init.busy || pTblName==0 ){
|
|
2685 |
if( onError!=OE_Replace || pTab->pIndex==0
|
|
2686 |
|| pTab->pIndex->onError==OE_Replace){
|
|
2687 |
pIndex->pNext = pTab->pIndex;
|
|
2688 |
pTab->pIndex = pIndex;
|
|
2689 |
}else{
|
|
2690 |
Index *pOther = pTab->pIndex;
|
|
2691 |
while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
|
|
2692 |
pOther = pOther->pNext;
|
|
2693 |
}
|
|
2694 |
pIndex->pNext = pOther->pNext;
|
|
2695 |
pOther->pNext = pIndex;
|
|
2696 |
}
|
|
2697 |
pIndex = 0;
|
|
2698 |
}
|
|
2699 |
|
|
2700 |
/* Clean up before exiting */
|
|
2701 |
exit_create_index:
|
|
2702 |
if( pIndex ){
|
|
2703 |
freeIndex(pIndex);
|
|
2704 |
}
|
|
2705 |
sqlite3ExprListDelete(pList);
|
|
2706 |
sqlite3SrcListDelete(pTblName);
|
|
2707 |
sqlite3_free(zName);
|
|
2708 |
return;
|
|
2709 |
}
|
|
2710 |
|
|
2711 |
/*
|
|
2712 |
** Generate code to make sure the file format number is at least minFormat.
|
|
2713 |
** The generated code will increase the file format number if necessary.
|
|
2714 |
*/
|
|
2715 |
void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
|
|
2716 |
Vdbe *v;
|
|
2717 |
v = sqlite3GetVdbe(pParse);
|
|
2718 |
if( v ){
|
|
2719 |
sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);
|
|
2720 |
sqlite3VdbeUsesBtree(v, iDb);
|
|
2721 |
sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
|
|
2722 |
sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3);
|
|
2723 |
sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
|
|
2724 |
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
|
|
2725 |
}
|
|
2726 |
}
|
|
2727 |
|
|
2728 |
/*
|
|
2729 |
** Fill the Index.aiRowEst[] array with default information - information
|
|
2730 |
** to be used when we have not run the ANALYZE command.
|
|
2731 |
**
|
|
2732 |
** aiRowEst[0] is suppose to contain the number of elements in the index.
|
|
2733 |
** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
|
|
2734 |
** number of rows in the table that match any particular value of the
|
|
2735 |
** first column of the index. aiRowEst[2] is an estimate of the number
|
|
2736 |
** of rows that match any particular combiniation of the first 2 columns
|
|
2737 |
** of the index. And so forth. It must always be the case that
|
|
2738 |
*
|
|
2739 |
** aiRowEst[N]<=aiRowEst[N-1]
|
|
2740 |
** aiRowEst[N]>=1
|
|
2741 |
**
|
|
2742 |
** Apart from that, we have little to go on besides intuition as to
|
|
2743 |
** how aiRowEst[] should be initialized. The numbers generated here
|
|
2744 |
** are based on typical values found in actual indices.
|
|
2745 |
*/
|
|
2746 |
void sqlite3DefaultRowEst(Index *pIdx){
|
|
2747 |
unsigned *a = pIdx->aiRowEst;
|
|
2748 |
int i;
|
|
2749 |
assert( a!=0 );
|
|
2750 |
a[0] = 1000000;
|
|
2751 |
for(i=pIdx->nColumn; i>=5; i--){
|
|
2752 |
a[i] = 5;
|
|
2753 |
}
|
|
2754 |
while( i>=1 ){
|
|
2755 |
a[i] = 11 - i;
|
|
2756 |
i--;
|
|
2757 |
}
|
|
2758 |
if( pIdx->onError!=OE_None ){
|
|
2759 |
a[pIdx->nColumn] = 1;
|
|
2760 |
}
|
|
2761 |
}
|
|
2762 |
|
|
2763 |
/*
|
|
2764 |
** This routine will drop an existing named index. This routine
|
|
2765 |
** implements the DROP INDEX statement.
|
|
2766 |
*/
|
|
2767 |
void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
|
|
2768 |
Index *pIndex;
|
|
2769 |
Vdbe *v;
|
|
2770 |
sqlite3 *db = pParse->db;
|
|
2771 |
int iDb;
|
|
2772 |
|
|
2773 |
if( pParse->nErr || db->mallocFailed ){
|
|
2774 |
goto exit_drop_index;
|
|
2775 |
}
|
|
2776 |
assert( pName->nSrc==1 );
|
|
2777 |
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
2778 |
goto exit_drop_index;
|
|
2779 |
}
|
|
2780 |
pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
|
2781 |
if( pIndex==0 ){
|
|
2782 |
if( !ifExists ){
|
|
2783 |
sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
|
|
2784 |
}
|
|
2785 |
pParse->checkSchema = 1;
|
|
2786 |
goto exit_drop_index;
|
|
2787 |
}
|
|
2788 |
if( pIndex->autoIndex ){
|
|
2789 |
sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
|
|
2790 |
"or PRIMARY KEY constraint cannot be dropped", 0);
|
|
2791 |
goto exit_drop_index;
|
|
2792 |
}
|
|
2793 |
iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
|
2794 |
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
2795 |
{
|
|
2796 |
int code = SQLITE_DROP_INDEX;
|
|
2797 |
Table *pTab = pIndex->pTable;
|
|
2798 |
const char *zDb = db->aDb[iDb].zName;
|
|
2799 |
const char *zTab = SCHEMA_TABLE(iDb);
|
|
2800 |
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
|
2801 |
goto exit_drop_index;
|
|
2802 |
}
|
|
2803 |
if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
|
|
2804 |
if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
|
2805 |
goto exit_drop_index;
|
|
2806 |
}
|
|
2807 |
}
|
|
2808 |
#endif
|
|
2809 |
|
|
2810 |
/* Generate code to remove the index and from the master table */
|
|
2811 |
v = sqlite3GetVdbe(pParse);
|
|
2812 |
if( v ){
|
|
2813 |
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
2814 |
sqlite3NestedParse(pParse,
|
|
2815 |
"DELETE FROM %Q.%s WHERE name=%Q",
|
|
2816 |
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
2817 |
pIndex->zName
|
|
2818 |
);
|
|
2819 |
sqlite3ChangeCookie(db, v, iDb);
|
|
2820 |
destroyRootPage(pParse, pIndex->tnum, iDb);
|
|
2821 |
sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
|
|
2822 |
}
|
|
2823 |
|
|
2824 |
exit_drop_index:
|
|
2825 |
sqlite3SrcListDelete(pName);
|
|
2826 |
}
|
|
2827 |
|
|
2828 |
/*
|
|
2829 |
** pArray is a pointer to an array of objects. Each object in the
|
|
2830 |
** array is szEntry bytes in size. This routine allocates a new
|
|
2831 |
** object on the end of the array.
|
|
2832 |
**
|
|
2833 |
** *pnEntry is the number of entries already in use. *pnAlloc is
|
|
2834 |
** the previously allocated size of the array. initSize is the
|
|
2835 |
** suggested initial array size allocation.
|
|
2836 |
**
|
|
2837 |
** The index of the new entry is returned in *pIdx.
|
|
2838 |
**
|
|
2839 |
** This routine returns a pointer to the array of objects. This
|
|
2840 |
** might be the same as the pArray parameter or it might be a different
|
|
2841 |
** pointer if the array was resized.
|
|
2842 |
*/
|
|
2843 |
void *sqlite3ArrayAllocate(
|
|
2844 |
sqlite3 *db, /* Connection to notify of malloc failures */
|
|
2845 |
void *pArray, /* Array of objects. Might be reallocated */
|
|
2846 |
int szEntry, /* Size of each object in the array */
|
|
2847 |
int initSize, /* Suggested initial allocation, in elements */
|
|
2848 |
int *pnEntry, /* Number of objects currently in use */
|
|
2849 |
int *pnAlloc, /* Current size of the allocation, in elements */
|
|
2850 |
int *pIdx /* Write the index of a new slot here */
|
|
2851 |
){
|
|
2852 |
char *z;
|
|
2853 |
if( *pnEntry >= *pnAlloc ){
|
|
2854 |
void *pNew;
|
|
2855 |
int newSize;
|
|
2856 |
newSize = (*pnAlloc)*2 + initSize;
|
|
2857 |
pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
|
|
2858 |
if( pNew==0 ){
|
|
2859 |
*pIdx = -1;
|
|
2860 |
return pArray;
|
|
2861 |
}
|
|
2862 |
*pnAlloc = newSize;
|
|
2863 |
pArray = pNew;
|
|
2864 |
}
|
|
2865 |
z = (char*)pArray;
|
|
2866 |
memset(&z[*pnEntry * szEntry], 0, szEntry);
|
|
2867 |
*pIdx = *pnEntry;
|
|
2868 |
++*pnEntry;
|
|
2869 |
return pArray;
|
|
2870 |
}
|
|
2871 |
|
|
2872 |
/*
|
|
2873 |
** Append a new element to the given IdList. Create a new IdList if
|
|
2874 |
** need be.
|
|
2875 |
**
|
|
2876 |
** A new IdList is returned, or NULL if malloc() fails.
|
|
2877 |
*/
|
|
2878 |
IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
|
|
2879 |
int i;
|
|
2880 |
if( pList==0 ){
|
|
2881 |
pList = (IdList*)sqlite3DbMallocZero(db, sizeof(IdList) );
|
|
2882 |
if( pList==0 ) return 0;
|
|
2883 |
pList->nAlloc = 0;
|
|
2884 |
}
|
|
2885 |
pList->a = (IdList::IdList_item*)sqlite3ArrayAllocate(
|
|
2886 |
db,
|
|
2887 |
pList->a,
|
|
2888 |
sizeof(pList->a[0]),
|
|
2889 |
5,
|
|
2890 |
&pList->nId,
|
|
2891 |
&pList->nAlloc,
|
|
2892 |
&i
|
|
2893 |
);
|
|
2894 |
if( i<0 ){
|
|
2895 |
sqlite3IdListDelete(pList);
|
|
2896 |
return 0;
|
|
2897 |
}
|
|
2898 |
pList->a[i].zName = sqlite3NameFromToken(db, pToken);
|
|
2899 |
return pList;
|
|
2900 |
}
|
|
2901 |
|
|
2902 |
/*
|
|
2903 |
** Delete an IdList.
|
|
2904 |
*/
|
|
2905 |
void sqlite3IdListDelete(IdList *pList){
|
|
2906 |
int i;
|
|
2907 |
if( pList==0 ) return;
|
|
2908 |
for(i=0; i<pList->nId; i++){
|
|
2909 |
sqlite3_free(pList->a[i].zName);
|
|
2910 |
}
|
|
2911 |
sqlite3_free(pList->a);
|
|
2912 |
sqlite3_free(pList);
|
|
2913 |
}
|
|
2914 |
|
|
2915 |
/*
|
|
2916 |
** Return the index in pList of the identifier named zId. Return -1
|
|
2917 |
** if not found.
|
|
2918 |
*/
|
|
2919 |
int sqlite3IdListIndex(IdList *pList, const char *zName){
|
|
2920 |
int i;
|
|
2921 |
if( pList==0 ) return -1;
|
|
2922 |
for(i=0; i<pList->nId; i++){
|
|
2923 |
if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
|
|
2924 |
}
|
|
2925 |
return -1;
|
|
2926 |
}
|
|
2927 |
|
|
2928 |
/*
|
|
2929 |
** Append a new table name to the given SrcList. Create a new SrcList if
|
|
2930 |
** need be. A new entry is created in the SrcList even if pToken is NULL.
|
|
2931 |
**
|
|
2932 |
** A new SrcList is returned, or NULL if malloc() fails.
|
|
2933 |
**
|
|
2934 |
** If pDatabase is not null, it means that the table has an optional
|
|
2935 |
** database name prefix. Like this: "database.table". The pDatabase
|
|
2936 |
** points to the table name and the pTable points to the database name.
|
|
2937 |
** The SrcList.a[].zName field is filled with the table name which might
|
|
2938 |
** come from pTable (if pDatabase is NULL) or from pDatabase.
|
|
2939 |
** SrcList.a[].zDatabase is filled with the database name from pTable,
|
|
2940 |
** or with NULL if no database is specified.
|
|
2941 |
**
|
|
2942 |
** In other words, if call like this:
|
|
2943 |
**
|
|
2944 |
** sqlite3SrcListAppend(D,A,B,0);
|
|
2945 |
**
|
|
2946 |
** Then B is a table name and the database name is unspecified. If called
|
|
2947 |
** like this:
|
|
2948 |
**
|
|
2949 |
** sqlite3SrcListAppend(D,A,B,C);
|
|
2950 |
**
|
|
2951 |
** Then C is the table name and B is the database name.
|
|
2952 |
*/
|
|
2953 |
SrcList *sqlite3SrcListAppend(
|
|
2954 |
sqlite3 *db, /* Connection to notify of malloc failures */
|
|
2955 |
SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
|
|
2956 |
Token *pTable, /* Table to append */
|
|
2957 |
Token *pDatabase /* Database of the table */
|
|
2958 |
){
|
|
2959 |
SrcList::SrcList_item *pItem;
|
|
2960 |
if( pList==0 ){
|
|
2961 |
pList = (SrcList*)sqlite3DbMallocZero(db, sizeof(SrcList) );
|
|
2962 |
if( pList==0 ) return 0;
|
|
2963 |
pList->nAlloc = 1;
|
|
2964 |
}
|
|
2965 |
if( pList->nSrc>=pList->nAlloc ){
|
|
2966 |
SrcList *pNew;
|
|
2967 |
pList->nAlloc *= 2;
|
|
2968 |
pNew = (SrcList*)sqlite3DbRealloc(db, pList,
|
|
2969 |
sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
|
|
2970 |
if( pNew==0 ){
|
|
2971 |
sqlite3SrcListDelete(pList);
|
|
2972 |
return 0;
|
|
2973 |
}
|
|
2974 |
pList = pNew;
|
|
2975 |
}
|
|
2976 |
pItem = &pList->a[pList->nSrc];
|
|
2977 |
memset(pItem, 0, sizeof(pList->a[0]));
|
|
2978 |
if( pDatabase && pDatabase->z==0 ){
|
|
2979 |
pDatabase = 0;
|
|
2980 |
}
|
|
2981 |
if( pDatabase && pTable ){
|
|
2982 |
Token *pTemp = pDatabase;
|
|
2983 |
pDatabase = pTable;
|
|
2984 |
pTable = pTemp;
|
|
2985 |
}
|
|
2986 |
pItem->zName = sqlite3NameFromToken(db, pTable);
|
|
2987 |
pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
|
|
2988 |
pItem->iCursor = -1;
|
|
2989 |
pItem->isPopulated = 0;
|
|
2990 |
pList->nSrc++;
|
|
2991 |
return pList;
|
|
2992 |
}
|
|
2993 |
|
|
2994 |
/*
|
|
2995 |
** Assign cursors to all tables in a SrcList
|
|
2996 |
*/
|
|
2997 |
void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
|
|
2998 |
int i;
|
|
2999 |
SrcList::SrcList_item *pItem;
|
|
3000 |
assert(pList || pParse->db->mallocFailed );
|
|
3001 |
if( pList ){
|
|
3002 |
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
|
3003 |
if( pItem->iCursor>=0 ) break;
|
|
3004 |
pItem->iCursor = pParse->nTab++;
|
|
3005 |
if( pItem->pSelect ){
|
|
3006 |
sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
|
|
3007 |
}
|
|
3008 |
}
|
|
3009 |
}
|
|
3010 |
}
|
|
3011 |
|
|
3012 |
/*
|
|
3013 |
** Delete an entire SrcList including all its substructure.
|
|
3014 |
*/
|
|
3015 |
void sqlite3SrcListDelete(SrcList *pList){
|
|
3016 |
int i;
|
|
3017 |
SrcList::SrcList_item *pItem;
|
|
3018 |
if( pList==0 ) return;
|
|
3019 |
for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
|
|
3020 |
sqlite3_free(pItem->zDatabase);
|
|
3021 |
sqlite3_free(pItem->zName);
|
|
3022 |
sqlite3_free(pItem->zAlias);
|
|
3023 |
sqlite3DeleteTable(pItem->pTab);
|
|
3024 |
sqlite3SelectDelete(pItem->pSelect);
|
|
3025 |
sqlite3ExprDelete(pItem->pOn);
|
|
3026 |
sqlite3IdListDelete(pItem->pUsing);
|
|
3027 |
}
|
|
3028 |
sqlite3_free(pList);
|
|
3029 |
}
|
|
3030 |
|
|
3031 |
/*
|
|
3032 |
** This routine is called by the parser to add a new term to the
|
|
3033 |
** end of a growing FROM clause. The "p" parameter is the part of
|
|
3034 |
** the FROM clause that has already been constructed. "p" is NULL
|
|
3035 |
** if this is the first term of the FROM clause. pTable and pDatabase
|
|
3036 |
** are the name of the table and database named in the FROM clause term.
|
|
3037 |
** pDatabase is NULL if the database name qualifier is missing - the
|
|
3038 |
** usual case. If the term has a alias, then pAlias points to the
|
|
3039 |
** alias token. If the term is a subquery, then pSubquery is the
|
|
3040 |
** SELECT statement that the subquery encodes. The pTable and
|
|
3041 |
** pDatabase parameters are NULL for subqueries. The pOn and pUsing
|
|
3042 |
** parameters are the content of the ON and USING clauses.
|
|
3043 |
**
|
|
3044 |
** Return a new SrcList which encodes is the FROM with the new
|
|
3045 |
** term added.
|
|
3046 |
*/
|
|
3047 |
SrcList *sqlite3SrcListAppendFromTerm(
|
|
3048 |
Parse *pParse, /* Parsing context */
|
|
3049 |
SrcList *p, /* The left part of the FROM clause already seen */
|
|
3050 |
Token *pTable, /* Name of the table to add to the FROM clause */
|
|
3051 |
Token *pDatabase, /* Name of the database containing pTable */
|
|
3052 |
Token *pAlias, /* The right-hand side of the AS subexpression */
|
|
3053 |
Select *pSubquery, /* A subquery used in place of a table name */
|
|
3054 |
Expr *pOn, /* The ON clause of a join */
|
|
3055 |
IdList *pUsing /* The USING clause of a join */
|
|
3056 |
){
|
|
3057 |
SrcList::SrcList_item *pItem;
|
|
3058 |
sqlite3 *db = pParse->db;
|
|
3059 |
p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
|
|
3060 |
if( p==0 || p->nSrc==0 ){
|
|
3061 |
sqlite3ExprDelete(pOn);
|
|
3062 |
sqlite3IdListDelete(pUsing);
|
|
3063 |
sqlite3SelectDelete(pSubquery);
|
|
3064 |
return p;
|
|
3065 |
}
|
|
3066 |
pItem = &p->a[p->nSrc-1];
|
|
3067 |
if( pAlias && pAlias->n ){
|
|
3068 |
pItem->zAlias = sqlite3NameFromToken(db, pAlias);
|
|
3069 |
}
|
|
3070 |
pItem->pSelect = pSubquery;
|
|
3071 |
pItem->pOn = pOn;
|
|
3072 |
pItem->pUsing = pUsing;
|
|
3073 |
return p;
|
|
3074 |
}
|
|
3075 |
|
|
3076 |
/*
|
|
3077 |
** When building up a FROM clause in the parser, the join operator
|
|
3078 |
** is initially attached to the left operand. But the code generator
|
|
3079 |
** expects the join operator to be on the right operand. This routine
|
|
3080 |
** Shifts all join operators from left to right for an entire FROM
|
|
3081 |
** clause.
|
|
3082 |
**
|
|
3083 |
** Example: Suppose the join is like this:
|
|
3084 |
**
|
|
3085 |
** A natural cross join B
|
|
3086 |
**
|
|
3087 |
** The operator is "natural cross join". The A and B operands are stored
|
|
3088 |
** in p->a[0] and p->a[1], respectively. The parser initially stores the
|
|
3089 |
** operator with A. This routine shifts that operator over to B.
|
|
3090 |
*/
|
|
3091 |
void sqlite3SrcListShiftJoinType(SrcList *p){
|
|
3092 |
if( p && p->a ){
|
|
3093 |
int i;
|
|
3094 |
for(i=p->nSrc-1; i>0; i--){
|
|
3095 |
p->a[i].jointype = p->a[i-1].jointype;
|
|
3096 |
}
|
|
3097 |
p->a[0].jointype = 0;
|
|
3098 |
}
|
|
3099 |
}
|
|
3100 |
|
|
3101 |
/*
|
|
3102 |
** Begin a transaction
|
|
3103 |
*/
|
|
3104 |
void sqlite3BeginTransaction(Parse *pParse, int type){
|
|
3105 |
sqlite3 *db;
|
|
3106 |
Vdbe *v;
|
|
3107 |
int i;
|
|
3108 |
|
|
3109 |
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
3110 |
if( pParse->nErr || db->mallocFailed ) return;
|
|
3111 |
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
|
|
3112 |
|
|
3113 |
v = sqlite3GetVdbe(pParse);
|
|
3114 |
if( !v ) return;
|
|
3115 |
if( type!=TK_DEFERRED ){
|
|
3116 |
for(i=0; i<db->nDb; i++){
|
|
3117 |
sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
|
|
3118 |
sqlite3VdbeUsesBtree(v, i);
|
|
3119 |
}
|
|
3120 |
}
|
|
3121 |
sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
|
|
3122 |
}
|
|
3123 |
|
|
3124 |
/*
|
|
3125 |
** Commit a transaction
|
|
3126 |
*/
|
|
3127 |
void sqlite3CommitTransaction(Parse *pParse){
|
|
3128 |
sqlite3 *db;
|
|
3129 |
Vdbe *v;
|
|
3130 |
|
|
3131 |
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
3132 |
if( pParse->nErr || db->mallocFailed ) return;
|
|
3133 |
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
|
|
3134 |
|
|
3135 |
v = sqlite3GetVdbe(pParse);
|
|
3136 |
if( v ){
|
|
3137 |
sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
|
|
3138 |
}
|
|
3139 |
}
|
|
3140 |
|
|
3141 |
/*
|
|
3142 |
** Rollback a transaction
|
|
3143 |
*/
|
|
3144 |
void sqlite3RollbackTransaction(Parse *pParse){
|
|
3145 |
sqlite3 *db;
|
|
3146 |
Vdbe *v;
|
|
3147 |
|
|
3148 |
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
3149 |
if( pParse->nErr || db->mallocFailed ) return;
|
|
3150 |
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
|
|
3151 |
|
|
3152 |
v = sqlite3GetVdbe(pParse);
|
|
3153 |
if( v ){
|
|
3154 |
sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
|
|
3155 |
}
|
|
3156 |
}
|
|
3157 |
|
|
3158 |
/*
|
|
3159 |
** Make sure the TEMP database is open and available for use. Return
|
|
3160 |
** the number of errors. Leave any error messages in the pParse structure.
|
|
3161 |
*/
|
|
3162 |
int sqlite3OpenTempDatabase(Parse *pParse){
|
|
3163 |
sqlite3 *db = pParse->db;
|
|
3164 |
if( db->aDb[1].pBt==0 && !pParse->explain ){
|
|
3165 |
int rc;
|
|
3166 |
static const int flags =
|
|
3167 |
SQLITE_OPEN_READWRITE |
|
|
3168 |
SQLITE_OPEN_CREATE |
|
|
3169 |
SQLITE_OPEN_EXCLUSIVE |
|
|
3170 |
SQLITE_OPEN_DELETEONCLOSE |
|
|
3171 |
SQLITE_OPEN_TEMP_DB;
|
|
3172 |
|
|
3173 |
rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
|
|
3174 |
&db->aDb[1].pBt);
|
|
3175 |
if( rc!=SQLITE_OK ){
|
|
3176 |
sqlite3ErrorMsg(pParse, "unable to open a temporary database "
|
|
3177 |
"file for storing temporary tables");
|
|
3178 |
pParse->rc = rc;
|
|
3179 |
return 1;
|
|
3180 |
}
|
|
3181 |
if( db->flags & !db->autoCommit ){
|
|
3182 |
rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
|
|
3183 |
if( rc!=SQLITE_OK ){
|
|
3184 |
sqlite3ErrorMsg(pParse, "unable to get a write lock on "
|
|
3185 |
"the temporary database file");
|
|
3186 |
pParse->rc = rc;
|
|
3187 |
return 1;
|
|
3188 |
}
|
|
3189 |
}
|
|
3190 |
assert( db->aDb[1].pSchema );
|
|
3191 |
}
|
|
3192 |
return 0;
|
|
3193 |
}
|
|
3194 |
|
|
3195 |
/*
|
|
3196 |
** Generate VDBE code that will verify the schema cookie and start
|
|
3197 |
** a read-transaction for all named database files.
|
|
3198 |
**
|
|
3199 |
** It is important that all schema cookies be verified and all
|
|
3200 |
** read transactions be started before anything else happens in
|
|
3201 |
** the VDBE program. But this routine can be called after much other
|
|
3202 |
** code has been generated. So here is what we do:
|
|
3203 |
**
|
|
3204 |
** The first time this routine is called, we code an OP_Goto that
|
|
3205 |
** will jump to a subroutine at the end of the program. Then we
|
|
3206 |
** record every database that needs its schema verified in the
|
|
3207 |
** pParse->cookieMask field. Later, after all other code has been
|
|
3208 |
** generated, the subroutine that does the cookie verifications and
|
|
3209 |
** starts the transactions will be coded and the OP_Goto P2 value
|
|
3210 |
** will be made to point to that subroutine. The generation of the
|
|
3211 |
** cookie verification subroutine code happens in sqlite3FinishCoding().
|
|
3212 |
**
|
|
3213 |
** If iDb<0 then code the OP_Goto only - don't set flag to verify the
|
|
3214 |
** schema on any databases. This can be used to position the OP_Goto
|
|
3215 |
** early in the code, before we know if any database tables will be used.
|
|
3216 |
*/
|
|
3217 |
void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
|
|
3218 |
sqlite3 *db;
|
|
3219 |
Vdbe *v;
|
|
3220 |
int mask;
|
|
3221 |
|
|
3222 |
v = sqlite3GetVdbe(pParse);
|
|
3223 |
if( v==0 ) return; /* This only happens if there was a prior error */
|
|
3224 |
db = pParse->db;
|
|
3225 |
if( pParse->cookieGoto==0 ){
|
|
3226 |
pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1;
|
|
3227 |
}
|
|
3228 |
if( iDb>=0 ){
|
|
3229 |
assert( iDb<db->nDb );
|
|
3230 |
assert( db->aDb[iDb].pBt!=0 || iDb==1 );
|
|
3231 |
assert( iDb<SQLITE_MAX_ATTACHED+2 );
|
|
3232 |
mask = 1<<iDb;
|
|
3233 |
if( (pParse->cookieMask & mask)==0 ){
|
|
3234 |
pParse->cookieMask |= mask;
|
|
3235 |
pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
|
|
3236 |
if( !OMIT_TEMPDB && iDb==1 ){
|
|
3237 |
sqlite3OpenTempDatabase(pParse);
|
|
3238 |
}
|
|
3239 |
}
|
|
3240 |
}
|
|
3241 |
}
|
|
3242 |
|
|
3243 |
/*
|
|
3244 |
** Generate VDBE code that prepares for doing an operation that
|
|
3245 |
** might change the database.
|
|
3246 |
**
|
|
3247 |
** This routine starts a new transaction if we are not already within
|
|
3248 |
** a transaction. If we are already within a transaction, then a checkpoint
|
|
3249 |
** is set if the setStatement parameter is true. A checkpoint should
|
|
3250 |
** be set for operations that might fail (due to a constraint) part of
|
|
3251 |
** the way through and which will need to undo some writes without having to
|
|
3252 |
** rollback the whole transaction. For operations where all constraints
|
|
3253 |
** can be checked before any changes are made to the database, it is never
|
|
3254 |
** necessary to undo a write and the checkpoint should not be set.
|
|
3255 |
**
|
|
3256 |
** Only database iDb and the temp database are made writable by this call.
|
|
3257 |
** If iDb==0, then the main and temp databases are made writable. If
|
|
3258 |
** iDb==1 then only the temp database is made writable. If iDb>1 then the
|
|
3259 |
** specified auxiliary database and the temp database are made writable.
|
|
3260 |
*/
|
|
3261 |
void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
|
|
3262 |
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
3263 |
if( v==0 ) return;
|
|
3264 |
sqlite3CodeVerifySchema(pParse, iDb);
|
|
3265 |
pParse->writeMask |= 1<<iDb;
|
|
3266 |
if( setStatement && pParse->nested==0 ){
|
|
3267 |
sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
|
|
3268 |
}
|
|
3269 |
if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
|
|
3270 |
sqlite3BeginWriteOperation(pParse, setStatement, 1);
|
|
3271 |
}
|
|
3272 |
}
|
|
3273 |
|
|
3274 |
/*
|
|
3275 |
** Check to see if pIndex uses the collating sequence pColl. Return
|
|
3276 |
** true if it does and false if it does not.
|
|
3277 |
*/
|
|
3278 |
#ifndef SQLITE_OMIT_REINDEX
|
|
3279 |
static int collationMatch(const char *zColl, Index *pIndex){
|
|
3280 |
int i;
|
|
3281 |
for(i=0; i<pIndex->nColumn; i++){
|
|
3282 |
const char *z = pIndex->azColl[i];
|
|
3283 |
if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
|
|
3284 |
return 1;
|
|
3285 |
}
|
|
3286 |
}
|
|
3287 |
return 0;
|
|
3288 |
}
|
|
3289 |
#endif
|
|
3290 |
|
|
3291 |
/*
|
|
3292 |
** Recompute all indices of pTab that use the collating sequence pColl.
|
|
3293 |
** If pColl==0 then recompute all indices of pTab.
|
|
3294 |
*/
|
|
3295 |
#ifndef SQLITE_OMIT_REINDEX
|
|
3296 |
static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
|
|
3297 |
Index *pIndex; /* An index associated with pTab */
|
|
3298 |
|
|
3299 |
for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
|
|
3300 |
if( zColl==0 || collationMatch(zColl, pIndex) ){
|
|
3301 |
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
3302 |
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
3303 |
sqlite3RefillIndex(pParse, pIndex, -1);
|
|
3304 |
}
|
|
3305 |
}
|
|
3306 |
}
|
|
3307 |
#endif
|
|
3308 |
|
|
3309 |
/*
|
|
3310 |
** Recompute all indices of all tables in all databases where the
|
|
3311 |
** indices use the collating sequence pColl. If pColl==0 then recompute
|
|
3312 |
** all indices everywhere.
|
|
3313 |
*/
|
|
3314 |
#ifndef SQLITE_OMIT_REINDEX
|
|
3315 |
static void reindexDatabases(Parse *pParse, char const *zColl){
|
|
3316 |
Db *pDb; /* A single database */
|
|
3317 |
int iDb; /* The database index number */
|
|
3318 |
sqlite3 *db = pParse->db; /* The database connection */
|
|
3319 |
HashElem *k; /* For looping over tables in pDb */
|
|
3320 |
Table *pTab; /* A table in the database */
|
|
3321 |
|
|
3322 |
for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
|
|
3323 |
assert( pDb!=0 );
|
|
3324 |
for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
3325 |
pTab = (Table*)sqliteHashData(k);
|
|
3326 |
reindexTable(pParse, pTab, zColl);
|
|
3327 |
}
|
|
3328 |
}
|
|
3329 |
}
|
|
3330 |
#endif
|
|
3331 |
|
|
3332 |
/*
|
|
3333 |
** Generate code for the REINDEX command.
|
|
3334 |
**
|
|
3335 |
** REINDEX -- 1
|
|
3336 |
** REINDEX <collation> -- 2
|
|
3337 |
** REINDEX ?<database>.?<tablename> -- 3
|
|
3338 |
** REINDEX ?<database>.?<indexname> -- 4
|
|
3339 |
**
|
|
3340 |
** Form 1 causes all indices in all attached databases to be rebuilt.
|
|
3341 |
** Form 2 rebuilds all indices in all databases that use the named
|
|
3342 |
** collating function. Forms 3 and 4 rebuild the named index or all
|
|
3343 |
** indices associated with the named table.
|
|
3344 |
*/
|
|
3345 |
#ifndef SQLITE_OMIT_REINDEX
|
|
3346 |
void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
|
|
3347 |
CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
|
|
3348 |
char *z; /* Name of a table or index */
|
|
3349 |
const char *zDb; /* Name of the database */
|
|
3350 |
Table *pTab; /* A table in the database */
|
|
3351 |
Index *pIndex; /* An index associated with pTab */
|
|
3352 |
int iDb; /* The database index number */
|
|
3353 |
sqlite3 *db = pParse->db; /* The database connection */
|
|
3354 |
Token *pObjName; /* Name of the table or index to be reindexed */
|
|
3355 |
|
|
3356 |
/* Read the database schema. If an error occurs, leave an error message
|
|
3357 |
** and code in pParse and return NULL. */
|
|
3358 |
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
3359 |
return;
|
|
3360 |
}
|
|
3361 |
|
|
3362 |
if( pName1==0 || pName1->z==0 ){
|
|
3363 |
reindexDatabases(pParse, 0);
|
|
3364 |
return;
|
|
3365 |
}else if( pName2==0 || pName2->z==0 ){
|
|
3366 |
char *zColl;
|
|
3367 |
assert( pName1->z );
|
|
3368 |
zColl = sqlite3NameFromToken(pParse->db, pName1);
|
|
3369 |
if( !zColl ) return;
|
|
3370 |
pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
|
|
3371 |
if( pColl ){
|
|
3372 |
if( zColl ){
|
|
3373 |
reindexDatabases(pParse, zColl);
|
|
3374 |
sqlite3_free(zColl);
|
|
3375 |
}
|
|
3376 |
return;
|
|
3377 |
}
|
|
3378 |
sqlite3_free(zColl);
|
|
3379 |
}
|
|
3380 |
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
|
|
3381 |
if( iDb<0 ) return;
|
|
3382 |
z = sqlite3NameFromToken(db, pObjName);
|
|
3383 |
if( z==0 ) return;
|
|
3384 |
zDb = db->aDb[iDb].zName;
|
|
3385 |
pTab = sqlite3FindTable(db, z, zDb);
|
|
3386 |
if( pTab ){
|
|
3387 |
reindexTable(pParse, pTab, 0);
|
|
3388 |
sqlite3_free(z);
|
|
3389 |
return;
|
|
3390 |
}
|
|
3391 |
pIndex = sqlite3FindIndex(db, z, zDb);
|
|
3392 |
sqlite3_free(z);
|
|
3393 |
if( pIndex ){
|
|
3394 |
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
3395 |
sqlite3RefillIndex(pParse, pIndex, -1);
|
|
3396 |
return;
|
|
3397 |
}
|
|
3398 |
sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
|
|
3399 |
}
|
|
3400 |
#endif
|
|
3401 |
|
|
3402 |
/*
|
|
3403 |
** Return a dynamicly allocated KeyInfo structure that can be used
|
|
3404 |
** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
|
|
3405 |
**
|
|
3406 |
** If successful, a pointer to the new structure is returned. In this case
|
|
3407 |
** the caller is responsible for calling sqlite3_free() on the returned
|
|
3408 |
** pointer. If an error occurs (out of memory or missing collation
|
|
3409 |
** sequence), NULL is returned and the state of pParse updated to reflect
|
|
3410 |
** the error.
|
|
3411 |
*/
|
|
3412 |
KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
|
|
3413 |
int i;
|
|
3414 |
int nCol = pIdx->nColumn;
|
|
3415 |
int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
|
|
3416 |
KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes);
|
|
3417 |
|
|
3418 |
if( pKey ){
|
|
3419 |
pKey->db = pParse->db;
|
|
3420 |
pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
|
|
3421 |
assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
|
|
3422 |
for(i=0; i<nCol; i++){
|
|
3423 |
char *zColl = pIdx->azColl[i];
|
|
3424 |
assert( zColl );
|
|
3425 |
pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
|
|
3426 |
pKey->aSortOrder[i] = pIdx->aSortOrder[i];
|
|
3427 |
}
|
|
3428 |
pKey->nField = nCol;
|
|
3429 |
}
|
|
3430 |
|
|
3431 |
if( pParse->nErr ){
|
|
3432 |
sqlite3_free(pKey);
|
|
3433 |
pKey = 0;
|
|
3434 |
}
|
|
3435 |
return pKey;
|
|
3436 |
}
|